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Preface
Geometric inequalities play a crucial role in various branches of science
and engineering, providing foundational tools for theoretical
development and problem-solving. In mathematics, applications of
geometric inequalities span across geometry, analysis, and
optimization, among many others. For instance, the priori estimates for
differential equations and the theory of functions of complex variables
provide many such examples. In physics, particularly in general
relativity and string theory, geometric inequalities help describe
spacetime geometries and their properties under various physical
conditions. For example, physicists can use geometric inequalities to
derive constraints on energy distributions based on geometric
con�igurations.

Geometric inequalities also play a crucial role in geometric analysis,
particularly in studying elliptic partial differential equations related to
geometric �lows. They help establish regularity results for solutions to
these equations by controlling various norms associated with functions
de�ined on (Riemannian) manifolds. Also, the Sobolev inequalities
provide bounds on functions de�ined on manifolds concerning their
derivatives and integrals over certain domains. These inequalities are
instrumental in studying partial differential equations on manifolds and
have implications for embedding theorems.

In differential geometry, geometric inequalities play a crucial role,
providing important tools for understanding the properties of
geometric objects, such as Riemannian manifolds and their
submanifolds. In addition, geometric inequalities help to analyze
curvature properties of manifolds. For example, the Cauchy-Schwarz
inequality has been applied to derive bounds on sectional curvature,
which is crucial in studying Riemannian manifolds with constant
curvature, such as spheres and hyperbolic spaces. Moreover, the
relationship between curvature and geometric inequalities allows
differential geometers to classify manifolds based on their curvature
characteristics. In addition, geometric inequalities facilitate comparison
theorems that relate different geometric structures. For example,
Bonnet-Myers’ theorem uses geometric inequalities to prove that if a



Riemannian manifold has positive Ricci curvature, then it is always
compact and it has a �inite diameter. Such results are pivotal in
understanding the global structure of Riemannian manifolds. In
addition, embedding theorems often rely on geometric inequalities to
establish conditions under which a manifold can be embedded into
Euclidean space. For instance, the Whitney and Nash embedding
theorems utilize concepts from geometric inequalities to demonstrate
that any smooth manifold can be embedded into a Euclidean space of
higher dimension.

This book is devoted to recent advances in a variety of geometric
inequalities in differential geometry, as well as in the theory of solitons.
As a result, this book consists of 15 chapters authored by leading
mathematicians, encompassing a wide array of topics, including “Some
Inequalities for Geometric Solitons” by A. M. Blaga, “Generalized Ricci-
Yamabe Soliton on 3-Dimensional Lie Groups” by A. Delloum and G.
Beldjilali, “Riemannian Invariants in Submanifold Theory” by A. Mihai,
“Chen Inequalities for Submanifolds of Kenmotsu Space Forms” by I.
U� nal, A. Barman and D. G. Prakasha, “Improved Chen-Ricci Inequalities
for Semi-slant ξ⊥-Riemannian Submersions from Sasakian Space
Forms” by M. A. Akyol and N. Poyraz, “Characterizations of Perfect Fluid
and Generalized Robertson-Walker Space-Time Admitting k Almost
Ricci Yamabe Solitons” by K. De and U. C. De, “Riemannian Concircular
Structure Manifold and Solitons” by S. K. Chaubey and A. Haseeb,
“Statistical Maps and a Chen’s First Inequality for These Maps” by S.
Kazan and A. N. Suddiqui, “Hyperbolic Ricci-Yamabe Solitons and η-
Hyperbolic Ricci-Yamabe Solitons” by M. D. Siddiqi, “A Survey on
Hitchin-Thorpe Inequality and Its Extensions” by B.-Y. Chen, M. A.
Choudhary, and M. Nisar, “The Principal Eigenvalue of a (p, q)-
Biharmonic System Along the Ricci Flow” by S. Azami and Gh. Fasihi-
Ramandi, “The Jacobi Geometry of Plane, Parametrized Curves and
Associated Inequalities” by M. Crasmareanu, “B.-Y. Chen Inequalities for
Submanifolds of a Conformally Flat Manifold” by C. O� zür, “General Chen
Inequalities for Statistical Submanifolds in Kenmotsu Statistical
Manifolds of Constant ϕ-Sectional Curvature” by S. Decu and G.-E. Vilcu,
and “B. Y. Chen Inequalities for Pointwise Quasi Hemi-Slant
Submanifolds of a Kaehler Manifold” by N. Poyraz, M. A. Akyol, and Erol
Yasar.



Both editors of this book hope that readers will �ind this book a
valuable reference for geometrical inequalities, enabling them to
perform their research more effectively, successfully, and creatively.

Bang-Yen	Chen
Majid	Ali	Choudhary
East	Lansing,	MI,	USA

Hyderabad,	India
April,	2025
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Some	Inequalities	for	Geometric	Solitons
Adara M. Blaga1  

Faculty of Physics and Mathematics, Department of Mathematics, West University of Timişoara,
Timişoara, Romania

 
Abstract
For different types of geometric solitons with a certain kind of potential vector �ield, we provided
some necessary and suf�icient inequalities that must be satis�ied by the Ricci and the scalar
curvatures for the solitons to be trivial. By means of similar inequalities, we have also given new
characterizations of a Euclidean sphere.

Keywords Trivial soliton – Ricci curvature – Euclidean sphere

1	 Preliminaries
Let (M, g) be an n-dimensional Riemannian manifold (n > 2). We denote by C∞(M) the set of
smooth real functions on M, by Ric the Ricci curvature tensor �ield, by Q the Ricci operator, by r the
scalar curvature, by ∇ the Levi-Civita connection of g, and by  the Lie derivative operator in the
direction of a smooth vector �ield ζ tangent to M. We will brie�ly recall the de�initions of certain
types of geometric solitons which we shall use in the sequel. Let ζ be a smooth vector �ield and η a
1-form on M. Then, (M, g, ζ) is said to be:

1.
An almost	Ricci	soliton [23] if

(1.1)

 

2.
An almostη-Ricci	soliton [2, 3, 18] if

(1.2)

 

3.
An almost	Einstein	soliton [11, 17] if

(1.3)

 

4.
An almost	Ricci–Bourguignon	soliton [19] if

(1.4)

 

5. A generalized	Ricci	soliton [24] if

(1.5)
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6.
A generalized	soliton [8] if

(1.6)
 

7.
A hyperbolic	Ricci	soliton [20] if

(1.7)

 

8.
A hyperbolic	Yamabe	soliton [15] if

(1.8)

 

For the abovementioned solitons, if the functions are constant, then we drop almost. Also, for all
types of solitons, if the potential vector �ield is of	gradient	type [25], i.e., ζ = ∇f , where ∇f denotes
the gradient of f ∈ C∞(M), then we use the name of gradient	soliton, and we call f a potential
function. Any of these solitons is called a trivial	soliton if its potential vector �ield is a Killing	vector
�ield [25], i.e., .

Two essential problems in the theory of solitons are (i) �inding conditions under which a soliton
is trivial and (ii) �inding characterizations of the Euclidean sphere. The present chapter aims to
collect some characterization results for trivial solitons with different types of potential vector
�ields, as well as some characterizations of a Euclidean sphere, by means of (integral or not)
inequalities satis�ied by the Ricci curvature tensor �ield (see [2–16, 24]), completed by new results.

2	 Some	Ricci	Inequalities
We have provided, in [4], a suf�icient inequality satis�ied by the Ricci and the scalar curvatures for a
compact almost Ricci soliton to be a Ricci-�lat	manifold, i.e., Ric = 0. We recall that a vector �ield ζ
on (M, g) is called concircular [25] if ∇ζ = fI , where f ∈ C∞(M) and I is the identity map on the
smooth sections of M. As a particular case of Theorem 5 from [4], we have the following result.

Proposition	2.1 Let (1.1) de�ine	a	compact	gradient	almost	Ricci	soliton	satisfying

Then,ζis	a	concircular	vector	�ield,	and(M, g)is	a	Ricci-�lat	manifold.

Proof Since the soliton is of gradient type, the vector �ield ζ is closed, and (1.1) becomes 
∇ζ + Q = λI . Then, for f = −1, φ = Q, and h = λ in Theorem 5 from [4], we get Q = 0 and 
∇ζ = λI . □

A similar inequality satis�ied by the Ricci curvature and the potential vector �ield of a gradient
almost Ricci soliton implies that the manifold is an Einstein	manifold [1], i.e., Ric = r

n
g. We recall

that a vector �ield ζ on (M, g) is called conformal	Killing [25] if , where f ∈ C∞(M);
af�ine	Killing [25] if ; and af�ine	conformal	Killing [25] if 

, where f ∈ C∞(M). It is known [21] that the above condition
from the de�inition of an af�ine conformal Killing vector �ield is equivalent to the following
condition:

(2.9)

∫
M

Ric(ζ, ζ) ≥ ∫
M
{(r − (n−1)λ)

2
+ (n−1)λ2}.



where K is a symmetric (0, 2)-tensor �ield. In [9], we have proved the following result.

Proposition	2.2 Let (1.1) de�ine	a	compact	and	connected	gradient	almost	Ricci	soliton	with	af�ine
conformal	Killing	potential	vector	�ieldζ = ∇hsatisfying

Then,ζis	a	conformal	Killing	vector	�ield,	and(M, g)is	an	Einstein	manifold.

We recall that a vector �ield ζ on (M, g) is called 2-Killing [22] if .
A suf�icient condition for a hyperbolic Ricci or a hyperbolic Yamabe soliton to be of constant

scalar curvature is further provided (see [5]).

Proposition	2.3 Let (1.7) (respectively, (1.8))	de�ine	a	compact	and	connected	gradient	hyperbolic
Ricci	(respectively,	a	compact	and	connected	gradient	hyperbolic	Yamabe)	soliton	withλ ≠ 0such	that

is	divergence-free	and

Then,(M, g)is	a	manifold	of	constant	scalar	curvature.
In	particular,	a	compact	and	connected	gradient	Ricci	(as	well	as	a	compact	and	connected

gradient	Yamabe)	soliton	with 2-Killing	potential	vector	�ieldζ = ∇fsatisfying

is	a	manifold	of	constant	scalar	curvature.

Proof The particular cases follow from Proposition 2.10 from [5], considering λ = 1
2  in (1.7)

(respectively, (1.8)) and taking into account that . □

In [7], we have obtained inequalities considering solitons de�ined by an af�ine connection
associated with a 1-form. In [3, 10], and [16], respectively, we have found lower and upper bounds
of the Ricci curvature tensor �ield’s norm for gradient almost Ricci, gradient almost η-Ricci, and
gradient almost Ricci–Bourguignon solitons. Similar inequalities can be determined for a gradient
generalized soliton, recovering these as particular cases, as in the following.

Proposition	2.4 If (1.6) de�ines	a	gradient	generalized	soliton,ζ = ∇f ,	andη = df ,	then

In	particular:
(i)

For	a	gradient	almostη-Ricci	soliton	withζ = ∇fandη = df ,	we	have  

∫
M

Ric(∇h, ∇h) ≥ n∫
M
f{(n−1)f + trace(K)} + n−1

4n ∫M
(trace(K))

2
.

λ∫
M

Ric(∇f, ∇r) ≤ 0.

∫
M

Ric(∇f, ∇r) ≤ 0

∥ Hess(f) ∥2 +γ 2 ∥ ∇f ∥4 −γ∇f(∥ ∇f ∥2) −
(Δ(f)−γ∥∇f∥2)

2

n
≤

≤ α2 ∥ Ric ∥2≤

≤∥ Hess(f) ∥2 +γ 2 ∥ ∇f ∥4 −γ∇f(∥ ∇f ∥2) + α2r2

n
.

∥ Hess(f) ∥2 +μ2 ∥ ∇f ∥4 −μ∇f(∥ ∇f ∥2) −
(Δ(f)−μ∥∇f∥2)

2

n
≤

≤∥ Ric ∥2≤

≤∥ Hess(f) ∥2 +μ2 ∥ ∇f ∥4 −μ∇f(∥ ∇f ∥2) + r2

n
.



(ii)
For	a	gradient	generalized	Ricci	soliton	withζ = ∇f ,	we	have  

(iii)
For	a	gradient	almost	Ricci	soliton,	a	gradient	almost	Einstein	soliton,	as	well	as	for	a	gradient
almost	Ricci–Bourguignon	soliton	withζ = ∇f ,	we	have

 

Proof By taking the trace in

we get

Now, taking successively the scalar product with Hess(f) and Ric, respectively, we obtain

and

By multiplying the last relation with α and comparing it with the previous one, we infer

Since we have

and

we obtain

(2.10)

and we get the conclusion.
For α = 1,β = λ, γ = μ, we get (i); for γ = 0, we get (ii); for α = 1,β = λ, γ = 0, for 

α = 1,β = λ + r
2

, γ = 0, and for α = 1,β = λ + ρr, γ = 0, we get (iii). The proof is complete. □

In [24], we have given a suf�icient inequality for the potential function f of a gradient generalized
Ricci soliton to be a harmonic function, i.e., Δ(f) = 0, where Δ denotes the Laplacian operator.
More precisely:

Proposition	2.5 If (1.5) de�ines	a	gradient	generalized	Ricci	soliton	and

thenβ = rα
n
,	and	f	is	a	harmonic	function.

In	particular,	for	a	gradient	almost	Ricci	soliton	satisfying

f	is	a	harmonic	function.

∥ Hess(f) ∥2 −
(Δ(f))2

n
≤ α2 ∥ Ric ∥2≤∥ Hess(f) ∥2 + α2r2

n
.

∥ Hess(f) ∥2 −
(Δ(f))2

n
≤∥ Ric ∥2≤∥ Hess(f) ∥2 + r2

n
.

Hess(f) + αRic = βg + γdf ⊗ df,

Δ(f) + αr = nβ + γ ∥ ∇f ∥2 .

∥ Hess(f) ∥2 +α⟨Ric, Hess(f)⟩ = βΔ(f) + γHess(f)(∇f, ∇f)

⟨Hess(f), Ric⟩ + α ∥ Ric ∥2= βr + γRic(∇f, ∇f).

∥ Hess(f) ∥2 −βΔ(f) − γHess(f)(∇f, ∇f) = α2 ∥ Ric ∥2 −αβr

−αγRic(∇f, ∇f).

αRic(∇f, ∇f) = β ∥ ∇f ∥2 +γ ∥ ∇f ∥4 −Hess(f)(∇f, ∇f)

Hess(f)(∇f, ∇f) = g(∇∇f∇f, ∇f) = 1
2

∇f(∥ ∇f ∥2),

∥ Hess(f) ∥2 +γ 2 ∥ ∇f ∥4 −γ∇f(∥ ∇f ∥2) −
(Δ(f)−γ∥∇f∥2)2

n

+
(αr)2

n
= α2 ∥ Ric ∥2,

∥ Hess(f) ∥2≤ α2(∥ Ric ∥2 − r2

n
),

∥ Hess(f) ∥2≤∥ Ric ∥2 − r2

n
,



Proof The particular case follows from Proposition 1 from [24], considering α = 1 in (1.5). □

Under certain assumptions, if the potential function of an almost Einstein, of an almost Ricci–
Bourguignon, or of a generalized soliton is a harmonic function, we obtained lower bounds for the
Ricci curvature tensor �ield’s norm in [6, 14, 16], respectively. For a gradient generalized soliton
with harmonic potential function, we have

(2.11)

from (2.10), and we can state the following proposition:

Proposition	2.6 A	gradient	generalized	soliton	de�ined	by (1.6) withζ = ∇f , η = df ,	such	that	f	is
a	harmonic	function,α(x) ≠ 0for	anyx ∈ M ,	and

is	an	Einstein	manifold.

Proof By means of Schwartz’s inequality, ∥ Ric ∥2 − r2

n
≥ 0, we conclude that Ric = r

n
g. □

From (2.11), we also deduce the following proposition:

Proposition	2.7 A	gradient	generalized	Ricci	soliton	de�ined	by (1.5) withζ = ∇fsuch	that	f	is	a
harmonic	function	satis�ies

In	particular,	for	a	gradient	almost	Ricci,	for	a	gradient	almost	Einstein,	and	for	a	gradient	almost
Ricci–Bourguignon	soliton	with	a	harmonic	potential	function	f,	we	have

3	 Trivial	Solitons
We shall highlight conditions under which a soliton reduces to a trivial soliton. We remark that an
Einstein manifold is a trivial Ricci soliton. Also, a manifold possessing a Ricci vector �ield satisfying 
∇ζ = −Q is a steady Ricci soliton (i.e., a Ricci soliton with λ = 0). We recall that a vector �ield ζ on 
(M, g) is called parallel [25] if ∇ζ = 0. Since any parallel vector �ield is a Killing vector �ield, the
solitons with parallel potential vector �ields are trivial solitons, too.

As particular cases of Theorems 8 and 9 from [4], we have the following results.

Proposition	3.1 Let (1.1) de�ine	a	compact	steady	Ricci	soliton	with	Ricci	potential	vector	�ield
satisfying∇ζ = −Q.	If

then(M, g)is	a	Ricci-�lat	manifold	andζis	a	parallel	vector	�ield	(hence,	the	soliton	is	trivial).

Proof In this case, we have

∥ Hess(f) ∥2 +
(n−1)(γ∥∇f∥2)

2

n
− γ∇f(∥ ∇f ∥2) = α2(∥ Ric ∥2 − r2

n
)

∥ Hess(f) ∥2 +
(n−1)(γ∥∇f∥2)2

n
≤ γ∇f(∥ ∇f ∥2)

∥ Hess(f) ∥2= α2(∥ Ric ∥2 − r2

n
).

∥ Ric ∥2≥∥ Hess(f) ∥2 .

∫
M

Ric(ζ, ζ) ≥ n−1
n
∫

M
r2 or ∫

M
Ric(ζ, ζ) ≤ ∫

M
{ r2

n
+ ζ(r)−2 ∥ Ric ∥2},



for any vector �ields X,Y  tangent to M. Let {Ei}1≤i≤n be a local orthonormal frame on (M, g).
Then,

Now we apply Theorems 8 and 9 from [4] for a = −1, and we get Q = 0 and ∇ζ = 0. □

Concerning the compact hyperbolic Ricci solitons, we have given in [5] the following suf�icient
condition for the soliton to be trivial.

Theorem	3.2 Let (1.7) de�ine	a	compact	hyperbolic	Ricci	soliton.	Ifλ ≠ 0, is	trace-free,	and

thenζis	a	parallel	vector	�ield	(hence,	the	soliton	is	trivial).

Proof See Theorem 2.2 from [5]. □

Suf�icient conditions for a compact hyperbolic Yamabe soliton to be trivial have been provided also
in [15].

Theorem	3.3 Let (1.8) de�ine	a	compact	hyperbolic	Yamabe	soliton.
(i)

Ifλ ≠ 0, is	trace-free,	and

thenζis	a	parallel	vector	�ield	(hence,	the	soliton	is	trivial).

 

(ii)
Ifζis	divergence-free,λ ≠ 0,	and

then	the	soliton	is	trivial.

 

Proof For (i), see Theorem 2.2 from [5], and for (ii), see Proposition 2.3 from [15]. □

3.1	 Solitons	with	Gradient	Vector	Fields

∫
M

Ric(ζ, ζ) ≤ 0,

∫
M

Ric(ζ, ζ) ≤ 0,



For compact gradient generalized, gradient hyperbolic Ricci and gradient hyperbolic Yamabe
solitons, we have determined in [6] and [5] some triviality conditions.

Theorem	3.4 If (1.6) de�ines	a	compact	gradient	generalized	soliton	withα, β,	andγconstant,
ζ = ∇f , η = df ,	and

then	the	soliton	is	trivial.
In	particular:
(i)

A	compact	gradientη-Ricci	soliton	withζ = ∇f , η = df ,	and

is	a	trivial	soliton.

 

(ii)
A	compact	gradient	generalized	Ricci	soliton	withαandβconstant,ζ = ∇f ,	and

is	a	trivial	soliton.

 

(iii)
A	compact	gradient	Ricci	soliton	withζ = ∇fand

is	a	trivial	soliton.

 

Proof For the �irst statement, see Proposition 4 from [6].
For α = 1,β = λ, γ = μ, we get (i); for γ = 0, we get (ii); and for α = 1,β = λ, γ = 0, we get

(iii). The proof is complete. □

Theorem	3.5
(i)

If (1.7) de�ines	a	compact	gradient	hyperbolic	Ricci	soliton	withλ ≠ 0such	that is	trace-
free	and

then	the	soliton	is	trivial.

 

(ii)
If (1.8) de�ines	a	compact	gradient	hyperbolic	Yamabe	soliton	withλ ≠ 0such	that is
trace-free	and

then	the	soliton	is	trivial.

 

α∫
M
g(∇f, ∇r) + γ∫

M
∇f(∥ ∇f ∥2) ≤ 0,

∫
M
g(∇f, ∇r) + μ∫

M
∇f(∥ ∇f ∥2) ≤ 0

α∫
M
g(∇f, ∇r) ≤ 0

∫
M
g(∇f, ∇r) ≤ 0

∫
M

Ric(∇f, ∇f) ≥ 1
2λ ∫M

g(∇f, ∇r) or ∫
M

Ric(∇f, ∇f) ≥ 1
4λ2 ∫

M
(r − nμ)2,

∫
M

Ric(∇f, ∇f) ≥ n
2λ ∫M

g(∇f, ∇r) or ∫
M

Ric(∇f, ∇f) ≥ n2

4λ2 ∫
M

(r − μ)2,



Proof For (i), see Theorems 2.5 and 2.7(i), and for (ii), see Theorems 2.4 and 2.7(ii) from [5]. □

Proposition	3.6 If (1.7) (respectively, (1.8))	de�ines	a	compact	gradient	hyperbolic	Ricci
(respectively,	a	compact	gradient	hyperbolic	Yamabe)	soliton	withλ ≠ 0such	that is	trace-
free	and

then	the	soliton	is	trivial.

Proof See Corollary 2.6 from [5]. □

3.2	 Solitons	with	Geodesic	and	Generalized	Geodesic	Vector	Fields
We recall that a vector �ield ζ on (M, g) is called geodesic [25] if ∇ζζ = 0, and we have from [11]
and [24] the following characterizations of trivial almost Einstein and trivial generalized Ricci
solitons.

Theorem	3.7 If (1.3) de�ines	a	compact	almost	Einstein	soliton	with	geodesic	potential	vector	�ield
andr ≠ 0,	then

if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 3.4 from [11]. □

Theorem	3.8 If (1.3) de�ines	a	compact	and	connected	almost	Einstein	soliton	with	geodesic
potential	vector	�ield	andr ≠ 0,	thenζis	an	eigenvector	of	the	Ricci	operator	with	a	constant
eigenvalueσ ∈ R ∖ {0}and

if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 3.5 from [11]. □

We shall further denote by θ := iζg the dual 1-form of ζ, and we de�ine the (1, 1)-tensor �ield F by

for any vector �ields X,Y  tangent to M. Then, in terms of F and Ric, we have from [11] the
following characterizations of a trivial almost Einstein soliton with geodesic potential vector �ield.

Theorem	3.9 If (1.3) de�ines	a	connected	almost	Einstein	soliton	with	geodesic	potential	vector
�ield,	then

and	the	function(n−2)r + 2nλis	constant	on	the	integral	curves	ofζif	and	only	if	the	soliton	is
trivial.

Proof See Theorem 3.7 from [11]. □

Theorem	3.10 If (1.3) de�ines	a	compact	and	connected	almost	Einstein	soliton	with	geodesic
potential	vector	�ield,	then

λ∫
M
g(∇f, ∇r) ≤ 0,

r{(n−2)r + 2nλ} ≥ 0

r(r − nσ) ≤ 0

g(FX,Y ) := 1
2 (dθ)(X,Y ),

Ric(ζ, ζ) ≥∥ F ∥2,



if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 3.6 from [11]. □

Theorem	3.11 If (1.3) de�ines	a	compact	and	connected	almost	Einstein	soliton	with	geodesic
potential	vector	�ield,	then

if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 3.9 from [11]. □

Necessary and suf�icient conditions for a generalized Ricci soliton with geodesic potential vector
�ield to be trivial have been given in [24].

Theorem	3.12 If (1.5) de�ines	a	compact	and	connected	gradient	generalized	Ricci	soliton	with
geodesic	potential	vector	�ield,r ≠ 0,	andαandβare	constant	(α ≠ 0),	then∇fis	an	eigenvector	of	the
Ricci	operator	with	constant	eigenvalue β

α
and

if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 3 from [24]. □

Theorem	3.13 If (1.5) de�ines	a	compact	and	connected	gradient	generalized	Ricci	soliton	with
geodesic	potential	vector	�ield,	then

if	and	only	if	the	soliton	is	trivial.

Proof See Theorem 4 from [24]. □

We recall that a vector �ield ζ on (M, g) is called generalized	geodesic (see [13]) if ∇ζζ = fζ, where 
f ∈ C∞(M), and we have proved in [13] that the following inequalities ensure that an almost Ricci
or a generalized Ricci soliton with a generalized geodesic potential vector �ield is a trivial soliton.

Theorem	3.14 If (1.5) de�ines	a	compact	generalized	Ricci	soliton	with	generalized	geodesic
potential	vector	�ield	and

then	the	soliton	is	trivial.
In	particular,	a	compact	almost	Ricci	soliton	with	generalized	geodesic	potential	vector	�ield	and

is	a	trivial	soliton.

Proof See Theorem 1 and Corollary 1 from [13]. □

Ric(ζ, ζ) ≥∥ F ∥2 + n−1
4n λ((n−2)r + 2nλ))2

Ric(Fζ,Fζ) ≥ n−1
n

(div(Fζ))2
and λ{(n−2)r + 2nλ} ≤ 0

rα(rα − nβ) ≤ 0

Ric(∇f, ∇f) ≥ n−1
n

(rα − nβ)2

2β < rα ≤ nβ and Ric(∇α, ∇α) ≥ r∥∇α∥2 + g( α
2 ∇r − (n−1)∇β − r

2 ζ, ∇α),

2λ < r ≤ nλ



3.3	 Solitons	with	2-Killing	Vector	Fields
In [13] we have shown that the following inequalities make a compact almost Ricci or generalized
Ricci soliton with a 2-Killing potential vector �ield be a trivial soliton.

Theorem	3.15 If (1.5) de�ines	a	compact	generalized	Ricci	soliton	with 2-Killing	potential	vector
�ield	and

then	the	soliton	is	trivial.
In	particular,	a	compact	almost	Ricci	soliton	with 2-Killing	potential	vector	�ield	and

is	a	trivial	soliton.

Proof See Theorem 2 and Corollary 2 from [13]. □

3.4	 Solitons	with	Af�ine	Killing	and	Af�ine	Conformal	Killing	Vector	Fields
Suf�icient conditions for a compact and connected almost Ricci soliton with af�ine Killing or af�ine
conformal Killing potential vector �ield to be a trivial soliton have been given in [12] and [9].

Theorem	3.16 If (1.1) de�ines	a	compact	and	connected	almost	Ricci	soliton	with	af�ine	Killing
potential	vector	�ield	and

then	the	soliton	is	trivial.

Proof See Theorem 3 from [12]. □

Theorem	3.17 If (1.1) de�ines	a	compact	and	connected	gradient	almost	Ricci	soliton	with	af�ine
conformal	Killing	potential	vector	�ield	and

then	the	soliton	is	trivial.
In	particular,	a	compact	and	connected	gradient	Ricci	soliton	with

is	a	trivial	soliton.

Proof See Proposition 4.4 from [9]. □

4	 New	Characterizations	of	the	Euclidean	Spheres
Based on Obata’s theorem, in [12] and [24], we have given new necessary and suf�icient conditions
for an almost Ricci or a generalized Ricci soliton to be isometric to a sphere.

Let (M, g) be an n-dimensional compact and connected Riemannian manifold (n > 2).

Theorem	4.1 Let (1.1) de�ine	an	almost	Ricci	soliton	with	positive	Ricci	curvature.	Then,

nβ < rα ≤ 2nβ and Ric(∇α, ∇α) ≤ r∥∇α∥2 + g( α
2

∇r − (n−1)∇β − r
2
ζ, ∇α),

nλ < r ≤ 2nλ

r(r − nλ) ≤ 0,

∫
M

Ric(ζ, ζ) ≥ −n∫
M
ζ(λ),

∫
M

Ric(ζ, ζ) ≥ 0



for	a	nonzero	constant	c	if	and	only	ifc > 0and	M	is	isometric	to	the	sphereS
n(c).

Proof See Theorem 2 from [12]. □

Theorem	4.2 Let (1.1) de�ine	a	nontrivial	almost	Ricci	soliton	(i.e.,λis	nonconstant)	with	Hodge
decomposition	of	the	potential	vector	�ieldζ = ζ̄ + ∇h.	Then,

if	and	only	if	M	is	isometric	to	the	sphereS
n(c)withc = r

n(n−1)
.

Proof See Theorem 4 from [12]. □

Theorem	4.3 Let (1.5) de�ine	a	gradient	generalized	Ricci	soliton	of	constant	scalar	curvature,	such
that∇(f + α)is	an	eigenvector	of	the	Ricci	operator	corresponding	to	the	eigenvalue r

n
.	Then,

if	and	only	ifr > 0and	M	is	isometric	to	the	sphereS
n(c)withc = r

n(n−1)
.

Proof See Theorem 1 from [24]. □

Theorem	4.4 Let (1.5) de�ine	a	gradient	generalized	Ricci	soliton.	Then,

withc > 0(a	constant)	if	and	only	if	M	is	isometric	to	the	sphereS
n(c).

Proof See Theorem 2 from [24]. □
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Abstract
We explore the presence of generalized Ricci-Yamabe solitons (brie�ly, GRYS)
within the framework of three-dimensional left-invariant Lie groups.
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1	 Introduction
Let (M n, g) be an n-dimensional Riemannian manifold. The Riemannian curvature
tensor R is de�ined by

(1.1)
where ∇ is the Levi-Civita connection associated with g. The Ricci curvature
tensor is formulated as

(1.2)

where {ei}{i=1,...,n} is an orthonormal frame with respect to g. Herein, X,Y ,Z are
smooth vector �ields on M.

The exploration of geometric properties on Riemannian manifolds constitutes
a broad and dynamic area of research, drawing considerable attention in recent
literature such as [3, 5, 6, 9]. Among these investigations, the elucidation of
structures like the Ricci soliton holds particular signi�icance, facilitating the

R(X,Y )Z = ∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z,

S(X,Y ) =∑
n

i=1
g(R(X, ei)ei,Y ),

https://doi.org/10.1007/978-981-95-5148-4_2
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development of indispensable geometric tools including specialized vector �ields,
metric deformations, and manifold products.

The seminal work of Hamilton [11] in 1982 introduced the concept of Ricci
�low, aimed at deriving a canonical metric for smooth manifolds. Over time, Ricci
�low has emerged as a potent analytical tool for examining Riemannian manifolds,
particularly those exhibiting positive curvatures. Central to this framework is the
notion of a Ricci soliton, which represents a distinct solution of the Ricci �low
generated by a vector �ield V . Notably, a Ricci soliton assumes the form of a
gradient Ricci soliton when the generating vector �ield V  aligns with the gradient
of a potential function. The generalized Ricci soliton equation (brie�ly, GRS), as
formulated in a Riemannian manifold (M n, g), is characterized by its de�inition
(see [15])

(1.3)
where LV g is the Lie derivative of the metric g along the vector �ield V 

(1.4)
and V ♭ is the g-dual of the vector V 

Equation (1.3) is a generalization of
Killing’s equation c1 = c2 = λ = 0
Equation for homotheties c1 = c2 = 0
Ricci soliton c1 = 0, c2 = −1
Cases of Einstein-Weyl c1 = 1, c2 = −1

n−2

Metric projective structures with skew-symmetric Ricci tensor in projective
class c1 = 1, c2 = − 1

n−1
, λ = 0

Vacuum near-horizon geometry equation c1 = 1, c2 = 1
2

Furthermore, when V  is a Killing vector �ield (i.e., LV g = 0), Eq. (1.3) describes 
(M n, g) as a perfect �luid space (brie�ly, PFS).

Recent research on generalized Ricci solitons has produced a substantial body
of work, highlighting their signi�icance in differential geometry and theoretical
physics. These studies often explore the properties, classi�ication, and applications
of generalized Ricci solitons. For instance, researchers have investigated the
classi�ication of generalized Ricci solitons under various curvature conditions and
symmetry constraints, providing insights into their geometric structures and
potential applications in string theory and general relativity [4, 8]. Moreover, the
stability and uniqueness of generalized Ricci solitons have been topics of
considerable interest, with �indings indicating conditions under which these
solitons exhibit unique solutions and stability properties [13, 17]. Research on
perfect �luid spaces has signi�icantly advanced our understanding of their role in
general relativity and cosmology. Perfect �luid spaces are essential in modeling
astrophysical objects and cosmological scenarios, as they describe space-times

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2λg,

(LV g)(X,Y ) = g(∇XV ,Y ) + g(X, ∇Y V )

V ♭(X) = g(X,V ).



�illed with a �luid that has uniform properties at every point. Studies have
extensively examined the properties and dynamics of these spaces, leading to new
insights into their stability, evolution, and potential singularities [14, 18].
Furthermore, the interaction between perfect �luid spaces and other �ields, such as
electromagnetic �ields, has been a focus of recent investigations, revealing complex
behaviors and contributing to the broader understanding of gravitational
interactions [1, 10]. These contributions are fundamental to both theoretical
explorations and practical applications in astrophysics.

Conversely, a Ricci-Yamabe soliton (brie�ly, RYS) is de�ined as a semi-
Riemannian manifold (M n, g) equipped with a vector �ield V  on M  that satis�ies

(1.5)
where ρ ∈ R is constant and r denotes the scalar curvature, de�ined as the trace of
the Ricci tensor S with respect to the metric g

(1.6)
Likewise, Eq. (1.5) is a natural generalization of:

Ricci soliton (brie�ly, RS) α = 1, ρ = 0
Ricci-Bourguignon soliton (brie�ly, GBS) α = 1, ρ ∈ R

Yamabe soliton (brie�ly, YS) α = 0, ρ = −1

Ricci-Yamabe solitons have been an active area of investigation in differential
geometry. These solitons generalize both Ricci solitons and Yamabe solitons,
serving as self-similar solutions to the Ricci �low and the Yamabe �low, respectively.
Recent studies have explored various aspects of Ricci-Yamabe solitons, including
their existence, uniqueness, and classi�ication under different geometric
conditions. Notable contributions include the work of Deshmukh and Alodan [7],
which examined the geometric properties of Ricci-Yamabe solitons on warped
product manifolds, and Blaga [2], who studied η-Ricci-Yamabe solitons in the
context of almost contact metric manifolds. In their work, Traore et al. conducted a
thorough investigation and provided detailed characterizations of the geometric
properties of manifolds that admit almost η-Ricci-Bourguignon solitons, as
documented in [19, 20]. These investigations provide valuable insights into the
interplay between curvature and the underlying geometry of the manifolds.

Motivated by the work of [15], we de�ine a generalized Ricci-Yamabe soliton
(brie�ly, GRYS) as follows:

(1.7)
Equation (1.7) is an immediate generalization of the following:
GRS equation (1.3) for ρ = 0
RYS (1.5) (brie�ly, RYS) Eq. (1.5) for c1 = 0

In this chapter, we investigate and classify the existence of generalized Ricci-
Bourguignon solitons (GRYS) (1.7) on left-invariant three-dimensional Lie groups 
(M 3, g).

LV g = 2αS + 2(λ + rρ)g,

r = TrgS.

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2(λ + rρ)g.



This chapter is organized as follows: In the next section, we review the
necessary prerequisites related to left-invariant three-dimensional Lie groups,
their algebras, and curvatures. In the �inal section, we provide a complete
classi�ication of the GRYS associated with each algebra of three-dimensional left-
invariant Lie groups.

2	 Left-Invariant	Three-Dimensional	Lie	Groups
A three-dimensional left-invariant Lie group G is a smooth manifold of dimension
3 equipped with a group structure such that left translations La de�ined by

for a,x ∈ G are diffeomorphisms. This implies that the tangent space TeG at the
identity element e ∈ G, equipped with the Lie bracket operation derived from the
group multiplication, forms a three-dimensional Lie algebra.

A Riemannian frame on a three-dimensional left-invariant Lie group (G, g)
consists of three smooth vector �ields {e1, e2, e3} on G, which are left-invariant
and form an orthonormal basis with respect to the Riemannian metric g.
Speci�ically, at each point p ∈ G,

where δij is the Kronecker delta.
The Riemannian metric g induces a natural Levi-Civita connection, which is

torsion-free and compatible with g. This connection allows for the study of
curvature properties within the framework of the Lie group structure.

In Jantzen’s work [12], L. Bianchi compiled a catalog of three-dimensional real
Lie algebras, accompanied by a demonstration that each three-dimensional Lie
algebra �inds isomorphism with a singular entry on his list. Given our focus on left-
invariant structures, our analysis is con�ined to the Lie algebras associated with
their respective Lie groups. The ensuing outcome elucidates the various categories
of three-dimensional Lie algebras [16].

Proposition	2.1 Letgbe	a	three-dimensional	real	Lie	algebra.	Then	ifgis	not
abelian,	it	is	isomorphic	to	one	and	only	one	of	the	Lie	algebras	listed	below	(Table1):

Table	1 Classi�ication of three-dimensional real Lie algebras
and their structure equations

Algebra Structure	equations

A3,1 [e2, e3] = e1

A3,2 [e1, e3] = e1, [e2, e3] = e1 + e2

A3,3 [e1, e3] = e1, [e2, e3] = e2

La : G → G

x → La(x) = a.x

g(ei, ej)|p = δij,



Algebra Structure	equations

A3,4 [e1, e3] = e1, [e2, e3] = −e2

A δ
3,5 [e1, e3] = e1, [e2, e3] = δe2, (0 < |δ| < 1)

A3,6 [e1, e3] = −e2, [e2, e3] = e1

A δ
3,7 [e1, e3] = −δe1 − e2, [e2, e3] = e1 + δe2, (δ > 0)

A3,8 [e1, e2] = e1, [e1, e3] = −2e2, [e2, e3] = e3

A3,9 [e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1

3	 GRYS	on	Three-Dimensional	Lie	Groups
Our inquiry will delve into the presence of a GRYS (1.7) within the realm of three-
dimensional left-invariant Lie groups, on each algebra A3,k, k ∈ {1, ..., 9}, with
the potential vector �ield V 

Obviously, formula (1.7) is symmetric, and we are lead to solve a system of six
equations

(3.8)

3.1	 The	Algebra	A3,1

The covariant derivatives of the basis elements are given by the following
expressions:

Using formulas (1.2), (1.4), and (1.6), we obtain

(3.9)

and the scalar curvature (1.6) is
(3.10)

By directly substituting (3.9) into (3.8), we must address the challenge of
solving

(3.11)

V = ae1 + be2 + ce3, and V ♭ ⊗ V ♭ = .
⎛⎜⎝a2 ab ac

ab b2 bc

ac bc c2

⎞⎟⎠(LV g)ij = −2c1ViVj + 2c2Sij + 2(λ + rρ)δij.

∇e1e1 = 0, ∇e1e2 = − 1
2 e3, ∇e1e3 = 1

2 e2,

∇e2e1 = − 1
2 e3, ∇e2e2 = 0, ∇e2e3 = 1

2 e1,

∇e3e1 = 1
2 e2, ∇e3e2 = − 1

2 e1, ∇e3e3 = 0.

(LV g)ij = , Sij = ,
⎛⎜⎝ 0 c −b

c 0 0

−b 0 0

⎞⎟⎠ ⎛⎜⎝ 1
2 0 0

0 − 1
2 0

0 0 − 1
2

⎞⎟⎠r = − 1
2 .



(3.12)
(3.13)
(3.14)
(3.15)
(3.16)

By analyzing various cases related to Eq. (3.16), we obtain the following
results:

If c1 = 0, then b = c = 0 is obtained from (3.14) and (3.15). The system
becomes

(3.17)

(3.18)
From one hand, summing Eqs. (3.17) and (3.18) yields λ = ρ

2 . On the other
hand, subtracting Eqs. (3.17) and (3.18) results in c2 = 0.
If c1 ≠ 0, then bc = 0. Assume b = 0, then c = 0 by virtue of (3.14). Substituting
in (3.12) yields λ = c2

2 + ρ
2 , and this along with (3.11) yields a = 0. A similar

result to this latter is obtained in the case where c = 0.
In summary, the solutions of Eq. (3.8) within the algebra A3,1 are as follows:

3.2	 The	Algebra	A3,2

The derivatives with respect to covariant bases are delineated as follows:

Thus, from Eqs. (1.2), (1.4), and (1.6), we derive

(3.19)

and the scalar curvature is
(3.20)

By employing Eqs. (3.19) and (3.20) within (1.7), we are prompted to
undertake the challenge of resolving

(3.21)

c1a
2 − c2

2 − (λ − ρ

2 ) = 0,

c1b
2 + c2

2 − (λ − ρ

2 ) = 0,

c1c
2 + c2

2 − (λ − ρ

2 ) = 0,

c + 2c1ab = 0,
b−2c1ac = 0,
c1bc = 0.

− c2

2 − (λ − ρ

2 ) = 0,
c2

2 − (λ − ρ

2 ) = 0.

V = ae1, c1 = c2

a2 , λ = ρ

2
+ c2

2
, a ∈ R∗, and c2, ρ ∈ R.

∇e1e1 = −e3, ∇e1e2 = − 1
2 e3, ∇e1e3 = e1 + 1

2 e2,

∇e2e1 = − 1
2 e3, ∇e2e2 = −e3, ∇e2e3 = 1

2 e1 + e2,

∇e3e1 = 1
2 e2, ∇e3e2 = − 1

2 e1, ∇e3e3 = 0.

(LV g)ij = , Sij = ,
⎛⎜⎝ 2c c −a − b

c 2c −b

−a − b −b 0

⎞⎟⎠ ⎛⎜⎝− 3
2 −1 0

−1 − 5
2 0

0 0 − 5
2

⎞⎟⎠r = − 13
2 .

c1a
2 + 3

2 c2 − (λ − 13
2 ρ) + c = 0,



(3.22)
(3.23)
(3.24)
(3.25)
(3.26)

Exploring different scenarios informed by Eq. (3.26), we discover:

If b = 0, then either a = 0 or c1c = 1
2 , as indicated by (3.25):

– If a = 0, the system of equations simpli�ies to
(3.27)

(3.28)

(3.29)
(3.30)

Subtracting (3.27) from (3.28) yields c2 = 0. Substituting this into (3.30)
gives c = 0, and thus λ = 13

2 ρ.
– If c1c = 1

2 , then substituting c = 1
2c1

 results in

(3.31)

(3.32)

(3.33)

(3.34)

Subtracting (3.32) from (3.33), we obtain 1
c1

= 0, which has no solution.

If c1c = 1
2 , then from (3.25) necessarily b = 0 and from (3.24) c2 = − 1

4c1
.

Direct substitution gives
(3.35)

(3.36)

(3.37)
Summing Eqs. (3.35) and (3.37) gives 1

c1
= 0, which has no solution.

Summarizing the above, Eq. (3.8) on the algebra A3,2 has no solution.

3.3	 The	Algebra	A3,3

The covariant derivatives of the basis elements are as follows:

c1b
2 + 5

2
c2 − (λ − 13

2
ρ) + c = 0,

c1c
2 + 5

2 c2 − (λ − 13
2 ρ) = 0,

c1ab + c2 + c
2 = 0,

c1ac − a+b
2 = 0,

c1bc − b
2 = 0.

3
2 c2 − (λ − 13

2 ρ) + c = 0,
5
2 c2 − (λ − 13

2 ρ) + c = 0,

c1c
2 + 5

2 c2 − (λ − 13
2 ρ) = 0,

c2 + c
2

= 0.

c1a
2 + 3

2 c2 − (λ − 13
2 ρ) + 1

2c1
= 0,

5
2 c2 − (λ − 13

2 ρ) + 1
2c1

= 0,
1

4c1
+ 5

2 c2 − (λ − 13
2 ρ) = 0,

c2 + 1
4c1

= 0.

1
8c1

− (λ − 13
2 ρ) = 0,

c1b
2 − (λ − 13

2 ρ) − 1
8c1

= 0,

3
8c1

+ (λ − 13
2 ρ) = 0.



Hence, from (1.2), (1.4), and (1.6), we have

(3.38)

and the scalar curvature (1.6) is
(3.39)

Upon substituting Eqs. (3.38) and (3.39) into (1.7), we �ind it necessary to
address the task of resolving

(3.40)
(3.41)
(3.42)
(3.43)
(3.44)
(3.45)

Examining various scenarios based on Eq. (3.43), the outcomes are as follows:
If c1 = 0, then a = b = 0, and from (3.42) we get λ = 2c2 + 6ρ. Substituting in
either (3.40) or (3.41) yields c = 0.
If ab = 0, we distinguish two particular cases:
– If a = 0 and b ≠ 0, then from (3.45) we have c1c = 1

2 . By direct substitution,
we get

(3.46)

(3.47)

(3.48)
Substituting (3.48) from (3.46) yields 1

c1
= 0, which has no solution.

– The case where a ≠ 0, b = 0, and c1c = 1
2  yields an identical result as

previously discussed.
If a = b = 0, we obtain

(3.49)
(3.50)

Subtracting (3.48) from (3.50) provides c(c1c−1) = 0. Therefore:

– Either c = 0 and λ = 2c2 + 6ρ

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = −e3, ∇e2e3 = e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

(LV g)ij = , Sij = ,
⎛⎜⎝ 2c 0 −a

0 2c −b

−a −b 0

⎞⎟⎠ ⎛⎜⎝−2 0 0

0 −2 0

0 0 −2

⎞⎟⎠r = −6.

c1a
2 + 2c2 − λ + 6ρ + c = 0,

c1b
2 + 2c2 − λ + 6ρ + c = 0,
c1c

2 + 2c2 − λ + 6ρ = 0,
c1ab = 0,

2c1ac − a = 0,
2c1bc − b = 0.

2c2 − λ + 6ρ + 1
2c1

= 0,

c1b
2 + 2c2 − λ + 6ρ + 1

2c1
= 0,

1
4c1

+ 2c2 − λ + 6ρ = 0.

2c2 − λ + 6ρ + c = 0,

c1c
2 + 2c2 − λ + 6ρ = 0.



– Or c = 1
c1

 and λ = 2c2 + 6ρ + 1
c1

In conclusion, the solutions of Eq. (3.8) on the algebra A3,3 are given by

3.4	 The	Algebra	A3,4

The covariant derivatives of the basis elements are as follows:

With the help of (1.2), (1.4), and (1.6), we have

(3.51)

and the scalar curvature is
(3.52)

After substituting Eqs. (3.51) and (3.52) into (3.8), we need to resolve
(3.53)
(3.54)
(3.55)
(3.56)
(3.57)
(3.58)

Considering different scenarios outlined in Eq. (3.56), the following
observations arise:

If c1 = 0, then (3.57) and (3.58) yield a = b = 0. By direct substitution, we
obtain

(3.59)
(3.60)
(3.61)

Subtracting Eq. (3.60) from (3.59) gives c = 0. Summing Eqs. (3.59) and
(3.60) yields λ = 2ρ. Putting all of the above in (3.61), we obtain c2 = 0.
If ab = 0 and c1 ≠ 0, we consider three cases:

– If a = b = 0, again using Eqs. (3.59), (3.60), and (3.61), we �ind c = 0, λ = 2ρ,
and c2 = 0.

– If a = 0 and b ≠ 0, then c1c = − 1
2 . Substituting gives

V = ce3, c1 = 1
c

, λ = 1
c1

+ 2c2 + 6ρ, where c ∈ R
∗ and c2, ρ ∈ R.

∇e1e1 = −e3, ∇e1e2 = 0, ∇e1e3 = e1,

∇e2e1 = 0, ∇e2e2 = e3, ∇e2e3 = −e2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

(LV g)ij = , Sij = ,
⎛⎜⎝ 2c 0 −a

0 −2c b

−a b 0

⎞⎟⎠ ⎛⎜⎝0 0 0

0 0 0

0 0 −2

⎞⎟⎠r = −2.

c1a
2 − λ + 2ρ + c = 0,

c1b
2 − λ + 2ρ − c = 0,

c1c
2 + 2c2 − λ + 2ρ = 0,

c1ab = 0,
a−2c1ac = 0,
b + 2c1bc = 0.

λ = 2ρ + c,

λ = 2ρ − c,

λ = 2c2 + 2ρ.



(3.62)

(3.63)

(3.64)

From (3.62), we get λ = 2ρ − 1
2c1

. Substituting in (3.63) yields b2 = − 1
2c2

1

, which has no real solutions.
– The case where b = 0, a ≠ 0, and c1c = − 1

2  is similar to the previous one.

Combining all the results, the solutions to Eq. (3.8) within the algebra A3,4

exhibit no solutions.

3.5	 The	Algebra	A δ
3,5

The covariant derivatives of the basis elements are as follows:

where 0 < |δ| < 1. With direct computations, we have

(3.65)

and the scalar curvature is
(3.66)

Substituting Eq. (3.65) into (3.8), we are compelled to engage in the process of
resolving

(3.67)
(3.68)
(3.69)
(3.70)
(3.71)
(3.72)

Evaluating different possibilities with respect to Eq. (3.70), we conclude:
If c1 = 0, then Eqs. (3.71) and (3.72) give a = b = 0. Thus, we have

(3.73)
(3.74)
(3.75)

Subtracting Eqs. (3.73) from (3.74), we �ind c = −(δ + 1)c2. From Eq. (3.75),
λ = (δ2 + 1)c2 + 2(δ2 + δ + 1)ρ. By substituting these results into either Eq.

λ + 2ρ − 1
2c1

= 0,

c1b
2 − λ + 2ρ + 1

2c1
= 0,

1
4c1

+ 2c2 − λ + 2ρ = 0.

∇e1
e1 = −e3, ∇e1

e2 = 0, ∇e1
e3 = e1,

∇e2
e1 = 0, ∇e2

e2 = −δe3, ∇e2
e3 = δe2,

∇e3
e1 = 0, ∇e3

e2 = 0, ∇e3
e3 = 0,

(LV g)ij = , Sij = ,
⎛⎜⎝ 2c 0 −a

0 2cδ −bδ

−a −bδ 0

⎞⎟⎠ ⎛⎜⎝−1 − δ 0 0

0 −δ2 − δ 0

0 0 −δ2−1

⎞⎟⎠r = −2δ2−2δ−2.

c1a
2 + (1 + δ)c2 − λ + 2(δ2 + δ + 1)ρ + c = 0,

c1b
2 + δ(δ + 1)c2 − λ + 2(δ2 + δ + 1)ρ + δc = 0,
c1c

2 + (δ2 + 1)c2 − λ + 2(δ2 + δ + 1)ρ = 0,
c1ab = 0,

c1ac − a
2 = 0,

c1bc − δ b
2 = 0.

(1 + δ)c2 − λ + 2(δ2 + δ + 1)ρ + c = 0,

δ(δ + 1)c2 − λ + 2(δ2 + δ + 1)ρ + δc = 0,

(δ2 + 1)c2 − λ + 2(δ2 + δ + 1)ρ = 0.



(3.73) or (3.74), we get (δ2 + 1)c2 = 0, and hence c2 = 0.
If a = b = 0 and c1 ≠ 0, then Eqs. (3.73) and (3.74) result in c = −(δ + 1)c2

and λ = 2(δ2 + δ + 1)ρ. Substituting into (3.69), we obtain c2 = − δ2+1
(δ2+2δ+1)c1

.
If a ≠ 0, b = 0, then from (3.71) we get c = 1

2c1
. Thus

(3.76)

(3.77)

(3.78)

Subtracting Eq. (3.77) from (3.78), we �ind c1 = −2δ+1
4(δ−1)c2

. Using these results

along with Eq. (3.76), we �ind a2 = −2δ2+δ−1
4c2

1

, which leads to an impossibility

due to −2δ2 + δ−1 < 0.
If a = 0, b ≠ 0, then from (3.72) we get c = δ

2c1
. Using direct substitution, we

have
(3.79)

(3.80)

(3.81)

Subtracting Eq. (3.80) from (3.81), we �ind c1 = δ−2
4(1−δ)c2

. From (3.79) we
pull

Finally, substituting in (3.80), we obtain

which is absurd due to the fact δ2 − δ + 2 > 0 for all 0 < |δ| < 1.
In summary, Eq. (3.8) within the algebra A δ

3,5 admits the following solution:

3.6	 The	Algebra	A3,6

The covariant derivatives of the basis elements are as follows:

c1a
2 + (1 + δ)c2 − λ + 2(δ2 + δ + 1)ρ + 1

2c1
= 0,

δ(δ + 1)c2 − λ + 2(δ2 + δ + 1)ρ + δ
2c1

= 0,

1
4c1

+ (δ2 + 1)c2 − λ + 2(δ2 + δ + 1)ρ = 0.

(1 + δ)c2 − λ + 2(δ2 + δ + 1)ρ + δ
2c1

= 0,

c1b
2 + δ(δ + 1)c2 − λ + 2(δ2 + δ + 1)ρ + δ2

2c1
= 0,

δ2

4c1
+ (δ2 + 1)c2 − λ + 2(δ2 + δ + 1)ρ = 0.

λ = − δ2−δ+2
4(1−δ)c1

.

b2 = − δ2−δ+2
4c2

1
,

V = ce3, c = −(δ + 1)c2, c2 = − δ2+1
(δ2+2δ+1)c1

,

λ = 2(δ2 + δ + 1)ρ,

c1 ∈ R
∗ and ρ ∈ R.

∇e1
e1 = 0, ∇e1

e2 = 0, ∇e1
e3 = 0,

∇e2
e1 = 0, ∇e2

e2 = 0, ∇e2
e3 = 0,

∇e3
e1 = e2, ∇e3

e2 = −e1, ∇e3
e3 = 0.



With direct computations, we have

(3.82)

and the scalar curvature is
(3.83)

Substituting these into (3.8), we tackle the endeavor of resolving
(3.84)
(3.85)
(3.86)
(3.87)
(3.88)
(3.89)

Reviewing several scenarios outlined by Eq. (3.87), the analysis indicates:
If c1 = 0, then from (3.84), (3.88), and (3.89) we get λ = a = b = 0.
Consider c1 ≠ 0:

– If a = 0, then from (3.88), b = 0, leading to λ = 0 and c = 0.
– Similarly, if b = 0, from (3.89), a = 0, resulting in λ = 0 and c = 0.
Combining all the results, Eq. (3.8) within the algebra A3,6 satis�ies only the

Killing equation for V = ce3 where c ≠ 0.

3.7	 The	Algebra	A δ
3,7

The covariant derivatives of the basis elements are as follows:

where δ > 0.
With direct computations, we have

(3.90)

and the scalar curvature is
(3.91)

We need to solve the following equations from (3.8):
(3.92)
(3.93)
(3.94)

(LV g)ij = , Sij = ,
⎛⎜⎝ 0 0 −b

0 0 a

−b a 0

⎞⎟⎠ ⎛⎜⎝0 0 0

0 0 0

0 0 0

⎞⎟⎠r = 0.

c1a
2 − λ = 0,

c1b
2 − λ = 0,

c1c
2 − λ = 0,
c1ab = 0,

c1ac − b
2 = 0,

c1bc + a
2 = 0.

∇e1
e1 = δe3, ∇e1

e2 = 0, ∇e1
e3 = −δe1,

∇e2
e1 = 0, ∇e2

e2 = −δe3, ∇e2
e3 = δe2,

∇e3
e1 = e2, ∇e3

e2 = −e1, ∇e3
e3 = 0,

(LV g)ij = , Sij = ,
⎛⎜⎝ −2cδ 0 aδ − b

0 2cδ a − δb

aδ − b a − δb 0

⎞⎟⎠ ⎛⎜⎝ 0 2δ 0

2δ 0 0

0 0 −2δ2

⎞⎟⎠r = −2δ2.

c1a
2 − λ + 2δ2ρ − cδ = 0,

c1b
2 − λ + 2δ2ρ + cδ = 0,

c1c
2 + 2c2δ

2 − λ + 2δ2ρ = 0,



(3.95)
(3.96)
(3.97)

Analyzing Eq. (3.96), we obtain b = 2c1ac + aδ. Substituting into (3.97) yields
(3.98)

Reviewing several scenarios outlined by Eq. (3.98), the analysis indicates:
If a = 0, substituting in (3.96) and using (3.95) give b = 0 and c2 = 0.
Substituting into (3.92) and (3.93) gives c = 0 and λ = 2δ2ρ.
If c1c = √δ−1

2 , which is valid only for δ ≥ 1, then by direct substitution we get:

– If δ > 1, then a = 0, and similar results are obtained as discussed previously.
– If δ = 1, then c1 = 0. In the �irst case, from (3.95) we get c2 = 0 and from

(3.96) a = b. Hence, we are left with
(3.99)

(3.100)
(3.101)

which clearly gives λ = 2ρ and c = 0.
In the second case, where c = 0, again from (3.96) we have a = b, and

using (3.95) we get a = √ 2c2

c1
. Finally, from (3.94) we obtain λ = 2c2 + 2ρ.

Combining all the results, the solutions to Eq. (3.8) within the algebra A δ
3,7 are

3.8	 The	Algebra	A3,8

The covariant derivatives of the basis elements are

From direct computations, we obtain

(3.102)

The scalar curvature is given by
(3.103)

Therefore, upon substituting (3.102) and (3.103) into (3.8), the following
equations must be satis�ied:

(3.104)

c1ab−2c2δ = 0,
c1ac + a

2
δ − b

2
= 0,

c1bc + a
2

− b
2
δ = 0.

a(c2
1c

2 + 1−δ
4 ) = 0.

−λ + 2ρ − c = 0,

−λ + 2ρ + c = 0,

−λ + 2ρ = 0,

V = a(e1 + e2), c1 = 2c2

a2 , λ = 2c2 + 2ρ, a ∈ R
∗, and c2, ρ ∈ R.

∇e1
e1 = −e2, ∇e1

e2 = e1 + e3, ∇e1
e3 = −e2,

∇e2
e1 = e3, ∇e2

e2 = 0, ∇e2
e3 = −e1,

∇e3
e1 = e2, ∇e3

e2 = −e1 − e3, ∇e3
e3 = e2.

(LV g)ij = , Sij = .
⎛⎜⎝ 2b −a−2c 0

−a−2c 0 2a + c

0 2a + c −2b

⎞⎟⎠ ⎛⎜⎝−2 0 −2

0 0 0

−2 0 −2

⎞⎟⎠r = −4.

c1a
2 + 2c2 − λ + 4ρ + b = 0,



(3.105)
(3.106)
(3.107)
(3.108)
(3.109)

From (3.107), we deduce c = c1ab − a
2

. Substituting this into (3.109) gives

Hence, a = 0 and c = 0. This implies c2 = 0. Substituting c2 = 0 into (3.105)
yields λ = 4ρ. Finally, substituting λ = 4ρ into either (3.104) or (3.106) provides 
b = 0.

In conclusion, Eq. (3.8) in the algebra A3,8 has no solution.

3.9	 The	Algebra	A3,9

The covariant derivatives of the basis elements are

From direct computations, we obtain

(3.110)

and the scalar curvature is
(3.111)

Thus, the following equations must be satis�ied:
(3.112)
(3.113)
(3.114)
(3.115)
(3.116)
(3.117)

Analyzing Eqs. (3.115)–(3.117) yields:
If c1 = 0, then λ = − 1

2 c2 − 3
2 ρ and c2, ρ ∈ R.

If c1 ≠ 0, then a = b = c = 0, λ = − 1
2
c2 − 3

2
ρ, and c2, ρ ∈ R.

Therefore, the solution set is

c1b
2 − λ + 4ρ = 0,

c1c
2 + 2c2 − λ + 4ρ − b = 0,
c1ab − a

2
− c = 0,

c1ac + 2c2 = 0,
c1bc + a + c

2
= 0.

a(c2
1b

2 + 3
4
) = 0.

∇e1e1 = 0, ∇e1e2 = 1
2 e3, ∇e1e3 = − 1

2 e2,

∇e2e1 = − 1
2 e3, ∇e2e2 = 0, ∇e2e3 = 1

2 e1,

∇e3e1 = 1
2 e2, ∇e3e2 = − 1

2 e1, ∇e3e3 = 0.

(LV g)ij = , Sij = ,
⎛⎜⎝0 0 0

0 0 0

0 0 0

⎞⎟⎠ ⎛⎜⎝ 1
2 0 0

0 1
2 0

0 0 1
2

⎞⎟⎠r = 3
2 .

2c1a
2 − c2−2λ−3ρ = 0,

2c1b
2 − c2−2λ−3ρ = 0,

2c1c
2 − c2−2λ−3ρ = 0,

c1ab = 0,
c1ac = 0,
c1bc = 0.

V = ae1 + be2 + ce3, c1 = 0, λ = − 1
2
c2 − 3

2
ρ, and a, b, c, c2, ρ ∈ R.



Theorem	3.1 The	generalized	Ricci-Yamabe	soliton	equation

admits	the	following	solutions	on	three-dimensional	left-invariant	Lie	algebras:
AlgebraA3,1:

AlgebraA3,3:

AlgebraA δ
3,5:

AlgebraA δ
3,7:

AlgebraA3,9:

4	 Conclusion
In this chapter, we have extended the concept of the Ricci-Yamabe soliton through
Eq. (1.7) and explored the presence of this structure on left-invariant three-
dimensional Lie groups. The �indings provide concrete examples that substantiate
the existence of this structure, thus demonstrating its viability. This work opens a
wide range of possibilities for future research in this area. We can summarize the
existence of various solitonic structures on left-invariant three-dimensional Lie
algebras in the following (Table 2):

Table	2 Possible solitonic structure on left-invariant
three-dimensional Lie algebras

Algebra GRYS GRS RBS RS YS PFS

A3,1 ✓ ✓ ✓ ✓ ✓ ✓

A3,2 ✗ ✗ ✗ ✗ ✗ ✗

A3,3 ✓ ✓ ✓ ✓ ✓ ✗

A3,4 ✗ ✗ ✗ ✗ ✗ ✗

A
δ

3,5 ✓ ✓ ✓ ✓ ✓ ✗

A3,6 ✗ ✗ ✗ ✗ ✗ ✗

LV g = −2c1V
♭ ⊗ V ♭ + 2c2S + 2(λ + rρ)g

V = ae1, c1 = c2

a2 , λ = ρ
2 + c2

2 , a ∈ R∗ and c2, ρ ∈ R.

V = ce3, c1 = 1
c

, λ = 1
c1

+ 2c2 + 6ρ, where c ∈ R
∗ and c2, ρ ∈ R.

V = ce3, c = −(δ + 1)c2, c2 = − δ2+1
(δ2+2δ+1)c1

,

λ = 2(δ2 + δ + 1)ρ, where c1 ∈ R
∗ and ρ ∈ R.

V = a(e1 + e2), c1 = 2c2

a2 , λ = 2c2 + 2ρ, a ∈ R
∗ and c2, ρ ∈ R.

V = ae1 + be2 + ce3, c1 = 0, λ = − 1
2 c2 − 3

2 ρ, and a, b, c, c2, ρ ∈ R.



Algebra GRYS GRS RBS RS YS PFS

A
δ

3,7 ✓ ✓ ✓ ✓ ✓ ✗

A3,8 ✗ ✗ ✗ ✗ ✗ ✗

A3,9 ✓ ✓ ✓ ✓ ✓ ✗
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Abstract
The basics of submanifolds in complex space forms and Sasakian space forms are recalled, and then Chen-
type inequalities for different submanifolds in complex and Sasakian space forms are presented.

The most important Chen inequalities in real space forms are stated. We give a general construction
method for purely real submanifolds and present geometric inequalities for purely submanifolds in complex
space forms. We obtain an improved Chen-Ricci inequality for Kaehlerian slant submanifolds in complex
space forms. Works on DDVV conjecture are also presented. Next, results on submanifolds in Sasakian
manifolds are presented. We prove Chen’s �irst inequality for contact slant submanifolds in Sasakian space
forms. We de�ine Chen-type Sasakian invariants, obtain sharp inequalities for these invariants, and derive
characterizations of the equality case in terms of the shape operator. We generalize a result of Chen and
obtain a Chen-Ricci inequality for purely real submanifolds with T parallel with respect to the Levi-Civita
connection. Another subsection presents certain results for submanifolds in space forms with semi-
symmetric metric (respectively, nonmetric) connections. We study statistical submanifolds and their
behavior in statistical manifolds of constant curvature.

Next, we present results on warped product submanifolds in complex space forms, generalized complex
space forms, and quaternion space forms.

After that, a new characterization of Einstein spaces by using their curvatures symmetries is given.
This chapter represents a collection of results from the author’s papers on this topic; the proofs are given

in detail, so the reader can follow the techniques.

Keywords Kaehler manifolds – Sasakian manifolds – Einstein manifolds – Submanifolds – Riemannian
invariants – Chen invariants – Chen inequalities

1	 Preliminaries
In Riemannian Geometry the manifolds endowed with certain endomorphisms of their tangent bundles play
an important role.

Among these, the most important ones are the almost complex structures (on even-dimensional
manifolds) and almost contact structures (on odd-dimensional manifolds). In particular the Kaehler
manifolds and the Sasakian manifolds, respectively, are the most studied such manifolds, because they have
the most interesting properties and applications.

In order to have the highest degree of homogeneity (i.e. their group of isometries has the maximum
dimension), the spaces of constant sectional curvatures are the most investigated. It is known that a Kaehler
manifold with constant sectional curvature is �lat. For this reason the notion of complex space form (a
Kaehler manifold with constant holomorphic sectional curvature) was introduced. Analogously, the Sasakian
space forms were de�ined.

On the other hand, starting from the classical theory of curves and surfaces in Euclidean spaces, the
theory of submanifolds is an important �ield of research in Riemannian Geometry.

There are certain important speci�ic classes of submanifolds in Kaehler manifolds and Sasakian
manifolds, respectively, for example complex and Lagrangian submanifolds in Kaehler manifolds and

https://doi.org/10.1007/978-981-95-5148-4_3
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invariant and Legendrian submanifolds in Sasakian manifolds. For a comprehensive study on submanifolds
see [21].

Let M̃  be a complex manifold of dimension m and J its standard almost complex structure. A Hermitian
metric on M̃  is a Riemannian metric g invariant with respect to J, i.e., 
g(JX,JY ) = g(X,Y ), ∀X,Y ∈ Γ(TM̃).

The pairing (M̃, g) is called a Hermitian manifold.
Any complex manifold admits a Hermitian metric.
A Hermitian metric g on a complex manifold M̃  de�ines a nondegenerate 2-form 

ω(X,Y ) = g(JX,Y ), X,Y ∈ Γ(TM̃), which is called the fundamental 2-form. Clearly, 
ω(JX,JY ) = ω(X,Y ).

A Hermitian manifold is called a Kaehler manifold if the fundamental 2-form ω is closed.
Necessary and suf�icient conditions for a Hermitian manifold to be a Kaehler manifold are given by the

following:

Theorem	([94]) Let(M̃, g)be	an	m-dimensional	Hermitian	manifold	and∇̃the	Levi-Civita	connection
associated	with	g.	The	following	statements	are	equivalent	to	each	other:
(i)

M	is	a	Kaehler	manifold.  
(ii)

The	standard	almost	complex	structure	J	onM̃ is	parallel	with	respect	to∇̃,	i.e.,∇̃J = 0.  
(iii)

For	anyz0 ∈ M̃ ,	there	exists	a	holomorphic	coordinate	system	in	a	neighborhood	ofz0such	that

wherehkj(z0) = ∂hkj

∂zl
(z0) = 0,	for	anyk, j, l = 1, … ,m.

 

(iv)
Locally,	there	exists	a	real	differentiable	function	F	such	that	the	fundamental 2-form	is	given	by
ω = i∂∂̄F ,where	the	exterior	differentiation	d	is	decomposed	indα = ∂α + ∂̄α.

 

Examples of Kaehler manifolds are:
1.

Cn with the Euclidean metric g = ∑n

k=1
dzkdz̄k.  

2.
The complex	torusT n = Cn/G with the Hermitian structure induced by the Euclidean metric of Cn.  

3.
The complex	projective	spaceP n(C) endowed with the Fubini-Study metric, which, in local coordinates,
is given by

 

4.
The complex	Grassmann	manifoldGp(Cp+q) with a generalized Fubini-Study metric.  

5.
Let Dn = Int S 2n−1 be the unit disk in Cn, i.e., Dn = {z ∈ Cn | ∑n

j=1 |zj|2 < 1}, endowed with the
Bergman metric

 

6.
Any orientable surface is a Kaehler manifold.  
There are obstructions to the existence of Kaehlerian metrics on a compact complex manifold.

Theorem	([69]) On	a	compact	Kaehler	manifold	the	Betti	numbers	of	even	order	are	nonzero.

g = (δkj + hkj)dzkdz̄j,

gjk̄ = (1+zsz̄s)δjk−zkz̄j

(1+zsz̄s)2 .

gjk̄ = (1−zsz̄s)δjk+z̄jzk

(1−zsz̄s)2 .



As an application, the Calabi manifolds S 2m+1 × S 2n+1 do not admit any Kaehler metric if (m,n) ≠ (0, 0).
In particular, Hopf manifolds are not Kaehler manifolds.

Theorem	([69]) On	a	compact	Kaehler	manifold	the	Betti	numbers	of	odd	order	are	even.

A sectional curvature of a Kaehler M̃  in direction of an invariant 2-plane section by J is called a holomorphic
sectional	curvature of M̃.

For the 2-plane section π invariant by J, one considers an orthonormal basis {X,JX}, with unit X. Then
the holomorphic sectional curvature is given by K̃(π) = R̃(X,JX,X,JX).

Let M̃  be a Kaehler manifold. If the function holomorphic sectional curvature K is constant for all 2-plane
sections π of TpM̃  invariant by J for any p ∈ M̃ , then M̃  is called a space	withconstant	holomorphic	sectional
curvature (or complex	space	form).

The curvature tensor of a complex space form of constant holomorphic sectional curvature 4c has the
expression

for any tangent vector �ields X,Y ,Z,W .
Recall that a Riemannian manifold (M, g) is an Einstein	manifold if the Ricci tensor S is proportional to

the Riemannian metric g, i.e., S = λg, where λ is a real number.
Each complex space form is an Einstein manifold.
Examples of complex space forms:

1.
Cn with the Euclidean metric is a �lat complex space form.  

2.
P n(C) with the Fubini-Study metric has holomorphic sectional curvature equal to 4. 

3.
Dn with the Bergman metric has holomorphic sectional curvature equal to −4.  
Conversely, the following result holds good.

Theorem	([69]) Let	M	be	a	connected,	simply	connected,	and	complete	complex	space	form.	Then	M	is
isometric	to	eitherCn, P n(C),	orDn.

Let (M̃,J, g) be an m-dimensional Kaehler manifold and M an n-dimensional submanifold of M̃. The
induced Riemannian metric on M is also denoted by g. We denote by ∇̃ and ∇ the Levi-Civita connections on
M̃  and M, respectively. The fundamental formulae and equations for a submanifold are recalled below.

Let h be the second fundamental form of the submanifold M. Then the Gauss	formula is written as

for any X,Y ∈ Γ(TM).
Denoting by ∇⊥ the connection in the normal bundle and by A the shape operator, one has the

Weingarten	formula:

for any X ∈ Γ(TM) and ξ ∈ Γ(T ⊥M).
Let R̃, R, and R⊥ be the curvature tensors with respect to ∇̃, ∇, and ∇⊥, respectively.
For any X,Y ,Z,W ∈ Γ(TM), the Gauss	equation is expressed by

One denotes

then the normal component of R̃(X,Y )Z is given by

R̃(X,Y ,Z,W) = c[g(X,Z)g(Y ,W) − g(X,W)g(Y ,Z)
+g(X,JZ)g(Y ,JW) − g(X,JW)g(Y ,JZ)
+2g(X,JY )g(Z,JW)],

∇̃XY = ∇XY + h(X,Y ),

∇̃Xξ = −AξX + ∇⊥
X
ξ,

R̃(X,Y ,Z,W) = R(X,Y ,Z,W) − g(h(X,Z),h(Y ,W)) + g(h(X,W),h(Y ,Z)).

(∇Xh)(Y ,Z) = ∇⊥
X
h(Y ,Z) − h(∇XY ,Z) − h(X, ∇YZ);



The above relation represents the Codazzi	equation.
Using the Weingarten formula, one obtains the Ricci	equation:

for any X,Y ∈ Γ(TM) and ξ, η ∈ Γ(T ⊥M).
If the second fundamental form h vanishes identically, M is a totally	geodesic submanifold.
Let {e1, … , en} be an orthonormal basis of the tangent space TpM , p ∈ M , and H be the mean

curvature	vector, i.e.,

The submanifold M is said to be minimal if H(p) = 0, ∀p ∈ M.
There are no compact minimal submanifolds of Rm.
For a normal section V  on M, if AV  is everywhere proportional to the identity transformation I, i.e., 

AV = aI, for some function a, then V  is called an umbilical	section on M, or M is said to be umbilical	with
respect	toV . If the submanifold M is umbilical with respect to every local normal section of M, then M is said
to be totally	umbilical.

An equivalent de�inition is the following: M is totally	umbilical if h(X,Y ) = g(X,Y )H, for any vector
�ields X,Y  tangent to M.

If the second fundamental form and the mean curvature of M in M̃  satisfy g(h(X,Y ),H) = fg(X,Y )
for some function f on M, then M is called pseudo-umbilical.

The submanifold M is a parallel submanifold if the second fundamental form h is parallel, that is, ∇h = 0
, identically.

According to the behavior of the tangent spaces of a submanifold M under the action of the almost
complex structure J of the ambient space M̃ , we distinguish two special classes of submanifolds:
(i)

Complex	submanifolds, if J(TpM) = TpM, ∀p ∈ M  
(ii)

Totally	real	submanifolds, if J(TpM) ⊂ T ⊥
p M, ∀p ∈ M 

Any complex submanifold of a Kaehler manifold is a Kaehler manifold and a minimal submanifold.
If the real dimension of the totally real submanifold M is equal to the complex dimension of the Kaehler

manifold M̃, then M is called a Lagrangian	submanifold. In other words, a Lagrangian	submanifold is a
totally real submanifold of maximum dimension.

Other classes of submanifolds in Kaehler manifolds are of interest in submanifold theory.
A slant	submanifold [23, 84] is a submanifold M of a Kaehler manifold (M̃,J, g) such that, for any

nonzero vector X ∈ TpM , the angle θ(X) between JX and the tangent space TpM  is a constant (which is
independent of the choice of the point p ∈ M  and the choice of the tangent vector X in the tangent plane 
TpM).

It is obvious that complex submanifolds and totally real submanifolds are special classes of slant
submanifolds. A slant submanifold is called proper if it is neither a complex submanifold nor a totally real
submanifold.

A submanifold M of a Kaehler manifold M̃  is said to be a CR-submanifold if it admits a holomorphic
differentiable distribution D , i.e., J(Dp) = DP , ∀p ∈ M , such that its complementary orthogonal
distribution D ⊥ is totally real, i.e., J(D ⊥

p ) ⊂ T ⊥
p M, p ∈ M .

The CR-submanifolds were studied by B.Y. Chen [22], A. Bejancu [11], K. Yano and M. Kon [123], etc.
Both complex and totally real submanifolds are improper CR-submanifolds.
It is easily seen that a real hypersurface of a Kaehler manifold is a proper CR-submanifold.
Roughly speaking, a Sasakian manifold is the odd-dimensional correspondent of a Kaehler manifold.
A (2m + 1)-dimensional Riemannian manifold (M̃, g) is said to be a Sasakian	manifold if it admits an

endomorphism ϕ of its tangent bundle TM̃ , a vector �ield ξ, and a 1-form η, satisfying

(R̃(X,Y )Z)
⊥

= (∇Xh)(Y ,Z) − (∇Y h)(X,Z).

R̃(X,Y , ξ, η) = R⊥(X,Y , ξ, η) − g(AηAξX,Y ) + g(AξAηX,Y )

= R⊥(X,Y , ξ, η) + g([Aξ,Aη]X,Y ),

H(p) = 1
n
∑

n

i=1
h(ei, ei).



for any vector �ields X,Y  on M̃ , where ∇̃ denotes the Levi-Civita connection with respect to g.
A plane section π in TpM̃  is called a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent

vector orthogonal to ξ. The sectional curvature of a ϕ-section is called a ϕ-sectional	curvature. A Sasakian
manifold with constant ϕ-sectional curvature c is said to be a Sasakian	space	form and is denoted by M̃(c).

The curvature tensor of R̃ of a Sasakian space form M̃(c) is given by [13]

for any tangent vector �ields X,Y ,Z on M̃(c).
As examples of Sasakian space forms we mention R2m+1 and S 2m+1, with standard Sasakian structures

(see [13, 14, 124]).
Let M be an n-dimensional submanifold in a Sasakian manifold M̃ .
By analogy with the submanifolds of a Kaehler manifold, we distinguish special classes of submanifolds

of Sasakian manifolds.
A submanifold M normal to ξ in a Sasakian manifold M̃  is said to be a C-totally	real submanifold. In this

case, it follows that ϕ maps any tangent space of M into the normal space, that is, ϕ(TpM) ⊂ T ⊥
p M , for

every p ∈ M .
In particular, if dim M̃ = 2 dim M + 1, then M is called a Legendrian submanifold.
For submanifolds tangent to the structure vector �ield ξ, there are different classes of submanifolds. We

mention the following:
(i)

A submanifold M tangent to ξ is called an invariant submanifold if ϕ preserves any tangent space of M,
that is, ϕ(TpM) ⊂ TpM , for every p ∈ M .

An invariant submanifold of a Sasakian manifold is a Sasakian manifold and a minimal
submanifold.

 

(ii)
A submanifold M tangent to ξ is called an anti-invariant submanifold if ϕ maps any tangent space of M
into the normal space, that is, ϕ(TpM) ⊂ T ⊥

p M , for every p ∈ M .
 

(iii)
A contact	slant	submanifold is a submanifold M tangent to ξ of a Sasakian manifold (M̃,ϕ, ξ, η, g) such
that, for any vector X ∈ TpM  linearly independent with ξp, the angle θ(X) between ϕX and the
tangent space TpM  is a constant (which is independent of the choice of the point p ∈ M  and the
choice of the tangent vector X in the tangent plane TpM).

 

(iv)
A submanifold M tangent to ξ is called a contact	CR-submanifold if it admits an invariant differentiable
distribution D  with respect to ϕ whose orthogonal complementary orthogonal distribution D ⊥ is
anti-invariant, that is, TM = D ⊕ D

⊥, with ϕ(Dp) ⊂ Dp and ϕ(D ⊥
p ) ⊂ T ⊥

p M , for every p ∈ M .

 

2	 Chen	Invariants	and	Chen-Type	Inequalities
The Riemannian invariants of a Riemannian manifold are the intrinsic characteristics of the Riemannian
manifold. Among the Riemannian invariants, the most studied were sectional, scalar, and Ricci curvatures.

⎧⎪⎨⎪⎩ϕ2 = −Id + η ⊗ ξ, η(ξ) = 1, ϕξ = 0, η ∘ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y ) − η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xϕ)Y = −g(X,Y )ξ + η(Y )X, ∇̃Xξ = ϕX,

R̃(X,Y )Z = c+3
4 {g(Y ,Z)X − g(X,Z)Y }

+ c−1
4 {η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y ,Z)η(X)ξ
+g(ϕY ,Z)ϕX − g(ϕX,Z)ϕY−2g(ϕX,Y )ϕZ},



We recall a string of Riemannian invariants on a Riemannian manifold, which are known as Chen	invariants
[30].

The Chen	�irst	invariant of a Riemannian manifold M is given by δM(p) = τ(p) − (inf K)(p), p ∈ M ,
where K and τ  are the sectional curvature and the scalar curvature of M, respectively.

For an integer k ≥ 0, we denote by S(n, k) the �inite set that consists of k-tuples (n1, … ,nk) of integers
≥ 2 satisfying n1 < n,n1 + … + nk ≤ n. Denote by S(n) the set of k-tuples with k ≥ 0 for a �ixed n.

For each k-tuple (n1, … ,nk) ∈ S(n), Chen introduced a Riemannian invariant de�ined by

where L1, … ,Lk run over all k mutually orthogonal subspaces of TpM  such that dim Lj = nj,
j = 1, … , k.

In the introduction of the article [29], B.Y. Chen recalled one of the basic problems in submanifold
theory:

Find	simple	relationship	between	the	main	extrinsic	invariants	and	the	main	intrinsic	invariants	of	a
submanifold.
We recall the most important Chen inequalities obtained by B.Y. Chen for submanifolds in real space forms.

Theorem	2.1	([24]) LetM nbe	an	n-dimensional	(n ≥ 3)	submanifold	of	a	real	space	formM̃m(c)of
constant	sectional	curvature	c.	Then

(2.1)
Equality	holds	if	and	only	if,	with	respect	to	suitable	frame	�ields{e1, … , en,en+1, … , em},	the	shape

operators	take	the	following	forms:

Furthermore,	when	the	equality	sign	of (2.1) holds	at	a	pointp ∈ M n,	we	also	haveK(e1 ∧ e2) =inf Kat
point	p.

For each (n1, … ,nk) ∈ S(n), one de�ines

For proving the above inequality, B.Y. Chen uses the following algebraic lemma (which we call from now
as Chen’s lemma).

δ(n1, … ,nk)(p) = τ(p) − inf {τ(L1) + … + τ(Lk)},

δM ≤ n−2
2 { n2

n−1 ∥H∥2 + (n + 1)c}.

An+1 = ,

⎛⎜⎝a 0 0 … 0
0 μ − a 0 … 0
0 0 μ … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … μ

⎞⎟⎠Ar = , r = n + 2, … ,m.

⎛⎜⎝hr
11 hr

12 0 … 0
hr

12 −hr
11 0 … 0

0 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0

⎞⎟⎠d(n1, … ,nk) =
n2(n+k−1−

k

∑
j=1

nj)

2(n+k−
k

∑
j=1

nj)
,

b(n1, … ,nk) = 1
2 [n(n−1) −∑k

j=1
nj(nj−1)].



Lemma	([24]) Letn ≥ 3be	an	integer	anda1, a2, … , an, breal	numbers	such	that

Then2a1a2 ≥ b.
The	equality	holds	if	and	only	ifa1 + a2 = a3 = … = an.

The following sharp inequality involving the Chen invariants and the squared mean curvature obtained in
[30] plays the most fundamental role in this topic.

Theorem	2.2	([30]) For	each(n1, … ,nk) ∈ S(n)and	each	n-dimensional	submanifold	M	in	a	Riemannian
space	formM̃m(c)of	constant	sectional	curvature	c,	we	have

(2.2)
The	equality	case	of	inequality (2.2) holds	at	a	pointp ∈ M if	and	only	if	there	exists	an	orthonormal	basis

{e1, … , em}at	p	such	that	the	shape	operators	of	M	inM̃m(c)at	p	take	the	following	forms:

wherea1, … , ansatisfy

and	eachAr
jis	a	symmetricnj × njsubmatrix	satisfying

2.1	 Purely	Real	Submanifolds
A proper slant submanifold M of a Kaehler manifold is said to be Kaehlerian	slant if the canonical
endomorphism P , i.e., the restriction of J to TM, is parallel; more precisely, ∇P = 0, where ∇ is the Levi-
Civita connection on M.

A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost
complex structure J̃ = (secθ)J, where θ is the slant angle.

On a Kaehlerian slant submanifold the coef�icients of the second fundamental form have the symmetry
property: hk

ij = hi
jk = h

j
ki. Examples of proper slant submanifolds and Kaehlerian slant submanifolds are

given in [23].
We recall now few properties of P. Denoting Q = P 2, then Q is a self-adjoint endomorphism of TM. Each

tangent space TpM  admits an orthogonal decomposition of eigenspaces of Q:

(∑
n

i=1
ai)

2

= (n−1)(∑
n

i=1
a2
i + b).

δ(n1, … ,nk) ≤ d(n1, … ,nk)∥H∥2 + b(n1, … ,nk)c.

An+1 = ,

⎛⎜⎝a1 0 0 … 0
0 a2 0 … 0
0 0 a3 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … an

⎞⎟⎠Ar = , r = n + 2, … ,m,

⎛⎜⎝Ar
1 … 0 0 … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … Ar

k 0 … 0

0 … 0 μr … 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 … 0 0 … μr

⎞⎟⎠a1 + … + an1 = … = an1+…+nk−1+1 + … + an1+…+nk
= an1+…+nk+1 = … = an,

trace(Ar
1) = … = trace(Ar

k
) = μr.

TpM = D1
p ⊕ … ⊕ D

k(p)
p .



Moreover, each eigenvalue λi of Q lies in [−1, 0].
If λi ≠ 0, then the corresponding eigenspace Di

p is of even dimension and invariant under P ,
P(Di

p) = Di
p; if λi ≠ −1, then dim F(Di

p) =dim Di
p, and the normal subspaces F(Di

p)  are mutually
perpendicular, where FX is the normal component of JX.

De�inition	([23]) A submanifold M is called a purely	real	submanifold if every eigenvalue of Q = P 2 lies in
(−1, 0], i.e., FX ≠ 0, for any nonzero vector X tangent to M.

Thus, by de�inition, the class of purely real submanifolds contains both slant submanifolds and totally
real submanifolds (in particular Lagrangian submanifolds, i.e., totally real submanifolds of maximum
dimension).

To generalize Kaehlerian slant submanifolds we will consider purely real submanifolds with ∇P = 0.
Submanifolds with ∇P = 0 are characterized by the following proposition:

Proposition	([23]) Let	M	be	a	submanifold	of	an	almost	Hermitian	manifoldM̃.Then∇P = 0if	and	only	if	M
is	locally	the	Riemannian	productM1 × … ×Mk,	where	eachMiis	either	a	complex	submanifold,	a	totally	real
submanifold,	or	a	Kaehlerian	slant	submanifold	ofM̃.

Also, the following result holds.

Proposition	([23]) Let	M	be	an	irreducible	submanifold	of	an	almost	Hermitian	manifoldM̃.If	M	is	neither
invariant	nor	totally	real,	then	M	is	a	Kaehlerian	slant	submanifold	if	and	only	if	the	endomorphism	P	is
parallel,	i.e.,∇P = 0.

Lemma	([23]) For	submanifolds	M	of	a	Kaehler	manifoldM̃ ,	the	condition∇P = 0is	equivalent	to
AFXY = AFYX,for	any	vectors	X	and	Y 	tangent	to	M,	where	A	denotes	the	shape	operator.

The following proposition gives a characterization of submanifolds with ∇Q = 0.

Proposition	([23]) Let	M	be	a	submanifold	of	an	almost	Hermitian	manifoldM̃ .	Then	the	self-adjoint
endomorphismQ = P 2is	parallel	(i.e.,∇Q = 0)if	and	only	if:

(i)
Each	eigenvalueλiof	Q	is	constant	onM .  

(ii)
Each	distributionDiassociated	with	the	eigenvalueλiis	completely	integrable.  

(iii)
M	is	locally	the	Riemannian	productM1 × … × Mkof	the	leaves	of	the	distributions. 

B.Y. Chen [32] proved the following sharp estimate of the squared mean curvature in terms of the scalar
curvature for Kaehlerian slant submanifolds in complex space forms.

Theorem	2.3	([32]) Let	M	be	an	n-dimensional(n ≥ 2)Kaehlerian	slant	submanifold	of	an	n-dimensional
complex	space	formM̃(4c)of	constant	holomorphic	sectional	curvature 4c.	Then

(2.3)
whereθis	the	slant	angle	of	M.

In particular, for Lagrangian submanifolds, one derives the following:

Corollary	([32]) Let	M	be	a	Lagrangian	submanifold	of	an	n-dimensional(n > 1)complex	space	formM̃(4c)
of	constant	holomorphic	sectional	curvature 4c.	Then

(2.4)

The inequality (2.4) was �irst obtained in [25].

∥H∥2 ≥ 2(n+2)
n2(n−1) τ − n+2

n
(1 + 3 cos2θ

n−1 )c,

∥H∥2 ≥ 2(n+2)
n2(n−1) τ − n+2

n
c.



On the other hand, it is known that any proper slant surface is Kaehlerian slant. Thus, the previous
theorem implies the following.

Corollary	([32]) Let	M	be	a	proper	slant	surface	in	a	complex	space	formM̃(4c)of	complex	dimension 2.
Then	the	squared	mean	curvature∥H∥2and	the	Gaussian	curvature	G	of	M	satisfy

(2.5)
at	each	pointp ∈ M ,	whereθdenotes	the	slant	angle	of	the	slant	surface.

The above inequality was obtained by B.Y. Chen in [27] and as a corollary of a result from [39].

Theorem	2.4	([27]) Let	M	be	a	purely	real	surface	in	a	complex	space	formM̃(4c)of	complex	dimension 2.
Then

with	respect	to	any	orthonormal	frame{e1, e2}satisfyingg(∇α, e2) = 0(αis	the	Wirtinger	angle,	i.e.,
cos α = g(Je1, e2),	and∇αis	the	gradient	ofα).

We �irst present the results obtained in [80]. More precisely, we generalized Theorem 2.3 for purely real
submanifolds with P parallel with respect to the Levi-Civita connection.

Theorem	2.5	([80]) Let	M	be	a	purely	real	n-dimensional(n ≥ 2)submanifold	with∇P = 0of	an	n-
dimensional	complex	space	formM̃(4c)of	constant	holomorphic	sectional	curvature 4c.	Then

(2.6)

Proof Let p ∈ M  and {e1, e2, … , en} be an orthonormal basis of the tangent space TpM  such that all ej’s
are eigenvectors of P 2. An orthonormal basis {e∗

1, e∗
2, … , e∗

n} of the normal space T ⊥
p M  is de�ined by 

e∗
i =

Fei

∥ Fei ∥
, i = 1,n.

For a purely real submanifold with ∇P = 0, one has

or equivalently,

where A means the shape operator and hk
ij

= g(h(ei, ej), e∗
k), i, j, k = 1, … ,n.

From the Gauss equation, it follows that

By the de�inition, the squared mean curvature is given by

We derive

If we denote m = n+2
n−1 , we get

∥H∥2 ≥ 2[G − (1 + 3 cos2 θ)c],

∥H∥2 ≥ 2[G − ∥∇α∥2 − (1 + 3 cos2 θ)c] + 4g(∇α,Jh(e1, e2))cscα,

∥H∥2 ≥ 2(n+2)
n2(n−1) τ − n+2

n
[1 + 3 ∥P∥2

n(n−1) ]c.

¯

AFXY = AFYX, ∀X,Y ∈ ΓTM,

hk
ij = h

j
ik = hi

kj,

2τ = n2∥H∥2 − ∥h∥2 + c[n(n−1) + 3∥P∥2].

n2∥H∥2 =∑
i
[∑

j
(hi

jj)
2

+ 2∑
j<k

hi
jjh

i
kk
].

τ = n(n−1)+3∥P∥2

2 c +∑
i
∑

j<k
hi
jjh

i
kk

−∑
i≠j

(hi
jj)

2
−3∑

i<j<k
(hk

ij)
2
.

n2∥H∥2 − m[2τ − n(n−1)c−3∥P∥2
c]

=∑
i
(hi

ii
)2

+ (1 + 2m)∑
i≠j

(hi
jj

)2
+ 6m∑

i<j<k
(hk

ij
)2

−2(m−1)∑
i
∑

j<k
hi
jj
hi
kk

=∑
i
(hi

ii
)2 + 6m∑

i<j<k
(hk

ij
)2

+ (m−1)∑
i
∑

j<k
(hi

jj
− hi

kk
)2



It follows that

Using the de�inition of the real number m, the previous relation becomes

which is equivalent to the inequality to prove.
In [104] we proved Chen inequalities for slant submanifolds M in complex space forms M̃(c) of constant

holomorphic sectional curvature c.
We considered 2-plane sections π invariant by P and de�ined

where, as usual, we denoted by K(π) the sectional curvature associated with the 2-plane section π and by 
τ(p) the scalar curvature at p ∈ M , τ(p) = ∑1≤i<j≤nK(ei ∧ ej), with {e1, e2, … , en} an orthonormal
basis of TpM.

The Chen �irst inequality has the following form.

Theorem	2.6	([104]) Given	an	m-dimensional	complex	space	formM̃(4c)and	aθ-slant	submanifold
M, dim M = n, n ≥ 3,	we	have

(2.7)
The	equality	case	of	the	inequality	holds	at	a	pointp ∈ M if	and	only	if	there	exist	an	orthonormal	basis

{e1, e2, … , en}ofTpMand	an	orthonormal	basis{en+1, … , e2m}ofT ⊥
p Msuch	that	the	shape	operators	of	M

inM̃(4c)at	p	have	the	following	forms:

where	one	denotesAr = Aer , r = n + 1, … , 2m,	andhr
ij = g(h(ei, ej), er), i, j = 1, … ,n, 

r = n + 1, … , 2m.

Remark The equality case implies the minimality for Kaehlerian slant submanifolds with n = m [95].

In [80] we extended the above inequality to purely real submanifolds M in complex space forms M̃(4c).
For a 2-plane section π ⊂ TpM,p ∈ M, we denoted

+[1 + 2m − (n−2)(m−1)]∑
i≠j

(hi
jj)

2
−2(m−1)∑

i≠j
hi
iih

i
jj

= 6m∑
i<j<k

(hk
ij)

2
+ (m−1)∑

i≠j,k
∑

j<k
(hi

jj − hi
kk)

2

+ 1
n−1 ∑i≠j

[hi
ii − (n−1)(m−1)hi

jj]
2

≥ 0.

n2∥H∥2 − m[2τ − n(n−1)c−3∥P∥2
c] ≥ 0.

n2∥H∥2 − n+2
n−1 [2τ − n(n−1)c−3∥P∥2

c] ≥ 0,

δ′
M(p) = τ(p) − inf {K(π)| π ⊂ TpM, dim π = 2, invariant  by  P},

δ′
M(p) ≤ n−2

2 { n2

n−1 ∥H∥2 + (n + 1 + 3 cos2 θ)c}.

An+1 = , a + b = μ,

⎛⎜⎝a 0 0 … 0
0 b 0 … 0
0 0 μ … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … μ

⎞⎟⎠Ar = ,

⎛⎜⎝hr
11 hr

12 0 … 0
hr

12 −hr
11 0 … 0

0 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0

⎞⎟⎠Φ2(π) = g2(Je1, e2),



where {e1, e2} is an orthonormal basis of π (see [20]). Then Φ2(π) is a real number in [0, 1], which is
independent of the choice of the orthonormal basis {e1, e2} of π.

We proved the following optimal inequality.

Theorem	2.7	([80]) Let	M	be	an	n-dimensional(n ≥ 3)purely	real	submanifold	of	an	m-dimensional
complex	space	formM̃(4c), p ∈ M ,	andπ ⊂ TpMa 2-plane	section.	Then

(2.8)
Moreover,	the	equality	case	of	the	inequality	holds	at	a	pointp ∈ M if	and	only	if	there	exist	an	orthonormal

basis{e1, e2, … , en}ofTpMand	an	orthonormal	basis{en+1, … , e2m}ofT ⊥
p Msuch	that	the	shape	operators

take	the	following	forms:

Proof Let p ∈ M  and π ⊂ TpM  be a 2-plane section and {e1, e2} an orthonormal basis of π. We construct 
{e1, e2, e3, … , en} an orthonormal basis of TpM .

The Gauss equation implies

We put

From the above two equations, we get
(2.9)

We take en+1 parallel with H and construct {en+1, … , e2m} an orthonormal basis of T ⊥
p M . Equation

(2.9) becomes

or equivalently,

By applying Chen’s lemma, we obtain

The Gauss equation gives

τ(p) − K(π) ≤ n2(n−2)
2(n−1) ∥H∥2 + [(n + 1)(n−2) + 3∥P∥2−6Φ2(π)] c

2 .

An+1 = , a + b = μ,

⎛⎜⎝a 0 0 … 0
0 b 0 … 0
0 0 μ … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … μ

⎞⎟⎠Ar = , r ∈ {n + 1, … , 2m}.

⎛⎜⎝hr
11 hr

12 0 … 0
hr

12 −hr
11 0 … 0

0 0 0 … 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 0

⎞⎟⎠2τ = n2∥H∥2 − ∥h∥2 + [n(n−1) + 3∥P∥2]c.

ε = 2τ − n2(n−2)
n−1 ∥H∥2 − [n(n−1) + 3∥P∥2]c.

n2∥H∥2 = (n−1)(ε + ∥h∥2).

(∑
n

i=1
hn+1
ii )

2

= (n−1)(∑
2m

r=n+1
∑

n

i,j=1
(hr

ij)
2 + ε),

(∑
n

i=1
hn+1
ii )

2

= (n−1)[∑
n

i=1
(hn+1

ii )
2

+∑
i≠j

(hn+1
ij )

2
+∑

2m

r=n+2
∑

n

i,j=1
(hr

ij)
2 + ε].

2hn+1
11 hn+1

22 ≥∑
i≠j

(hn+1
ij )2

+∑
2m

r=n+2
∑

n

i,j=1
(hr

ij)
2

+ ε.

K(π) = [1 + 3Φ2(π)]c +∑
2m

r=n+1
[hr

11h
r
22 − (hr

12)
2]



which implies the inequality to prove.
We have an equality at a point p ∈ M  if and only if all the above inequalities become equalities and the

equality case of Chen’s lemma holds. Thus the shape operators take the desired forms.

For n-dimensional Kaehlerian slant submanifolds a particular case of purely real submanifolds in n-
dimensional complex space form M̃(4c), we proved an improved Chen �irst inequality.

Theorem	2.8	([80]) Let	M	be	an	n-dimensional(n ≥ 3)Kaehlerian	slant	submanifold	in	the	complex	space
formM̃(4c), dimC M̃(4c) = n,	andp ∈ M , π ⊂ TpMa 2-plane	section.	Then

(2.10)
Moreover,	the	equality	case	of	the	inequality (2.10) holds	at	a	pointp ∈ M if	and	only	if	there	exists	an

orthonormal	basis{e1, e2, … , en}at	p	such	that	with	respect	to	this	basis	the	second	fundamental	form	takes
the	following	form:

for	some	numbersa, bandj, k = 4, … ,n,	wheree∗
i = Fei

∥Fei∥
, i = 1, … ,n.

Proof Let p ∈ M  and π ⊂ TpM  be a 2-plane section and {e1, e2, … , en} an orthonormal basis of the
tangent space TpM  such that e1, e2 ∈ π. An orthonormal basis {e∗

1, e∗
2, … , e∗

n} of the normal space T ⊥
p M  is

de�ined by e∗
i =

Fei

sin θ
, i = 1,n. We denote hk

ij = g(h(ei, ej), e∗
k).

The Gauss equation implies

(2.11)

and

(2.12)

respectively. Since M is a Kaehlerian slant submanifold, we have hk
ij = hi

jk = h
j
ki.

From formulas (2.11) and (2.12), we obtain

(2.13)

It follows that

≥ [1 + 3Φ2(π)]c + 1
2 ∑i≠j

(hn+1
ij )2

+ 1
2 ∑

2m

r=n+2
∑

n

i,j=1
(hr

ij)
2

+ ε
2

+∑
2m

r=n+2
hr

11h
r
22 −∑

2m

r=n+1
(hr

12)
2

= [1 + 3Φ2(π)]c + 1
2 ∑i≠j>2

(hn+1
ij )2

+ 1
2 ∑

2m

r=n+2
∑

3≤i<j≤n
(hr

ij)
2

+ 1
2 ∑

2m

r=n+2
(hr

11 + hr
22)

2
+∑

2m

r=n+1
∑

n

j=3
[(hr

1j)
2

+ (hr
2j)

2] + ε
2

≥ [1 + 3Φ2(π)]c + ε
2 ,

τ(p) − K(π) ≤ n2(2n−3)
2(2n+3) ∥H∥2 + [(n + 1)(n−2) + 3n cos2 θ−6Φ2(π)] c

2 .

h(e1, e1) = ae∗
1 + 3be∗

3 h(e1, e3) = 3be∗
1 h(e3, ej) = 4be∗

j

h(e2, e2) = −ae∗
1 + 3be∗

3 h(e2, e3) = 3be∗
2 h(ej, ek) = 4be∗

3δjk

h(e1, e2) = −ae∗
2 h(e3, e3) = 12be∗

3 h(e1, ej) = h(e2, ej) = 0,

¯

τ(p) =∑
n

r=1
∑

1≤i<j≤n
[hr

iih
r
jj − (hr

ij)
2] + [n(n−1) + 3n cos2 θ] c

2 ,

K(π) =∑
n

r=1
[hr

11h
r
22 − (hr

12)
2] + [1 + 3Φ2(π)]c,

τ(p) − K(π) =∑
n

r=1
{∑

n

j=3
(hr

11 + hr
22)hr

jj +∑
3≤i<j≤n

hr
iih

r
jj

−∑
n

j=3
[(hr

1j)
2

+ (hr
2j)

2]}

+[(n + 1)(n−2) + 3n cos2 θ−6Φ2(π)] c
2 .

τ(p) − K(π) ≤



In order to achieve the proof, we will use some ideas and results from [17].
We point out the following inequalities (see [17]):

(2.14)

for r = 1, 2. The �irst inequality is equivalent to

The equality holds if and only if 3hr
jj = hr

11 + hr
22, ∀j = 3, … ,n.

The equality holds in the second inequality if and only if hr
11 + hr

22 + … + hr
nn = 0.

Also, we have

for r = 3, … ,n, which is equivalent to (see [17])

(2.15)

The equality holds if and only if

By summing the inequalities (2.14) and (2.15) we obtained the inequality (2.10).
Combining the above equality cases, we get the desired forms of the second fundamental form.

In particular, we derive the following.

Theorem	2.9	([80]) Let	M	be	an	n-dimensional(n ≥ 3)Kaehlerian	slant	submanifold	in	the	complex	space
formM̃(4c), dimC M̃(4c) = n, p ∈ M ,π ⊂ TpMa 2-plane	section.	Then

(2.16)
The	equality	case	of	the	inequality	holds	at	a	pointp ∈ M if	and	only	if,	with	respect	to	a	suitable

orthonormal	basis{e1, e2, … , en}ofTpMthe	second	fundamental	form	h	takes	the	same	form	as	in
Theorem2.8.

Proof If M is Kaehlerian slant and π is invariant by P, one has Φ2(π) =cos2 θ.

In contrast with the last remark, the equality case does not imply the minimality of the submanifold.
However we stated the following result.

Theorem	2.10	([80]) Let	M	be	an	n-dimensional	Kaehlerian	slant	submanifold	in	the	complex	space	form
M̃(4c), dimC M̃(4c) = n,	andn ≥ 4.If	the	equality	case	holds	identically	in (2.16),	then	M	is	a	minimal
submanifold.

≤∑
n

r=1
[∑

n

j=3
(hr

11 + hr
22)hr

jj +∑
3≤i<j≤n

hr
iih

r
jj]

−∑n

j=3
(hj

11)
2

−∑n

j=3
(h1

jj)
2

−∑
2≤i≠j≤n

(hi
jj
)2

+[(n + 1)(n−2) + 3n cos2 θ−6Φ2(π)] c
2 .

∑n

j=3
(hr

11 + hr
22)

2
hr
jj

+∑
3≤i<j≤n

hr
ii
hr
jj

−∑n

j=3
(hr

jj
)2

≤ n−2
2(n+1) (hr

11 + … + hr
nn)

2
≤ 2n−3

2(2n+3) (hr
11 + … + hr

nn)
2
,

∑
n

j=3
(hr

11 + hr
22−3hr

jj)
2

+ 3∑
3≤i<j≤n

(hr
ii − hr

jj)
2

≥ 0.

∑
n

j=3
(hr

11 + hr
22)

2
hr
jj +∑

3≤i<j≤n
hr
iih

r
jj −∑

n

j=3
(hr

jj)
2

≤ 2n−3
2(2n+3) (hr

11 + … + hr
nn)

2
,

∑
3≤j≤n,j≠r

[2(hr
11 + hr

22)−3hr
jj]

2
+ (2n + 3)(hr

11 − hr
22)

2

+6∑
3≤j≤n,j≠r

(hr
ii − hr

jj)
2

+ 2∑
n

j=3
(hr

rr − hr
jj)

2
+ 3[hr

rr−2(hr
11 + hr

22)]
2

≥ 0.

⎧⎪⎨⎪⎩hr
11 = hr

22 = 3λr,
hr
jj = 4λr, ∀j = 3, … ,n, j ≠ r, λr ∈ R.

hr
rr = 12λr,

δ′
M(p) ≤ n2(2n−3)

2(2n+3) ∥H∥2 + (n−2)[n + 1 + 3 cos2 θ] c
2 .



The proof is similar to that of Theorem 3 from [17].
In the case n = 3 there is an example of non-minimal Lagrangian submanifold in CP 3 satisfying the

equality case of (2.10) [18].
In [47] we presented a	general	construction	method	to	obtain	the	explicit	expression	of	a	purely	real

submanifold	in	the	complex	hyperbolic	planeCH n(−4) via Hopf’s �ibration. For the details, see [45] (the
same method applies to CP n(4) with minor modi�ication).

Let Cn+1
1  denote the complex (n + 1)-space together with the Hermitian inner product:

for z = (z0, … , zn) and w = (w0, … ,wn) in Cn+1
1 . We denote

(2.17)
Then H 2n+1

1  is a real hypersurface of Cn+1
1  whose tangent space at z ∈ H 2n+1

1  is

The restriction of the real part of F, Re F, on H 2n+1
1  gives rise to a pseudo-Riemannian metric g on H 2n+1

1
. It is well known that H 2n+1

1  together with g is a Lorentzian manifold of constant sectional curvature −1,
which is known as the anti-de	Sitter	space.

We put

and H 1
1 = {η ∈ C : ηη̄ = 1}. Then we have an H 1

1 -action on H 2n+1
1 , z ↦ ηz. At z ∈ H 2n+1

1 (−1), the vector
iz is tangent to the �low of the action. Since F is Hermitian, we have Re F(iz, iz) = −1. Notice that the orbit is
given by zt = eitz with dzt / dt = izt which lies in the negative-de�inite plane spanned by z and iz. The
quotient H 2n+1

1 /∼ under the action is the complex hyperbolic n-space CH n(−4) of constant holomorphic
sectional curvature −4.

The complex structure J on CH n(−4) is induced from the complex structure J on Cn+1
1  via the Hopf

�ibration:
(2.18)

which is a Riemannian submersion with totally geodesic �ibers. If z ∈ H 2n+1
1 , we put

(2.19)
Then V  is a time-like unit vector tangent to the �iber of the submersion at z.
Denote by ∇̂ and ∇̃ the Levi-Civita connections of H 2n+1

1  and CH n(−4), respectively. Let X ∗ denote the
horizontal lift of a vector X on M. For vector �ields X,Y  tangent to CH n(−4) and V  normal to CH n(−4),
we have

(2.20)
(2.21)

Let ϕ : M → CH n(−4) be an isometric immersion from a Riemannian m-manifold M into CH n(−4).
Then the pre-image M̂ = π−1(M) is a principal circle bundle over M with totally geodesic �ibers. The lift 
ϕ̂ : M̂ → H 2n+1

1  of ϕ is an isometric immersion such that the diagram

(2.22)

commutes.
Conversely, if ψ : M̂ → H 2n+1

1 (−1) is an isometric immersion invariant under the action, there is a
unique isometric immersion ψπ : π(M̂) → CH n(−4), called the projection	ofψ, such that the associated
diagram commutes.

Since V  generates the vertical subspaces of the Riemannian submersion (2.18), we have the following
orthogonal decomposition:

F(z,w) = −z0w̄0 +∑
n

j=1
zjw̄j,

H 2n+1
1 = {z ∈ Cn+1

1 : F(z, z) = −1}.

TzH
2n+1 = {w ∈ Cn+1

1 : Re F(z,w) = 0}.

T ′
z = {u ∈ Cn+1

1 : Re F(u, v) = Re F(u, iz) = 0}

π : H 2n+1
1 → CH n(−4),

V = Jz.

∇̂X ∗Y ∗ = (∇̃XY )
∗

+ ⟨JX,Y ⟩V ,
∇̂X ∗V = ∇̂VX

∗ = (JX)∗.

M̂
ϕ̂

→ H 2n+1
1 (−1)

π↓ ↓π

M
ϕ

→ CH n(−4)



Let ∇ be the Levi-Civita connection of M. Then we have
(2.23)

for X,Y  tangent to M, where h is the second fundamental form of M in CH n(−4).
If ξ is a normal vector �ield of M in CH n(−4), then (2.20) yields

(2.24)
Hence, by the Weingarten formula, we have

(2.25)
(2.26)

where A and Â are the shape operators of M in CH n(−4) and M̂  in H 2n+1
1 , respectively, and D and D̂ are the

corresponding normal connections.
From (2.20) we have

(2.27)
where ĥ denotes the second fundamental form of M̂  in H 2n+1

1 . By using (2.27) we also have
(2.28)

where ∇′ is the Levi-Civita connection of M̂ .
Also, it follows from (2.21) that

(2.29)
for X tangent to M.

Let z : H 5
1 → C3

1 denote the standard inclusion and ∇̆ be the Levi-Civita connection of C3
1. If M is a

purely real surface of CH 2(−4), then it follows from (2.17), (2.19), (2.21), (2.23), (2.27), (2.28), and (2.29)
that

(2.30)

for X,Y  tangent to M.
On H 2n+1

1 (−1) ⊂ Cn+1
1  we consider the induced Sasakian structure (g,ϕ, ξ), where the (1,1)-tensor ϕ is

obtained from the projection of the canonical complex structure J of Cn+1
1  onto the tangent bundle of H 2n+1

1
and ξ = V .

Now, in [47] we de�ined the notion of contact	purely	real	submanifolds as follows.
Let (M̃ 2m+1, g,ϕ, ξ) be an almost contact metric (2m + 1)-manifold endowed with a Riemannian (or

pseudo-Riemannian) metric g, an almost contact (1, 1)-tensor ϕ, and the structure vector �ield ξ. Then an
immersion f : N → M̃ 2m+1 of a manifold N into M̃ 2m+1 is called contact	purely	real if it satis�ies:

(i)
The structure vector �ield ξ of M̃ 2m+1 is tangent to f∗(TN).  

(ii)
For any nonzero vector X tangent to f∗(TpN) and perpendicular to ξ, ϕ(X) is transversal to f∗(TpN). 

The following lemma is easy to verify:

Lemma	2.11 The	immersionψ : M → CH n(−4)is	purely	real	if	and	only	if	the	lift ψ̂ : π−1(M) → H 2n+1
1 of

ψis	contact	purely	real,	whereπ : H 2n+1
a → CH n(−4)is	the	Hopf	�ibration.

In principle, the method	to	obtain	the	representation	of	a	purely	real	surface	inCH 2(−4) is by solving
the PDE system (2.30). This procedure goes as follows:

First, we determine both the intrinsic and extrinsic structures of the purely real surface. Next, we
construct a coordinate system on the associated contact purely real surface M̂ = π−1(M). After that we
solve the PDE system via the coordinate system on M̂  to obtain the explicit solution of the system. Such a
solution gives rise to the desired explicit expression of the contact purely real surface M̂  of H 5

1  via π.

TzM̂ = (Tπ(z)M)∗ ⊕ Span{V }.

∇̂X ∗Y ∗ = (∇XY )∗ + (h(X,Y ))∗ + ⟨JX,Y ⟩V ,

∇̂X ∗ξ∗ = (∇̃Xξ)
∗

+ ⟨JX, ξ⟩V .

Âξ∗X ∗ = (AξX)∗ − ⟨FX, ξ⟩V ,
D̂X ∗ξ∗ = (DXξ)

∗,

ĥ(X ∗,Y ∗) = (h(X,Y ))∗,

∇′
X ∗Y ∗ = (∇XY )∗ + ⟨JX,Y ⟩V ,

ĥ(X ∗,V ) = (FX)∗, ∇′
X ∗V = ∇′

VX
∗ = (FX)∗

⎧⎪⎨⎪⎩∇̆X ∗Y ∗ = (∇XY )∗ + (h(X,Y ))∗ + ⟨JX,Y ⟩V + ⟨X,Y ⟩z,

∇̆X ∗V = ∇̆VX
∗ = (JX)∗,

∇̆V V = −z,



The same method also applies to purely surfaces in CP 2(4).
The following general optimal inequality was given in [39].

Theorem	2.12 Let	M	be	a	purely	real	surface	in	a	complex	space	formM̃ 2(4ε).	Then	we	have
(2.31)

with	respect	to	any	orthonormal	frame{e1, e2}satisfying⟨∇α, e2⟩ = 0,	where∇αis	the	gradient	of	the
Wirtinger	angleαandH 2and	K	are	the	squared	mean	curvature	and	the	Gauss	curvature	of	M,	respectively.

The	equality	case	of (2.31) holds	identically	if	and	only	if	the	shape	operators	take	the	following	forms:

(2.32)

with	respect	to	some	suitable	adapted	orthonormal	frame{e1, e2, e3, e4}.

A purely real surface in a complex space form M̃ 2(4ε) is said to satisfy	the	basic	equality if it satis�ies the
equality case of inequality (2.31) identically.

We classi�ied the minimal surfaces in M̃ 2(4ε) satisfying the basic equality.

Theorem	2.13	([47]) Let	M	be	a	purely	real	minimal	surface	of	a	complex	space	formM̃ 2(4ε).	If	M	satis�ies
the	basic	equality,	then	we	have	either:
(a)

ε > 0and	M	is	a	totally	geodesic	Lagrangian	surface	or 
(b)

ε ≤ 0.  
Proof Assume that M is a purely real minimal surface in a complex space form M̃ 2(4ε). We choose an
adapted orthonormal frame {e1, e2, e3, e4} such that the gradient of α is parallel to e1 at p. So, we have 
∇α = (e1α)e1. Let us put

(2.33)
If M satis�ies the equality case of (2.31), then Theorem 2.12 implies that the second fundamental form

satis�ies
(2.34)

If M is a slant surface, then α is constant. So, it follows from (2.32) that M is a totally geodesic purely real
surface. In this case, M is a totally geodesic Lagrangian surface of constant curvature ε (cf. [50, Theorem
3.1]).

Next, assume that M is a non-slant minimal surface, i.e., ∇α ≠ 0 holds. Then M contains only isolated
totally geodesic points since M is minimal. Therefore, U = {p ∈ M : ∇α(p) ≠ 0} is a dense open subset of
M.

Because Span {e1} and Span {e2} are one-dimensional distributions, there exists a local coordinate
system {x, y} on U such that ∂ / ∂x and ∂ / ∂y are parallel to e1 and e2, respectively. Thus, the metric tensor
g on U takes the following form:

(2.35)
where E and G are positive functions.

The Levi-Civita connection on M satis�ies

(2.36)

Let us put
(2.37)

From e2α = 0, we have α = α(x). It follows from (2.37) that
(2.38)

H 2 ≥ 2{K − ||∇α||2 − (1 + 3 cos2 α)ε} + 4⟨∇α,Jh(e1, e2)⟩cscα

Ae3 = ( ), Ae4 = ( ),
3φ δ

δ φ

δ + e1α φ

φ 3δ + 3e1α

h(e1, e1) = βe3 + γe4, h(e1, e2) = δe3 + φe4, h(e2, e2) = λe3 + μe4.

h(e1, e1) = 0, h(e1, e2) = −(e1α)e3, h(e2, e2) = 0.

g = E 2dx2 + G2dy2,

⎧⎪⎨⎪⎩∇ ∂
∂x

∂
∂x = Ex

E
∂

∂x − EEy

G2
∂
∂y ,

∇ ∂
∂x

∂
∂y = Ey

E
∂

∂x + Gx

G
∂
∂y ,

∇ ∂
∂y

∂
∂y = − GGx

E 2
∂

∂x + Gy

G
∂
∂y .

e1 = 1
E

∂
∂x , e2 = 1

G
∂
∂y .



Recall the following lemma from [40].

Lemma Let	M	be	a	purely	real	surface	in	a	Kaehler	surface.	Then,	with	respect	to	an	adapted	orthonormal
frame{e1, e2, e3, e4},	we	have

where∇Xe1 = ω(X)e2, ∇⊥
Xe3 = Φ(X)e4, ωj = ω(ej),	andΦj = Φ(ej)forj = 1, 2.

It follows from (2.34), (2.36), (2.37), and the above lemma that

(2.39)

Thus, we �ind from (2.38) and (2.39) that

(2.40)

It follows that

(2.41)

Hence, we discover from (2.40), (2.41), and the equation of Codazzi that
(2.42)
(2.43)
(2.44)

It follows from (2.42) that E = E(x). Thus, we may choose x, y such that
(2.45)

From this we see that the Gauss curvature is given by
(2.46)

On the other hand, from (2.32), the last equation in (2.41), and (2.46), we have
(2.47)

Since E is assumed to be one, (2.43) and (2.44) reduce to
(2.48)
(2.49)

Summing up the last two relations, we get
(2.50)

After solving the last equation for G, we obtain

(2.51)

for some nonzero function f(y). Substituting this into (2.49) gives
(2.52)

⎧⎪⎨⎪⎩h( ∂
∂x , ∂

∂x ) = h( ∂
∂y , ∂

∂y ) = 0,

h( ∂
∂x , ∂

∂y ) = − α′(x)G
E

e3.

e1α = h4
11 − h3

12, e2α = h4
12 − h3

22,

{
Φ1 = ω1 − (h3

11 + h4
12) cot α,

Φ2 = ω2 − (h3
12 + h4

22) cot α,

⎧⎪⎨⎪⎩( ∂
∂x )

⊥
= 3εE 2G sin α cos αe3,

(R̃( ∂
∂x , ∂

∂y )
∂
∂y )

⊥
= −3εEG2 sin α cos αe4,

g̃(R̃( ∂
∂x , ∂

∂y )
∂
∂y , ∂

∂x ) = (1 + 3 cos2 α)εE 2G2.

Ey = 0,
2α′(x)(EGx − ExG) + α′′(x)EG = 3εE 4G sin α cos α,

α′(x)Gx + α′2(x)G cot α = −3εE 3G sin α cos α.

g = dx2 + G2dy2.

K = − Gxx

G
.

Gxx = G(α2
x−3ε cos2 α − ε).

2α′(x)Gx + Gα′′(x) = 3εG sin α cos α,
α′(x)Gx + α′2(x)G cot α = −3εG sin α cos α.

α′′(x)
α′(x) = −3 Gx

G
− α′(x) cot α.

G = f(y)csc
1
3 α

α′
1
3 (x)

α′′= 2α′2 cot α + 9ε sin α cos α.



Now, by substituting (2.51) into (2.47) we discover
(2.53)

From the last two relations we obtain ε(4α′2 + 9ε sin2 2α) = 0, which is impossible unless ε ≤ 0. This
proves the theorem.

In view of Theorem 2.13, we classi�ied purely real minimal surfaces in CH 2(−4) satisfying the basic
equality.

Theorem	2.14	([47]) Let	M	be	a	purely	real	minimal	surface	of	the	complex	hyperbolic	planeCH 2(−4).
Then	M	satis�ies	the	basic	equality	if	and	only	if	it	is	congruent	to	an	open	portion	of	one	of	the	following	two
surfaces:
1.

A	real	hyperbolic	planeH 2of	constant	curvature−1	embedded	inCH 2(−4)as	a	totally	geodesic
Lagrangian	surface.

 
2.

A	surface	inCH 2(−4)given	byπ ∘ z,	whereπ : H 5
1 (−1) → CH 2(−4)is	the	Hopf	�ibration	and

z : R3 → H 5
1 ⊂ C3

1is	given	by

This	purely	real	surface	has	the	nonconstant	Wirtinger	angleα =arctan (e3x).

 

Next, we classi�ied purely real surfaces with circular ellipse of curvature in CP 2(4) and in CH 2(−4) which
satisfy the basic equality.

Theorem	2.15	([47]) Let	M	be	a	purely	real	surface	with	circular	ellipse	of	curvature	in	a	complex	space
formM̃ 2(4ε), ε = ±1.	If	M	satis�ies	the	basic	equality,	then	we	have	either:

1.
M	is	a	Lagrangian	surface	satisfying	the	equality

identically	or

 

2.
ε = −1,	and	M	is	congruent	to	an	open	portion	of	a	proper	slant	surface	inCH 2(−4)given	byπ ∘ z,	where
π : H 5

1 → CH 2(−4)is	the	Hopf	�ibration	andz : M → H 5
1 ⊂ C3

1is	de�ined	by
 

Remark Lagrangian surfaces in a complex space form M̃ 2(4ε) with ϵ = 1 or −1 satisfying the equality
have been completely classi�ied in [25, 51]. Such surfaces have circular ellipse of curvature.

A surface M in a Kaehler surface is said to have full	second	fundamental	form if its �irst normal space Im h
satis�ies dim (Im h) = 2 identically. It is said to have degenerate	second	fundamental	form if 
dim (Im h) < 2 holds at each point in M.

Theorem	2.16	([47]) Let	M	be	a	purely	real	surface	satisfying	the	basic	equality	in	a	complex	space	form
M̃ 2(4ε)withε = ±1.	If	M	has	the	degenerate	second	fundamental	form,	then	either:

3α′α′′′= 4α′′2 + α′2(9ε(1 + 3 cos2 α) − α′′cot α) + α′4(4 cot2 α−6).

z(x,u, t) = ei(t+u)−x

3 3√4
(3i 3√2 sinh (√3u) + √3( 3√2 + 2e2x) cosh (√3u),

H 2 = 2K−2ε

z(u, v, t) = eit( 3
2 cosh av + 1

6 u
2e−av − i

6
√6u(1 + e−av) − 1

2 ,

1
3 (1 + 2e−av)u + i√6(− 1

3 + 1
4 e

av + e−av( 1
12 + 1

18 u
2)),

√2
6 (1 − e−av)u + i√3( 1

6 + 1
4 e

av + e−av(− 5
12 + 1

18 u
2))), a = √ 2

3 .



(i) M	is	a	totally	geodesic	Lagrangian	surface	or  
(ii)

ϵ = −1,	and	M	is	locally	congruent	to	the	surface	given	byπ ∘ z,	whereπ : H 5
1 (−1) → CH 2(−4)is	the

Hopf	�ibration	andz : R3 → H 5
1 ⊂ C3

1is
 

By continuing this idea, in [46] we considered purely real surfaces with harmonic Wirtinger function and
purely real surfaces with closed canonical form. In order to do so, �irst we proved a general formula for the
Laplacian of the Wirtinger function involving the canonical form. Then we provide a necessary and suf�icient
condition for non-minimal proper purely real surfaces to have closed canonical form. As applications, we
obtained several classi�ication results for purely real surfaces to have harmonic Wirtinger function or with
closed canonical form.

Let M be a purely real surface in a Kaehler surface M̃ . We recall a 1-form ΨH  on M de�ined by Chen [23]
(2.54)

for X ∈ TM , where α is the Wirtinger function of M. Since M is purely real, ΨH  is well de�ined on M. We call
this 1-form ΨH  the canonical	form.

For a Lagrangian surface in C2, ΨH  is a closed form. Moreover, up constants, it represents the Maslov
class of the Lagrangian surface (cf. [101]). However, when the purely real surface is non-Lagrangian, this
form is non-closed in general.

We established the following general formula for purely real surfaces in a complex space form M̃ 2(4ε).

Theorem	2.17	([46]) Let	M	be	a	purely	real	surface	in	a	complex	space	formM̃ 2(4ε)of	constant
holomorphic	sectional	curvature4ε.	Then	we	have

(2.55)
where∇αis	the	gradient	ofα, Δα := div(∇α)is	the	Laplacian	ofα,	and∗is	the	Hodge	star	operator.

An immediate consequence of Theorem 2.17 is the following.

Corollary	2.18	([48]) Every	slant	surface	M	inC2satis�iesdΨH = 0.

Remark This result is false if the ambient space C2 is replaced by a non-�lat complex space form M̃ 2(4ε).
Besides minimal surfaces and slant surfaces, there exist many non-minimal, non-slant purely real

surfaces in C2 which satisfy Δα = 0 or dΨH = 0. For instance, a large family of such surfaces can be
obtained from surfaces of revolution.

Proposition	2.19	([46]) Letϕ(s) = (r(s), z(s))be	a	unit	space	curve	inE2withr(s) > 0andr′(s) ≠ 1.
Consider	the	surface	of	revolution	inC × R ⊂ C2de�ined	by

(2.56)
Then	we	have

(i)
The	surface	of	revolution	inC2has	harmonic	Wintinger	function	if	and	only	ifr(s)satis�ies

(2.57)

 

(ii) The	surface	of	revolution	inC2is	a	non-slant,	non-minimal	surface	withdΨH = 0if	and	only	ifr(s)satis�ies

(2.58)

(2.59)

 

z(x,u, t) = ei(t+u)−x

3 3√4
(3i 3√2 sinh (√3u) + √3( 3√2 + 2e2x) cosh (√3u),

ΨH(X) = (csc2α)⟨H,JX⟩,

Δα = {||∇α||2 + 6ε sin2 α} cot α + 2(sin α) ∗ dΨH ,

L(s, θ) = (r(s)eiθ, z(s)).

r′′′(s) = r′(s)r′′(s)[r(s)r′′(s)−r′(s)2+1]

r(s)(r′(s)2−1)
.

r′′′(s) = r′(s)r′′(s)[2r(s)r′′(s)−r′(s)2+1]

r(s)[r′(s)2−1]
,

r′′(s) ≠ 0, rr′′+r′2 ≠ 1.



An immediate consequence of Theorem 2.17 is the following.

Corollary	2.20	([40]) Let	M	be	a	purely	real	minimal	surface	in	a	complex	space	formM̃ 2(4ε).	Then	we
have

By applying the above corollary one obtains the following.

Corollary	2.21	([50]) Every	slant	surface	in	a	complex	space	formM̃ 2(4ε)withε ≠ 0is	non-minimal	unless
it	is	either	Lagrangian	or	complex.

Corollary	2.22	([40]) Let	M	be	a	purely	real	minimal	surface	in	the	complex	Euclidean	planeC2.	If	the
Wirtinger	functionαis	a	harmonic	function,	then	M	is	slant.

Corollary	2.23	([50]) Let	M	be	a	purely	real	minimal	surface	in	complex	projective	planeCP 2.	If	the
Wirtinger	functionαis	harmonic,	then	M	is	Lagrangian.

For minimal surfaces in CH 2, we have the following.

Theorem	2.24	([46]) A	minimal	surface	in	the	complex	hyperbolic	planeCH 2has	the	harmonic	Wirtinger
function	if	and	only	if	it	is	either	a	complex	surface	or	a	minimal	Lagrangian	surface.

Remark Obviously, there exist many complex surfaces in CH 2(−4). In fact, every holomorphic curve in 
CH 2(−4) is such an example.

Remark There exist many minimal Lagrangian surfaces in CH 2(−4). The simplest one is the hyperbolic
plane H 2(−1) of curvature −1 isometrically immersed into CH 2(−4) as a totally geodesic Lagrangian
surface.

For non-totally geodesic Lagrangian minimal surfaces in CH 2(−4), we have the following existence and
uniqueness result from Corollary 3.6 in [28, p. 667] (for φ = μ2/3).

Proposition	2.25	([28]) If	M	is	a	minimal	Lagrangian	surface	without	totally	geodesic	points	inCH 2(−4),
then,	with	respect	to	suitable	coordinatesx, y,	we	have:

(a)

(a)

The	metric	tensor	of	M	takes	the	form	ofg = φ−1(dx2 + dy2)for	some	positive	functionφsatisfying
Poisson’s	equation:

(2.60)

 

(b)

(b)

The	second	fundamental	form	h	is	given	by

(2.61)

Conversely,	ifφis	a	positive	function	de�ined	on	a	simply	connected	domain	U	ofR2satisfying (2.60)
and	ifg = φ−1(dx2 + dy2)is	the	metric	tensor	on	U,	then,	up	to	rigid	motions	ofCH 2(−4),	there	is	a
unique	minimal	Lagrangian	isometric	immersion	of	U	intoCH 2(−4)whose	second	fundamental	form	is
given	by (2.61).

 

Because (2.60) admits in�initely many solutions, there are abundant examples of minimal Lagrangian
surfaces in CH 2(−4).

It follows that each solution of this Poisson equation is nonconstant. Thus, an immediate consequence of
Proposition 2.25 is the following (see also [49, 57]).

Δα = {||∇α||2 + 6ε sin2 α} cot α.

∂ 2(lnφ)
∂x2 + ∂ 2(lnφ)

∂y2 = − 2(1+2φ3)
φ

.

h( ∂
∂x , ∂

∂x ) = −φJ( ∂
∂x ), h( ∂

∂x , ∂
∂y ) = φJ( ∂

∂y ),

h( ∂
∂y , ∂

∂y ) = φJ( ∂
∂x ).



Corollary	2.26 Every	non-totally	geodesic	Lagrangian	minimal	surface	inCH 2(−4)has	nonconstant	Gauss
curvatureK = −(1 + 2φ3) ≤ −1(associated	with	some	solutionφof (2.60)).

Trivially, we have ΨH = 0 for minimal purely real surfaces. Moreover, it was proved in [23] that dΨH = 0
holds for every slant surface in C2.

We studied purely real surfaces in a Kaehler surface with closed canonical form.
For a non-minimal purely real surface M in a Kaehler surface M̃ 2, we may choose an adapted frame 

e1, e2, e3, e4 such that H is parallel to e3, H = me3, μ = −γ, where m = (β + λ) / 2 is the mean curvature
of M. We call such a frame on M a H-adapted	frame.

Proposition	2.27	([46]) Let	M	be	a	non-minimal	proper	purely	real	surface	in	a	Kaehler	surfaceM̃ 2.	Then
the	canonical	formΨH is	closed	if	and	only	if,	with	respect	to	a	H-adapted	frame,	there	exists	an	orthogonal
coordinate	system{x, y}such	thate1 = p−1 ∂

∂x ande2 = q−1 ∂
∂y withp = (f(x) sin α) / mfor	some	function

f(x).

Obviously, every purely real minimal surface in a complex space form M 2(4ε) satis�ies dΨH = DH = 0.
The next theorem determines purely real surfaces in complex space forms M 2(4ε) satisfying 
dΨH = DH = 0.

Theorem	2.28	([46]) Every	purely	real	surface	in	a	complex	space	formM̃ 2(4ε)satisfyingdΨH = DH = 0
is	either	a	minimal	surface	or	a	Lagrangian	surface.

Recall that Lagrangian surfaces in complex space forms M̃ 2(4ε) satisfy dΨH = 0 (see, for instance, [118]).
It is known that a Lagrangian surface in C2 with a nonzero parallel mean curvature vector is either an

open part of the product two circles S 1(r1) × S 1(r2) ⊂ C × C or an open part of a circular cylinder 
S 1 × E1 ⊂ C × C (cf. [23], p. 50, Theorem 1.1).

Lagrangian surfaces with a nonzero parallel mean curvature vector in CP 2(4) and in CH 2(−4) are
parallel surfaces. Such surfaces have already been classi�ied (cf. [43, Appendix]). In fact, we have the
following:

A Lagrangian surface with a nonzero parallel mean curvature vector in CP 2(4) is a �lat surface whose
immersion is congruent to π ∘ L, where π : S 5(1) → CP 2(4) is the Hopf �ibration and 
L : M 2 → S 5(1) ⊆ C3 is given by

where a and b are real numbers with a ≠ 0.
A Lagrangian surface with nonzero parallel mean curvature vector in CH 2(−4) is a �lat surface whose

immersion is congruent to π ∘ L, where π : H 5
1 (−1) → CH 2(−4) is the Hopf �ibration and 

L : M 2 → H 5
1 (−1) ⊆ C3

1 is one of the following six maps:

1.

with a, b ∈ R, a ≠ 0 and a2 + b2 < 1;

 

2.

with b ∈ R, 0 < b2 < 1;

 
3.  

L(x, y) = ( a e−ix/a

√1+a2
, ei(ax+by)

√1+a2+b2
sin (√1 + a2 + b2 y),

ei(ax+by)

√1+a2
(cos (√1 + a2 + b2 y)− ib

√1+a2+b2
sin (√1 + a2 + b2 y))),

L(x, y) = ( ei(ax+by)

√1−a2
(cosh (√1 − a2 − b2 y)−

ib sinh(√1−a2−b2 y)
√1−a2−b2

),

ei(ax+by)

√1−a2−b2
sinh (√1 − a2 − b2 y), a eix/a

√1−a2
),

L(x, y) = (( i
b

+ y)ei(√1−b2x+by), yei(√1−b2x+by), √1−b2

b
eix/√1−b2),



with a, b ∈ R, 0 < a2 < 1 and a2 + b2 > 1;
4.

with a, b ∈ R, a2 > 1;

 

5.

with b ∈ R, b ≠ 0;
 

6.  
The following two propositions follow easily from Theorem 2.17.

Proposition	2.29	([46]) Let	M	be	a	purely	real	surface	in	the	complex	Euclidean	planeC2.	Then	M	is	a	slant
surface	if	and	only	if	we	haveΔα = dΨH = 0.

Proposition	2.30	([46]) Let	M	be	a	purely	real	surface	in	the	complex	projective	planeCP 2.	Then	M	is	a
Lagrangian	surface	if	and	only	if	we	haveΔα = dΨH = 0.

In contrast to Corollary 2.18, we have the following consequence of Proposition 2.30.

Corollary	2.31	([46]) Every	proper	slant	surface	M	inCP 2satis�iesdΨH ≠ 0.

For purely real surfaces in CH 2, we also have the following.

Theorem	2.32	([46]) A	purely	real	surface	M	in	a	complex	hyperbolic	planeCH 2satis�iesΔα = dΨH = 0if
and	only	if	M	is	a	Lagrangian	surface.

Next, we consider again Kaehlerian slant submanifolds in complex space forms.
B.Y. Chen proved in [31] an optimal inequality for Lagrangian submanifolds (a particular case of purely

real submanifolds) in complex space forms in terms of the Ricci curvature and the squared mean curvature,
well known as the Chen-Ricci inequality. Recently, the Chen-Ricci inequality was improved in [55] for
Lagrangian submanifolds in complex space forms.

We extended the improved Chen-Ricci inequality to Kaehlerian slant submanifolds in complex space
forms. We also investigated the equality case of the inequality.

De�inition A slant H-umbilical	submanifold of a Kaehler manifold M̃ n is a slant submanifold for which the
second fundamental form takes the following forms:

where e∗
1, … , e∗

n are de�ined as before.

Recall some known results.
In [29], B.Y. Chen established a sharp relationship between the Ricci curvature and the squared mean

curvature for any n-dimensional Riemannian submanifold of a real space form M̃(c) of constant sectional
curvature c, namely

L(x, y) = ( ei(ax+by)

√1−a2
(cos (√a2 + b2−1 y)−

ib sin(√a2+b2−1 y)

√a2+b2−1
),

ei(ax+by)

√a2+b2−1
sin (√a2 + b2−1 y), a eix/a

√1−a2
),

L(x, y) = ( a eix/a

√a2−1
, ei(ax+by)

√a2+b2−1
sin (√a2 + b2−1 y),

ei(ax+by)

√a2−1
(cos (√a2 + b2−1 y)−

ib sin(√a2+b2−1 y)
√a2+b2−1

)),

L(x, y) = eix

8b2 (i + 8b2(i + x)−4by, i + 8b2x−4by, 4be2iby),

L(x, y) = eix(1 + y2

2 − ix, y, y2

2 − ix).

h(e1, e1) = λe∗
1, h(e2, e2) = ⋯ = h(en, en) = μe∗

1,

h(e1, ej) = μe∗
j , h(ej, ek) = 0, 2 ≤ j ≠ k ≤ n,

Ric(X) ≤ (n−1)c + n2

4 ∥H∥2,



which is well known as the Chen-Ricci inequality. The same inequality holds for Lagrangian submanifolds in
a complex space form M̃(4c) as well (see [31]).

I. Mihai proved a similar inequality in [93] for certain submanifolds of Sasakian space forms.
In [73], Matsumoto, Mihai, and Oiagă extended the Chen-Ricci inequality to the following inequality for

submanifolds in complex space forms.

Theorem	([73]) Let	M	be	an	n-dimensional	submanifold	of	a	complex	m-dimensional	complex	space	form
M̃(4c).	Denote	by	J	the	complex	structure	ofM̃(4c).	Then:

(i)
For	each	vectorX ∈ TpM ,	we	have

where	PX	is	the	tangential	component	of	JX.

 

(ii)

IfH(p) = 0,	then	a	unit	tangent	vector	X	at	p	satis�ies	the	equality	case	if	and	only	ifX ∈ kerhp.

 

(iii)
The	equality	case	holds	identically	for	all	unit	tangent	vectors	at	p	if	and	only	if	p	is	a	totally	geodesic
point	orn = 2and	p	is	a	totally	umbilical	point.

 
In particular, for θ-slant submanifolds, the following result holds.

Corollary	([73]) Let	M	be	an	n-dimensionalθ-slant	submanifold	of	a	complex	space	formM̃(4c).	Then,

(i)
For	each	vectorX ∈ TpM ,	we	have  

(ii)
IfH(p) = 0,	then	a	unit	tangent	vector	X	at	p	satis�ies	the	equality	case	if	and	only	ifX ∈ kerhp.  

(iii)
The	equality	case	holds	identically	for	all	unit	tangent	vectors	at	p	if	and	only	if	p	is	a	totally	geodesic
point	orn = 2and	p	is	a	totally	umbilical	point.

 
The Chen-Ricci inequality was further improved to the following for Lagrangian submanifolds (cf. [55]).

Theorem	([55]) Let	M	be	a	Lagrangian	submanifold	of	dimensionn ≥ 2in	a	complex	space	formM̃(4c)of
constant	holomorphic	sectional	curvature 4c	and	X	a	unit	tangent	vector	inTpM , p ∈ M .	Then,	we	have

The	equality	sign	holds	for	any	unit	tangent	vector	at	p	if	and	only	if	either:
(i)

p	is	a	totally	geodesic	point	or  
(ii)

n = 2and	p	is	a	H-umbilical	point	withλ = 3 μ. 
Lagrangian submanifolds in complex space forms satisfying the equality case of the inequality were
determined by Deng in [55]. More precisely, he proved the following.

Corollary	([55]) Let	M	be	a	Lagrangian	submanifold	of	real	dimensionn ≥ 2in	a	complex	space	form
M̃(4c).If

for	any	unit	tangent	vector	X	ofM,then	either:

Ric(X) ≤ (n−1)c + n2

4 ∥H∥2 + 3c∥PX∥2,

Ric(X) ≤ (n−1)c + n2

4 ∥H∥2 + 3c cos2 θ.

Ric(X) ≤ (n−1)(c + n
4 ∥H∥2).

Ric(X) = (n−1)(c + n
4 ∥H∥2),



(i)
M	is	a	totally	geodesic	submanifold	inM̃(4c)or  

(ii)
n = 2,	and	M	is	a	Lagrangian	H-umbilical	submanifold	ofM̃(4c)withλ = 3μ. 

We extended the last theorem to Kaehlerian slant submanifolds in complex space forms, by applying the
following two lemmas from [55].

Lemma	2.33 Letf1(x1,x2, … ,xn)be	a	function	inRnde�ined	by

If x1 + x2 + … + xn = 2na,then	we	have

with	the	equality	sign	holding	if	and	only	if 1
n+1 x1 = x2 = … = xn = a.

Lemma	2.34 Letf2(x1,x2, … ,xn)be	a	function	inRnde�ined	by

Ifx1 + x2 + … + xn = 4a,then	we	have

with	the	equality	sign	holding	if	and	only	ifx1 = aandx2 + … + xn = 3a.

Our main result is the following theorem.

Theorem	2.35	([89]) Let	M	be	an	n-dimensional	Kaehlerianθ-slant	submanifold	in	a	complex	n-dimensional
complex	space	formM̃(4c)of	constant	holomorphic	sectional	curvature 4c.	Then	for	any	unit	tangent	vector	X
to	M	we	have

(2.62)
The	equality	sign	of (2.62) holds	identically	if	and	only	if	either:

(i)
c = 0and	M	is	totally	geodesic	or  

(ii)
n = 2, c < 0,	and	M	is	a	slant	H-umbilical	surface	withλ = 3 μ. 

Proof For a given point p ∈ M  and a given unit vector X ∈ TpM , we choose an orthonormal basis 
{e1 = X, e2, … , en} ⊂ TpM  and

Now we put in the Gauss equation X = Z = e1 and Y = W = ej, for j = 2, … ,n. Then the Gauss
equation gives

or equivalently,

Since the Riemannian curvature tensor of M is given by

f1(x1,x2, … ,xn) = x1∑
n

j=2
xj −∑

n

j=2
x2
j .

f1(x1,x2, … ,xn) ≤ n−1
4n (x1 + x2 + … + xn)2,

f2(x1,x2, … ,xn) = x1∑
n

j=2
xj − x2

1.

f2(x1,x2, … ,xn) ≤ 1
8 (x1 + x2 + … + xn)2,

Ric(X) ≤ (n−1)(c + n
4 ∥H∥2)+ 3c cos2 θ.

{e∗
1 = Fe1

sinθ , … , e∗
n = Fen

sinθ } ⊂ T ⊥
p M.

R̃(e1, ej, e1, ej) = R(e1, ej, e1, ej) − g(h(e1, e1),h(ej, ej))
+g(h(e1, ej),h(e1, ej)),

R̃(e1, ej, e1, ej) = R(e1, ej, e1, ej) −∑
n

r=1
(hr

11h
r
jj − (hr

1j)
2), ∀j ∈ 2,n.¯

R̃(X,Y ,Z,W) = c{g(X,Z)g(Y ,W) − g(X,W)g(Y ,Z)

+g(JX,Z)g(JY ,W) − g(JX,W)g(JY ,Z) + 2g(JX,Y )g(JZ,W)},



we �ind
(2.63)

By summing after j = 2,n, we get

or,

It follows that

(2.64)

Since M is a Kaehlerian slant submanifold, we have h1
1j = h

j
11 and hj

1j = h1
jj, and then

(2.65)

Now we put

and

Since nH 1 = h1
11 + h1

22 + … + h1
nn, we obtain by using Lemma 2.33 that

(2.66)
By applying Lemma 2.34 for 2 ≤ r ≤ n, we get

(2.67)
From (2.65), (2.66) and (2.67), we obtain

Thus we have

which implies (2.62).
Next, we shall study the equality case. For n ≥ 3, we choose Fe1 parallel to H. Then we have H r = 0, for

r ≥ 2. Thus, by Lemma 2.34, we get

and

From Lemma 2.33, we have h1
11 = (n + 1)a and h1

jj = a, ∀j ≥ 2, with a = H 1

2 .
In (2.64) we compute Ric(X) = Ric(e1). Similarly, by computing Ric(e2) and using the equality, we get

Then we obtain

The argument is also true for matrices (hr
jk

) because the equality holds for all unit tangent vectors, so 
h2

2j = h
j
22 = H j

2 = 0,∀j ≥ 3.

R̃(e1, ej, e1, ej) = c[1 + 3g2(Je1, ej)].
¯

(n−1 + 3∥PX∥2)c = Ric(X) −∑
n

r=1
∑

n

j=2
[hr

11h
r
jj − (hr

1j)
2],

(n−1 + 3 cos2 θ)c = Ric(X) −∑
n

r=1
∑

n

j=2
[hr

11h
r
jj − (hr

1j)
2].

Ric(X) − (n−1 + 3 cos2 θ)c =∑
n

r=1
∑

n

j=2
[hr

11h
r
jj − (hr

1j)
2]

≤∑
n

r=1
∑

n

j=2
hr

11h
r
jj −∑

n

j=2
(h1

1j)
2 −∑

n

j=2
(hj

1j)
2
.

Ric(X) − (n−1 + 3 cos2 θ)c ≤∑
n

r=1
∑

n

j=2
hr

11h
r
jj −∑

n

j=2
(hj

11)
2

−∑
n

j=2
(h1

jj)
2.

f1(h1
11,h1

22, … ,h1
nn) = h1

11∑
n

j=2
h1
jj −∑

n

j=2
(h1

jj)
2

fr(hr
11,hr

22, … ,hr
nn) = hr

11∑
n

j=2
hr
jj − (hr

11)2, ∀r ∈ 2,n.¯

f1(h1
11,h1

22, … ,h1
nn) ≤ n−1

4n (nH 1)2
= n(n−1)

4 (H 1)2
.

fr(hr
11,hr

22, … ,hr
nn) ≤ 1

8 (nH r)2 = n2

8 (H r)2 ≤ n(n−1)
4 (H r)2.

Ric(X) − (n−1 + 3 cos2 θ)c ≤ n(n−1)
4 ∑

n

r=1
(H r)2 = n(n−1)

4 ∥H∥2.

Ric(X) ≤ (n−1 + 3 cos2 θ)c + n(n−1)
4 ∥H∥2,

h1
1j = h

j
11 = nH j

4 = 0, ∀j ≥ 2,

h1
jk = 0, ∀j, k ≥ 2, j ≠ k.

hr
2j = h2

jr = 0, ∀r ≠ 2, j ≠ 2, r ≠ j.

h2
11

n+1 = h2
22 = … = h2

nn = H 2

2 = 0.



The matrix (h2
jk) (respectively, the matrix (hr

jk
)) has only two possible nonzero entries 

h2
12 = h2

21 = h1
22 = H 1

2  (respectively, hr
1r = hr

r1 = h1
rr = H 1

2 ∀r ≥ 3). Now, after putting X = Z = e2 and 
Y = W = ej, j = 2, … ,n, in the Guss equation, we obtain

If we put X = Z = e2 and Y = W = e1 in the Guss equation, we get

After combining the last two relations, we �ind

On the other hand, the equality case of (2.62) implies that

Since n ≠ 1, 2, by equating the last two equations we �ind H 1 = 0. Thus, (hr
jk

) are all zero, i.e., M is a

totally geodesic submanifold in M̃(4c). In particular, M is a curvature-invariant submanifold of M̃(4c).
Therefore, when c ≠ 0, it follows from a result of Chen and Ogiue [49] that M is either a complex
submanifold or a Lagrangian submanifold of M̃(4c). Hence, M is a non-proper θ-slant, which is a
contradiction. Consequently, we have either:
1.

c = 0 and M is totally geodesic or 
2.

n = 2.  
If (1) occurs, we obtain (i) of the theorem. Now, let us assume that n = 2. A result of Chen from [27]

states that if M is a proper slant surface in a complex two-dimensional complex space form M̃ 2(4c)
satisfying the equality case of (2.62) identically, then M is either totally geodesic or c < 0. In particular, when
M is not totally geodesic, one has

with λ = 3 μ = 3H 1

2 , i.e., M is H-umbilical. This gives case (ii) of the theorem.
Since a proper slant surface is Kaehlerian slant automatically (cf. [23]), we rediscovered the following

result of Chen (see [27]).

Theorem	2.36 If	M	is	a	proper	slant	surface	in	a	complex	space	formM̃(4c)of	complex	dimension 2,	then	the
squared	mean	curvature	and	the	Gaussian	curvature	of	M	satisfy

at	each	pointp ∈ M,whereθis	the	slant	angle	of	the	slant	surface.

Example	2.37 The explicit representation of the slant surface in CH 2(−4) satisfying the equality case of
inequality (2.62) was determined by Chen and Tazawa in [50, Theorem 5.2] as follows:

Let z be the immersion z : R3 → C3
1 de�ined by

R̃(e2, ej, e2, ej) = R(e2, ej, e2, ej) − ( H 1

2 )
2
, ∀j ≥ 3.

R̃(e2, e1, e2, e1) = R(e2, e1, e2, e1) − (n + 1)( H 1

2 )
2

+ ( H 1

2 )
2
.

Ric(e2) − (n−1 + 3 cos2 θ)c = 2(n−1)( H 1

2 )
2
.

Ric(e2) − (n−1 + 3 cos2 θ)c = n(n−1)
4 ∥H∥2 = n(n−1)( H 1

2 )
2
.

h(e1, e1) = λe∗
1,h(e2, e2) = μe∗

1,h(e1, e2) = μe∗
2,

∥H∥2 ≥ 2[G − (1 + 3 cos2 θ)c]

z(u, v, t) = eit(1 + 3
2 (cosh ( √2

√3
v)−1) + u2

6 e
−√ 2

3 v − i u

√6
(1 + e

−√ 2
3 v),

u
3 (1 + 2e−√ 2

3 v) + i

6√6
e

−√ 2
3 v((e√ 2

3 v−1)(9e
√ 2

3 v−3) + 2u2),

u

3√2
(1 − e

−√ 2
3 v) + i

12√3
(6−15e−√ 2

3 v + 9e
√ 2

3 v + 2e−√ 2
3 vu2)).



It was proved that <z, z> = −1. Hence, z de�ines an immersion from R3 into the anti-de Sitter space-
time H 5

1 (−1). Moreover, the image z(R3) in H 5
1 (−1) is invariant under the action of C∗ = C − {0}. Let 

π : H 4
1 (−1) → CH 2(−4) denote the Hopf �ibration. It was also shown that the composition

de�ines a slant surface with slant angle θ =cos−1 ( 1
3 ). Also, the authors proved that π ∘ z is a H-umbilical

immersion satisfying λ = 3μ. Consequently, this example of slant H-umbilical surface satis�ies the equality
case of inequality (2.62) identically.

The next part of this section presents the work we have done on (generalized) Wintgen inequality.
In [54] the authors obtained a pointwise inequality for submanifolds M n in space forms N n+2(c) of

dimension n ≥ 2 and codimension 2 relating the main scalar invariants, namely the scalar curvature
(intrinsic invariant) and the squared mean curvature and scalar normal curvature (extrinsic invariant). A
corresponding inequality for dimension n = 3 was proved in [52]. On the other hand, in [74] we gave a
sharp estimate of the normal curvature for totally real surfaces in complex space forms. In [79] we extended
this inequality to three-dimensional Lagrangian submanifolds in complex space forms. We mention that a
corresponding inequality for Kaehler hypersurfaces was obtained in [112].

Let M n be an n-dimensional submanifold isometrically immersed into the real space form Nm(c).
The normalized	scalar	curvature	of	the	tangent	bundle (intrinsic invariant) is de�ined by

The normalized	scalar	curvature	of	the	normal	bundle (extrinsic invariant) is given by

where {e1, … , en} is an orthonormal basis of the tangent space, {ξn+1, … , ξm} is an orthonormal basis of
the normal space at a point p ∈ M , R and R⊥ are the curvature tensors of the tangent bundle and normal
bundle, respectively, and τ  is the scalar curvature.

In [26] B.Y. Chen proved a pointwise inequality for an n-dimensional submanifold M n isometrically
immersed into the real space form Nm(c)

(2.68)
B. Suceavă [115] gave another proof of the same inequality.
In [73] we found that for an n-dimensional submanifold M n isometrically immersed into the complex

space form M̃(4c) one has

where J is the complex structure of the ambient space, and JX = PX + FX, where PX is the tangential
component and FX is the normal component.

Also, in [78], for M n a purely real n-dimensional submanifold with ∇P = 0 isometrically immersed into
the complex space form M̃(4c), the following inequality was proved

We recall the following result from [54].

Theorem	2.38 Letϕ : M n → N n+2(c)be	an	isometric	immersion.	Then	at	every	point	p

Remark This inequality generalized the Wintgen inequality; it is valid for all submanifolds M n of all real
space forms N n+2(c) with n ≥ 2 and codimension 2.

In the same paper, the authors stated the following conjecture, afterward named the DDVV	conjecture.

Conjecture Letϕ : M n → Nm(c)be	an	isometric	immersion.	Then	at	every	point	p	the	inequality	occurs:
(DDV V )

π ∘ z : R3 → CH 2
1 (−4)

ρ = 2
n(n−1) ∑1≤i<j≤n

g(R(ei, ej)ej, ei) = 2
n(n−1) τ.

ρ⊥ = 2
n(n−1)

√∑
1≤i<j≤n

∑
n+1≤r<s≤m

[g(R⊥(ei, ej)ξr, ξs)]2,

∥H∥2 ≥ ρ − c.

∥H∥2 ≥ ρ − c − 3∥P∥2

n(n−1) c,

∥H∥2 ≥ n+2
n

(ρ − c) − 3∥P∥2

n(n−1) c.

∥H∥2 ≥ ρ + ρ⊥ − c,

∥H∥2 ≥ ρ + ρ⊥ − c.



The DDVV conjecture was proved �irst in the following cases:
(a)

n = 2, m = 4, c = 0 by P. Wintgen [120].  
(b)

n = 2, m ≥ 4 by I.V. Guadalupe and L. Rodriguez [63]. 
Remark In both cases, equality is realized in (DDVV) inequality at a point p if and only if the ellipse of
curvature is a circle. In the case of trivial normal connection, (DDVV) reduces to Chen’s inequality.
(c)

n = 3, m ≥ 5 by T. Choi and Z. Lu [52] 
For a totally real surface M of a complex space form M̃(4c) of arbitrary codimension, we obtained an

inequality relating the squared mean curvature ∥H∥2, the holomorphic sectional curvature c, the Gauss
curvature K, and the elliptic curvature KE  of the surface. Using the notion of ellipse of curvature, we proved
a characterization of the equality and gave an example of a Lagrangian surface of C2 satisfying the equality
case [74].

Let M be a totally real surface of the complex space form M̃(c) of constant holomorphic sectional
curvature c and of complex dimension n.

For a point p ∈ M , let {e1, e2} be an orthonormal basis of the tangent plane TpM  and {e3, … , e2n} an
orthonormal basis of the normal space T ⊥

p M .
The ellipse	of	curvature at a point p ∈ M  is the subspace Ep of the normal space given by

For any vector X =cos θ ⋅ e1+ sin θ ⋅ e2, θ ∈ [0, 2π], we have

The following result [63] holds good:

Proposition If	the	ellipse	of	curvature	is	nondegenerated,	then	the	vectorsh11 − h22andh12are	linearly
independent.

Using a similar method as in [62, 63] and the previous proposition, we can de�ine a 2-plane subbundle P of
the normal bundle, with the induced connection.

We will de�ine then the elliptic	curvature by the formula

where {e1, e2}, {e3, e4} are orthonormal basis of TpM , respectively of Pp, and A is the Weingarten operator.

Remark This de�inition of the elliptic curvature coincides with the de�inition of the normal	curvature
(given by Wintgen [120] and also Guadalupe and Rodriguez [63] by the formula KN = g(R⊥(e1, e2)e3, e4))
if the ambient space M̃(c) is a real space form.

We can choose {e1, e2} such that the vectors u = h11−h22
2  and v = h12 are perpendicular, in which case

they coincide with the half-axis of the ellipse. Then we will take e3 = u
∥u∥  and e4 = v

∥v∥ .
From the equation of Ricci and the de�inition of KE , we have

(2.69)
Also, from the Gauss equation we obtain the formula of the Gauss curvature K of the totally real surface

M of the complex space form M̃(c):
(2.70)

By the de�inition of the mean curvature vector, the above equation, and the relation 
∥h∥2 = ∥h11∥2 + ∥h22∥2 + 2∥h12∥2, we have

(2.71)
Then,

(2.72)

Ep = {hp(X,X) ∣ X ∈ TpM, ∥X∥ = 1}.

hp(X,X) = H(p) + cos 2θ ⋅ h11−h22
2 + sin 2θ ⋅ h12.

KE = g([Ae3 ,Ae4 ]e1, e2),

KE = −∥h11 − h22∥ ⋅ ∥h12∥.

K = g(h11,h22) − ∥h12∥2 + c
4 .

4∥H∥2 = ∥h∥2 + 2(K − c
4 ).



which is equivalent to
(2.73)

The equality sign is realized if and only if ∥h11 − h22∥ = 2∥h12∥, i.e., ∥u∥ = ∥v∥, so the ellipse of
curvature is a circle.

Thus, we proved the following:

Theorem	2.39	([74]) Let	M	be	a	totally	real	surface	of	the	complex	space	formM̃(c)of	constant
holomorphic	sectional	curvature	c	and	of	complex	dimension	n.	Then,	at	any	pointp ∈ M ,	we	have

Moreover,	the	equality	sign	is	realized	if	and	only	if	the	ellipse	of	curvature	is	a	circle.

We will give one example of a Lagrangian surface in C2 with the standard almost complex structure J0, for
which the equality sign is realized (which we call an ideal	surface).

Let M be the rotation	surface of Vrănceanu, given by

where r is a C∞-differentiable function with positive values.
Let {e1, e2} be an orthonormal basis of the tangent plane and {e3, e4} an orthonormal basis of the

normal plane.
We have the following expressions for ei, i ∈ {1, … , 4} (see also [109]):

where A = [r2 + (r′)2]
1
2 , B = r′ cos u − r sin u, C = r′ sin u + r cos u.

M is a totally real surface of maximum dimension, so is a Lagrangian	surface of C2. Also, M veri�ies the
equality sign of the inequality proved in the previous theorem (it is an ideal	surface) if and only if

(the ellipse of curvature at every point of M is a circle).
Moreover, M is a minimal surface (see [100]), and X = c1 ⊗ c2 is the tensor product immersion of 

c1(u) = 1

(|cos2u|)
1
2

(cos u, cos v) (an orthogonal hyperbola) and c2(u) = (cos v, sin v) (a circle).

Later, in [79] we established a generalized Wintgen inequality for three-dimensional Lagrangian
submanifolds in complex space forms.

Let M n be an n-dimensional Lagrangian submanifold isometrically immersed into the complex space
form M̃(4c). Let {e1, … , en} be an orthonormal frame on M. Then a normal frame is given by 
ξ1 = Je1, … , ξn = Jen.

Following [122], the scalar	normal	curvatureKN  is de�ined by

The normalized	scalar	normal	curvature is given by

In particular, for n = 2 the above de�inition agrees with the de�inition of the squared elliptic curvature
which we considered in [74].

For n = 3 we proved a sharp estimate of ρN , in terms of ρ and ∥H∥2.

0 ≤ (∥h11 − h22∥−2∥h12∥)2 = ∥h∥2−2(K − c
4 ) + 4KE

= 4∥H∥2−4(K − c
4 ) + 4KE,

∥H∥2 ≥ K − KE − c
4 .

∥H∥2 ≥ K − KE − c
4 .

X(u, v) = r(u)(cos u cos v, cos u sin v, sin u cos v, sin u sin v),

e1 = (− cos u sin v, cos u cos v, − sin u sin v, sin u cos v),

e2 = 1
A

(B cos v,B sin v,C cos v,C sin v),

e3 = 1
A

(−C cos v, −C sin v,B cos v,B sin v),

e4 = (− sin u sin v, sin u cos v, cos u sin v, − cos u cos v),

r(u) = 1

(|cos2u|)
1
2

KN = 1
2 ∑1≤r<s≤n

(Tr [Ar,As])
2 =∑

1≤r<s≤n
∑

1≤i<j≤n
(g([Ar,As]ei, ej))2.

ρN = 2
n(n−1)

√KN .



Theorem	2.40	([79]) Let	M	be	a	three-dimensional	Lagrangian	submanifold	isometrically	immersed	into
the	complex	space	formM̃(4c).	Then	we	have

Proof Let {e1, e2, e3} be an orthonormal frame on M and {ξ1 = Je1, ξ2=Je2, ξ3=Je3} the corresponding
normal frame. With respect to these frames, we have

(

From the Gauss equation it follows that
(2.75)

Then

(2.76)

Choi and Lu [52] proved that

(2.77)

Obviously,

(2.78)

Combining the last three equations, we �ind

i.e.,

Remark The same inequality can be obtained for three-dimensional totally real submanifold with
arbitrary codimension (with the corresponding de�inition of KN ).

F. Dillen, J. Fastenakels, and J. Van der Veken obtained in [56] an estimate of ρ⊥ for invariant (Kaehler)
submanifolds in complex space forms of arbitrary dimension and codimension.

We have obtained the following estimation.

Proposition	2.41	([79]) For	an	n-dimensional	Lagrangian	submanifold	in	a	complex	space	form,	we	have
(2.79)

Proof From the Ricci equation it follows that

Thus τ ⊥ = n(n−1)
2 ρ⊥ is given by

∥H∥2 ≥ ρ + ρN − c.

9∥H∥2 =∑
3

r=1
(∑

3

i=1
hr
ii)

2

= 1
2 ∑

3

r=1
∑

3

1≤i<j≤3
(hr

ii − hr
jj)

2 + 3∑
3

r=1
∑

3

1≤i<j≤3
hr
iih

r
jj.

2τ = 9∥H∥2− ∥ h ∥2 +6c.

18∥H∥2 =∑
3

r=1
∑

3

1≤i<j≤3
(hr

ii − hr
jj)

2 + 6(τ−3c) + 6∑
3

r=1
∑

3

1≤i<j≤3
(hr

ij)
2.

∑
3

r=1
∑

3

1≤i<j≤3
(hr

ii − hr
jj)

2 + 6∑
3

r=1
∑

3

1≤i<j≤3
(hr

ij)
2

⩾ 6{∑
1≤r<s≤3

∑
1≤i<j≤3

[∑
3

k=1
(hr

ikh
s
jk − hs

ikh
r
jk)]}

1
2

.

KN =∑
1≤r<s≤3

∑
1≤i<j≤3

[∑(
r

h
ik
hs
jk

− hs
ik
hr
jk

)]
2

.

18(∥H∥2 − ρ + c) ⩾ 18ρN ,

ρ + ρN ≤ ∥H∥2 + c.

n2(n−1)2

4 (ρ⊥)2 = n2(n−1)2

4 ρ2
N + n(n−1)

2 c2 + c
2 ∥ h ∥2 .

g(R⊥(ei, ej)ξr, ξs) = c[g(Jei, ξr), g(Jej, ξs) − g(Jei, ξs)g(Jej, ξr)]
+g([Ar,As], ei, ej)

= c(δirδjs − δisδjr) + g([Ar,As], ei, ej).

(τ ⊥)2 =∑
1≤r<s≤n

∑
1≤i<j≤n

g2(R⊥(ei, ej)ξr, ξs)

=∑
1≤r<s≤n

∑
1≤i<j≤n

[c(δirδjs − δisδjr) + g([Ar,As], ei, ej)]2

= n2(n−1)2

4 ρ2
N

+ c2∑
1≤r<s≤n

∑
1≤i<j≤n

(δirδjs − δisδjr)
2



Remark In particular, in the case of three-dimensional Lagrangian submanifold in complex space form:

Corollary	2.42	([79]) For	a	three-dimensional	Lagrangian	submanifold	of	a	complex	space	form,

Proof It follows from Theorem 2.40, the above remark, and the Gauss equation.

Remark	2.43 We want to mention that the above result was discovered before the DDVV conjecture was
solved in the most general setting by Lu [72] and Ge and Tang [60], independently, for submanifolds in
Riemannian space forms.

Remark	2.44 Recently, the generalized Wintgen inequality for Lagrangian submanifolds of arbitrary
dimension in complex space forms was established by I. Mihai [96].

2.2	 Submanifolds	in	Sasakian	Manifolds
In [53] we established Chen inequalities for contact slant submanifolds in Sasakian space forms, by using
subspaces orthogonal to the Reeb vector �ield ξ.

We proved the Chen �irst inequality for contact slant submanifolds in a Sasakian space form. We give the
whole proof for illustrating the techniques and the particular choice of the orthonormal basis of the tangent
space. We pointed out that we considered plane sections π orthogonal to ξ. It is known that the sectional
curvature of a plane section tangent to ξ is 1.

Theorem	2.45	([53]) Let	M	be	an(n = 2k + 1)-dimensional	contactθ-slant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Then	we	have

(2.80)

The	equality	case	of	the	inequality(2.80)holds	at	a	pointp ∈ M if	and	only	if	there	exists	an	orthonormal
basis{e1, … , en = ξ}ofTpMand	an	orthonormal	basis{en+1, … , e2m, e2m+1}ofT ⊥

p Msuch	that	the	shape
operators	of	M	inM̃(c)at	p	have	the	following	forms:

(2.81)

(2.82)

Proof Since M̃(c) is a Sasakian space form, then we have
(2.83)

for any X,Y ,Z,W ∈ Γ(TM).

+2c∑
1≤r<s≤n

∑
1≤i<j≤n

(δirδjs − δisδjr)g([Ar,As], ei, ej)

= n2(n−1)2

4 ρ2
N

+ n(n−1)
2 c2 + c

2 ∥ h ∥2 .

9(ρ⊥)2 = 9ρ2
N + 3c2 + c

2 ∥ h ∥2 .

(ρ⊥)2 ≤ (∥ H ∥2 −ρ + c)2 + c
2 (∥ H ∥2 − 2

3 ρ) + 2
3 c

2.

δM ≤ n−2
2 { n2

n−1 ∥H∥2 + (c+3)(n+1)
4 }

+ (c−1)
8 [3(n−3) cos2 θ−2(n−1)].

An+1 = , a + b = μ,
⎛⎜⎝a 0 0 . . . 0

0 b 0 . . . 0
0 0 μIn−2

⎞⎟⎠Ar = , r ∈ {n + 2, … , 2m + 1}.
⎛⎜⎝hr

11 hr
12 0 . . . 0

hr
12 −hr

11 0 . . . 0
0 0 0n−2

⎞⎟⎠R̃(X,Y ,Z,W) = c+3
4 {−g(Y ,Z)g(X,W) + g(X,Z)g(Y ,W)}

+ c−1
4 {−η(X)η(Z)g(Y ,W) + η(Y )η(Z)g(X,W) − g(X,Z)η(Y )g(ξ,W)

+g(Y ,Z)η(X)g(ξ,W) − g(ϕY ,Z)g(ϕX,W) + g(ϕX,Z)g(ϕY ,W)

+2g(ϕX,Y )g(ϕZ,W)},



Let p ∈ M  and {e1, … , en = ξ} be an orthonormal basis of TpM  and {en+1, … , e2m, e2m+1} an
orthonormal basis of T ⊥

p M . For X = Z = ei,Y = W = ej, ∀i, j ∈ {1, … ,n}. From Eq. (2.83), it follows
that

(2.84)

Let M ⊂ M̃(c) be a contact θ-slant submanifold, dim M = n = 2k + 1.
For X ∈ Γ(TM), we put

Let p ∈ M  and {e1, … , en = ξ} be an orthonormal basis of TpM , with

We have

and, in the same way,

then

The relation (2.84) implies that
(2.85)

Denoting

(2.86)

the relation (2.85) implies that
(2.87)

or equivalently,
(2.88)

If we put
(2.89)

we obtain
(2.90)

Let p ∈ M , π ⊂ TpM,dim π = 2,π = sp{e1, e2}. We take en+1 = H
∥H∥ . The relation (2.90) becomes

or equivalently,

(2.9

By using the algebraic Chen’s lemma, we derive from (2.91)

(2.92)

From the Gauss equation for X = Z = e1,Y = W = e2, we obtain

R̃(ei, ej, ei, ej) = c+3
4 (−n + n2) + c−1

4 {−2(n−1) + 3∑
n

i,j=1
g2(ϕei, ej)}.

ϕX = PX + FX, PX ∈ Γ(TM), FX ∈ Γ(T ⊥M).

e1, e2 = 1
cosθ Pe1, … , e2k = 1

cosθ Pe2k−1, e2k+1 = ξ.

g(ϕe1, e2) = g(ϕe1, 1
cosθ Pe1) = 1

cosθ g(ϕe1,Pe1)

= 1
cosθ g(Pe1,Pe1) =cos θ

g2(ϕei, ei+1) =cos2 θ;

∑
n

i,j=1
g2(ϕei, ej) = (n−1) cos2 θ.

R̃(ei, ej, ei, ej) = c+3
4 (n2 − n) + c−1

4 [3(n−1) cos2 θ−2(n−1)].

∥ h ∥2=∑
n

i,j=1
g(h(ei, ej),h(ei, ej)),

c+3
4 n(n−1) + c−1

4 [3(n−1) cos2 θ−2n + 2] = 2τ − n2 ∥ H ∥2 + ∥ h ∥2,

2τ = n2 ∥ H ∥2 − ∥ h ∥2 + c+3
4 n(n−1) + c−1

4 [3(n−1) cos2 θ−2n + 2].

ε = 2τ − n2

n−1 (n−2) ∥ H ∥2 − c+3
4 n(n−1) − c−1

4 [3(n−1) cos2 θ−2n + 2],

n2 ∥ H ∥2= (n−1)(ε+ ∥ h ∥2).

(∑
n

i=1
hn+1
ii

)
2

= (n−1){∑
n

i,j=1
∑

2m+1

r=n+1
(hr

ij)
2 + ε},

(∑
n

i=1
hn+1
ii

)
2

= (n−1){∑
n

i=1
[(hn+1

ii
)

2] +∑
i≠j

(hn+1
ij

)
2

+∑
2m+1

r=n+2
∑

n

i,j=1
(hr

ij)
2 + ε}.

2hn+1
11 hn+1

22 ≥∑
i≠j

(hn+1
ij )

2
+∑

n

i,j=1
∑

2m+1

r=n+2
(hr

ij)
2 + ε.

K(π) = c+3
4 + 3 cos2 θ ⋅ c−1

4 +∑
2m+1

r=n+1
[hr

11h
r
22 − (hr

12)2]

≥ c+3
4 + 3 cos2 θ ⋅ c−1

4 + 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
n

i,j=1
∑

2m+1

r=n+2
(hr

ij)
2 + ε

2



or equivalently,
(2.93)

Then
(2.94)

The last relation implies that

where δM  is the Chen �irst invariant.
This relation represents the inequality to prove.
The case of equality at a point p ∈ M  holds if and only if it achieves the equality in the previous

inequality, and we have the equality in the lemma, i.e.,

We may choose {e1, e2} such that hn+1
12 = 0, and we denote a = hr

11, b = hr
22,μ = hn+1

33 = … = hn+1
nn .

It follows that the shape operators take the desired forms.

Corollary	2.46	([53]) Let	M	be	an(n = 2k + 1)-dimensional	invariant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Then	we	have:

Corollary	2.47	([53]) Let	M	be	an	n-dimensional	anti-invariant	submanifold	in	a(2m + 1)-dimensional
Sasakian	space	formM̃(c).	Then	we	have

We generalized Theorem 2.45, using Chen invariants δ(n1, … ,nk).
We notice that we consider only subspaces orthogonal to ξ.

Theorem	2.48	([53]) Let	M	be	an(n = 2k + 1)-dimensional	contactθ-slant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Then	we	have

(2.95)

+∑
2m+1

r=n+2
hr

11h
r
22 −∑

2m+1

r=n+1
(hr

12)2

= c+3
4 + 3 cos2 θ ⋅ c−1

4 + 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
2m+1

r=n+2
∑

i,j>2
(hr

ij)
2

+ 1
2 ∑

2m+1

r=n+2
(hr

11 + hr
22)2 +∑

j>2
[(hn+1

1j )
2

+ (hn+1
2j )

2] + ε
2

≥ c+3
4 + 3 cos2 θ ⋅ c−1

4 + ε
2 ,

K(π) ≥ c+3
4 + 3 cos2 θ ⋅ c−1

4 + ε
2 .

inf K ≥ c+3
4 + 3 cos2 θ ⋅ c−1

4 + τ

−{ c+3
8 (n2 − n) + c−1

8 [3(n−1) cos2 θ−2n + 2]} − n2(n−2)
2(n−1) ∥H∥2.

δM ≤
n−2

2
{ n2

n−1
∥H∥2 +

(c + 3)(n + 1)
4

}

+
(c−1)

8
[3(n−3)

2
cos θ−2(n−1)],

⎧⎪⎨⎪⎩ hn+1
ij = 0, ∀i ≠ j, i, j > 2,

hr
ij = 0, ∀i ≠ j, i, j > 2, r = n + 1, … , 2m + 1,

hr
11 + hr

22 = 0, ∀r = n + 2, … , 2m + 1,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = … = hn+1

nn .

δM ≤ (c+3)(n−2)(n+1)
8 + (c−1)(n−7)

8 .

δM ≤ n−2
2 { n2

n−1 ∥H∥2 + (c+3)(n+1)
4 }− (c−1)(n−1)

4 .

δ(n1, … ,nk) ≤ d(n1, … ,nk)∥H∥2 + b(n1, … ,nk) c+3
8



wheremj = [ nj

2 ], ∀j ∈ {1, … , k}.

The proof is based on the following:

Lemma	2.49	([53]) Let	M	be	an(n = 2k + 1)-dimensional	contactθ-slant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Letn1, … ,nkbe	integers≥ 2satisfyingn1 < nandn1 + … + nk ≤ n.
Forp ∈ M ,	letLj ⊂ TpMbe	a	subspace	ofTpM,dim Lj = nj,∀j ∈ {1, … , k}.Then	we	have

(2.96)

whereΨ(L) = ∑1≤i<j≤r
g2(Pui,uj)and{u1, … ,ur}is	an	orthonormal	basis	of	the	r-dimensional

subspace	L	ofTpM .

This lemma is a contact version of a lemma from [30].

Corollary	2.50	([53]) Let	M	be	an(n = 2k + 1)-dimensional	invariant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Then	we	have

wherenj = 2mj + φj, φj ∈ {0, 1}, ∀j ∈ {1, … , k}.

Corollary	2.51	([53]) Let	M	be	an(n = 2k + 1)-dimensional	anti-invariant	submanifold	in	a(2m + 1)-
dimensional	Sasakian	space	formM̃(c).	Then	we	have

Next we present the inequalities obtained for the new de�ined Chen-type invariants for invariant
submanifolds in Sasakian space forms.

In [34], B.Y. Chen introduced a series of Riemannian invariants on Kaehler manifolds and proved sharp
estimates of these invariants for Kaehler submanifolds in complex space forms in terms of the main extrinsic
invariant, namely the squared mean curvature.

It is well known that the Sasakian manifolds are the odd version of Kaehler manifolds, and the geometry
studying Sasakian manifolds, i.e., contact	geometry, is an important �ield of differential geometry.

In [90] we de�ined analogous Chen invariants for Sasakian manifolds and obtained inequalities involving
these invariants for invariant submanifolds in Sasakian space forms.

It is known that any invariant submanifold of a Sasakian manifold is Sasakian. In this respect, we
considered that is interesting to study the behavior of invariant submanifolds of Sasakian manifolds from
this point of view, of Riemannian invariants, and, more precisely, corresponding Chen-like invariants to
those introduced by B.Y. Chen in [34].

In this study of such submanifolds (we must observe that the dimension of the submanifold should be ≥
5) in Sasakian space forms, we dealt with the notion of totally real plane section (similar to that de�ined by
Chen in Kaehler geometry); we need to impose the condition that the plane section must be orthogonal to
the Reeb vector �ield ξ.

We estimated the sectional curvature of totally real plane sections of an invariant submanifold in terms
of the ϕ-sectional curvature of the embedding Sasakian space form; the characterization of the equality case
is given.

+ c−1
8 {3(n−1) cos2 θ−6∑

k

j=1
mj cos2 θ},

τ −∑
k

j=1
τ(Lj) ≤ d(n1, … ,nk)∥H∥2

+{ c+3
8 n(n−1) + c−1

8 (3∥P∥2−2n + 2)}

−∑
k

j=1
{ c+3

8 nj(nj−1) + c−1
4 3Ψ(Lj)},

δ(n1, … ,nk) ≤ b(n1, … ,nk) c+3
8 + c−1

8 {3(n−1)−6∑
k

j=1
mj},

δ(n1, … ,nk) ≤ d(n1, … ,nk)∥H∥2 + b(n1, … ,nk) c+3
8 .



We de�ined a series of Chen-like invariants δr
k

 on any Sasakian manifold. By using the above estimate of
the sectional curvature of totally real plane sections, we obtained sharp inequalities for these invariants for
invariant submanifolds of a Sasakian space form.

Also, we derived characterizations of the equality cases in terms of the shape operators and give one
example which shows that the inequality fails for k ≥ 4.

We recall important results about invariant submanifolds in Sasakian manifolds [122].

Proposition	2.52 Every	invariant	submanifold	of	a	Sasakian	manifold	is	a	Sasakian	manifold.

Proposition	2.53 Every	invariant	submanifold	of	a	Sasakian	manifold	is	minimal.

Proposition	2.54 If	the	second	fundamental	form	of	an	invariant	submanifoldM nof	a	Sasakian	space	form
M̃ 2m+1(c)is	parallel,	thenM nis	totally	geodesic.

Proposition	2.55 LetM nbe	an	invariant	submanifold	of	a	Sasakian	space	formM̃ 2m+1(c)withϕ-sectional
curvature	c.	ThenM nis	totally	geodesic	if	and	only	ifM nhas	constantϕ-sectional	curvature	c.

We put 2q = 2m + 1 − n and choose {en+1, … , en+q, en+q+1 = ϕen+1, … , e2m+1 = ϕen+q} an
orthonormal normal frame. Then the shape operators Aα = Aen+α

 and Aα∗ = Aen+q+α
,α,α∗ = 1, q, of an

invariant submanifold M n in a Sasakian manifold M̃ 2m+1 take the forms:

(2.97)

where A′
α and A′′

α are n × n matrices.
We recall now two important examples of invariant submanifolds.

Example	2.56 Let S 2m+1 be a unit sphere with a standard Sasakian structure. An odd-dimensional unit
sphere S 2n+1(n < m) with induced structure is a totally geodesic Sasakian submanifold of S 2m+1.
Obviously the Sasakian space form R2n+1(−3) in R2m+1(−3) is a totally geodesic Sasakian submanifold.

Example	2.57 The circle bundle (Qn,S 1) over a hyperquadric in CP n+1 is a Sasakian submanifold of 
S 2n+3 which is an η-Einstein manifold.

Let M 2n+1 be a Sasakian manifold. For each real number k and p ∈ M 2n+1, we de�ine an invariant δr
k

 by 
δr
k
(p) = τ(p) − k inf K r(p), where inf K r(p) =infπr {K(πr)} and πr runs over all totally real plane

sections in TpM
2n+1 (i.e., ϕ(πr) is perpendicular to πr).

The next theorem gives an inequality between the in�imum of K r (intrinsic invariant) of an invariant
submanifold and the ϕ-sectional curvature of the Sasakian space form (extrinsic invariant), i.e., the
embedding space; the characterization of the equality case is given.

Theorem	2.58	([90]) For	any	invariant	submanifoldM nin	a	Sasakian	space	formM̃ 2m+1(c),we	have
(2.98)

The	equality	case	holds	if	and	only	ifM nis	a	totally	geodesic	submanifold.

Proof By a ϕ-sectional curvature H(X) of M n with respect to a unit tangent vector X orthogonal to ξ, we
mean the sectional curvature K(X,ϕX) spanned by the vectors X and ϕX. Let K(X,Y ) be the sectional
curvature determined by orthonormal vectors X and Y , with X,Y orthogonal to ξ,g(X,ϕY ) = 0. Then we
have (see [13], p. 111)

¯

Aα = , Aα∗ = ,

⎛⎜⎝A′
α A′′

α 0
A′′

α −A′
α 0

0 0 0

⎞⎟⎠ ⎛⎜⎝−A′′
α A′

α 0
A′

α A′′
α 0

0 0 0

⎞⎟⎠inf K r ≤ c+3
4 .

K(X,Y ) + K(X,ϕY ) = 1
4 [(H(X + ϕY ) + H(X − ϕY )

+H(X + Y ) + H(X − Y ) − H(X) − H(Y ) + 6].



Let T 1M n denote the unit sphere bundle of M n consisting of all unit tangent vectors on M n. For each 
x ∈ M n, we put

Then Wx is a closed subset of T 1
xM

n × T 1
xM

n, and it is easy to verify that if {X,Y } spans a totally real
plane section, then both {X + ϕY ,X − ϕY } and {X + Y ,X − Y } also span totally real plane sections. We
de�ine a function Ĥ : Wx → R by

Suppose that (Xm,Ym) is a point in Wx such that Ĥ attains an absolute maximum value, say mx, at 
(Xm,Ym). It follows that

On the other hand, it is known that H(X) ≤ c (as in the Kaehler case, see [38]). Thus, from the previous
relation, we obtain

which implies the inequality (2.98).
For the equality case the proof is similar to the proof of Theorem 1 from [34].

Remark It is well known that the sectional curvature of a plane section which contains the vector ξ is
equal to 1, i.e., K(X, ξ) = 1; thus we have considered only the case when X and Y  are both orthogonal to ξ.

Also we obtained an inequality for δrk of an invariant submanifold of a Sasakian space form and characterize
the equality case for k < 4 (the submanifold is then totally geodesic) and k = 4 (in terms of the shape
operator). For k > 4 the inequality fails.

Theorem	2.59	([90]) For	any	invariant	submanifoldM nin	a	Sasakian	space	formM̃ 2m+1(c),	the	following
statements	hold:
1.

For	eachk ∈ (−∞, 4],δrksatis�ies
(2.99)

 
2.

Inequality (2.99) fails	for	everyk > 4.  
3.

δr
k

= [n(n−1)−2k] c+3
8 + (n−1) c−1

8 holds	for	somek ∈ (−∞, 4)if	and	only	ifM nis	a	totally	geodesic
submanifold	ofM̃ 2m+1(c).

 
4.

The	invariant	submanifoldM nsatis�ies

at	a	pointp ∈ M nif	and	only	if	there	exists	an	orthonormal	basis

ofM̃ 2m+1(c)such	that,	with	respect	to	this	basis,	the	shape	operator	ofM ntakes	the	forms (2.97),	with

whereaα, bα, aα∗ , bα∗are	real	numbers.

 

In [91] we proved a Chen inequality involving the scalar curvature and a Chen-Ricci inequality for special
contact slant submanifolds of Sasakian space forms, as the contact versions of the inequalities obtained by
the �irst author in [80] and by both authors in [89], respectively.

Wx = {(X,Y ); X,Y ∈ T 1
xM

n, g(X, ξ) = g(Y , ξ) = g(X,Y ) = g(X,ϕY ) = 0}.

Ĥ(X,Y ) = H(X) + H(Y ), (X,Y ) ∈ Wx.

K(Xm,Ym) + K(Xm,ϕYm) ≤ 1
4 [Ĥ(Xm,Ym) + 6].

K(Xm,Ym) + K(Xm,ϕYm) ≤ c+3
2 ,

δr
k

≤ [n(n−1)−2k] c+3
8 + (n−1) c−1

8 .

δr4 = [n(n−1)−8] c+3
8 + (n−1) c−1

8

{e1, e2 = ϕe1, e3, e4 = ϕe3, … , e2k−1, e2k = ϕe2k−1,

e2k+1 = ξ, en+1, … , e2m+1}

A′
α = , A′′

α = ,

⎛⎜⎝aα bα 0
bα −aα 0
0 0 0

⎞⎟⎠ ⎛⎜⎝a∗
α b∗

α 0
b∗
α −a∗

α 0
0 0 0

⎞⎟⎠



The class of slant submanifolds of almost contact metric manifolds was introduced by A. Lotta [71] and
studied by many authors [19]. In [98] the authors de�ined special contact slant submanifolds of Sasakian
space forms and proved the minimality of such submanifolds satisfying the equality case of a Chen-Ricci
inequality, identically.

A submanifold M tangent to ξ in a Sasakian manifold is called a contactθ-slant	submanifold [19] if for any 
p ∈ M  and any X ∈ TpM  linearly independent on ξ, the angle between φX and TpM  is a constant θ, called
the slant	angle of M.

A proper	contactθ-slant	submanifold is a contact slant submanifold which is neither invariant nor anti-
invariant, i.e., θ ≠ 0 and θ ≠ π

2 .
A proper contact θ-slant submanifold is a special	contactθ-slant	submanifold [98] if

where TX is the tangential component of φX for any vector �ield X tangent to M.
We denote ∥T∥2 = ∑n

i,j=1 g
2(Tei, ej), where {e1, … , en} is an orthonormal basis of TpM,p ∈ M.

We remark that any three-dimensional proper contact slant submanifold of a Sasakian manifold is a
special contact slant submanifold [19]. Other examples can be found in [19].

B.Y. Chen [32] proved a sharp estimate of the squared mean curvature in terms of the scalar curvature
for Kaehlerian slant submanifolds in complex space forms.

In [80] we generalized the abovementioned inequality for purely real submanifolds with P parallel with
respect to the Levi-Civita connection (as usual, we denote by J the standard complex structure on the
ambient complex space form and by PX the tangential component of JX, for any tangent vector �ield X to M)
(see Sect. 2.1, Theorem 2.5).

On the other hand, B.Y. Chen [29] proved an estimate of the squared mean curvature of an n-dimensional
submanifold M in a real space form M̃(c) of constant sectional curvature c in terms of its Ricci curvature.
For any unit tangent vector X at p ∈ M , one has

The above inequality is known as the Chen-Ricci inequality.
The same inequality holds for Lagrangian submanifolds in a complex space form M̃(4c) as well (see

[31]).
S. Deng [55] improved the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms

(see Sect. 2.1).
The Whitney 2-sphere in C2 is a nontrivial example of a Lagrangian submanifold which satis�ies the

equality case of the improved Chen-Ricci inequality identically.
Recall that in [89] we extended Deng’s inequality to Kaehlerian slant submanifolds in complex space

forms (see Sect. 2.1, Theorem 2.35).
A nontrivial example of a slant surface satisfying the equality case identically is given in the same paper

[89].
We obtained corresponding results for special contact slant submanifolds in Sasakian space forms, more

precisely the following Chen inequality for the scalar curvature.

Theorem	2.60	([91]) Let	M	be	an(n + 1)-dimensional	special	contact	slant	submanifold	of	a(2n + 1)-
dimensional	Sasakian	space	formM̃(c).Then

(2.100)

The	equality	holds	at	any	pointp ∈ M if	and	only	if	there	exists	a	real	functionμon	M	such	that	the	second
fundamental	form	satis�ies	the	relations

with	respect	to	a	suitable	orthonormal	frame{e0 = ξ, e1, … , en}on	M,	where
e∗
k = 1

sinθ Nek, k ∈ {1, … ,n}.

(∇XT )Y =cos2 θ[g(X,Y )ξ − η(Y )ξ], ∀X,Y ∈ ΓTM,

Ric(X) ≤ (n−1)c + n2

4 ∥H∥2.

∥H∥2 ≥ 2(n+2)
(n−1)(n+1) τ − n(n+2)

(n−1)(n+1) ⋅ c+3
4

− n(n+2)

(n−1)(n+1)2 (3 cos2 θ−2) c−1
4 + n

(n+1)2 sin2 θ.

h(e1, e1) = 3μe∗
1, h(e2, e2) = … , = h(en, en) = μe∗

1,

h(ei, ej) = μe∗
i , h(ej, ek) = 0 (2 ≤ j ≠ k ≠ n),



A submanifold M whose second fundamental form satis�ies the above relations is called a H-umbilical
submanifold.

Remark In particular, for c = −3 and θ = π
2  (i.e., M is anti-invariant submanifold) we �ind a result from

[15].

Corollary	([15]) Let	M	be	an(n + 1)-dimensional	anti-invariant	submanifold	of	the	Sasakian	space	form
R2n+1.	Then,	at	any	pointp ∈ M ,	the	squared	mean	curvature	and	the	scalar	curvature	satisfy	the	inequality

Moreover,	the	equality	holds	at	any	pointp ∈ M if	and	only	if	there	exists	a	real	functionμon	M	such	that	the
second	fundamental	form	satis�ies	the	relations

with	respect	to	a	suitable	orthonormal	frame{e0 = ξ, e1, … , en}ofTpM .

A nontrivial example of an anti-invariant submanifold in the Sasakian space form R2n+1 which satis�ies the
equality case of the above inequality identically is the Riemannian product of the Whitney n-sphere and the
real line R.

On the other hand, I. Mihai [93] proved Chen-Ricci inequalities for submanifolds in Sasakian space forms.

Theorem	2.61	([93]) Let	M	be	an	n-dimensional	C-totally	real	submanifold	of	a(2m + 1)-dimensional
Sasakian	space	formM̃(c).	Then,	for	each	unit	vectorX ∈ TpM ,	we	have

Theorem	2.62	([93]) LetM̃(c)be	a(2m + 1)-dimensional	Sasakian	space	form	and	M	an	n-dimensional
submanifold	tangent	toξ.	Then,	for	each	unit	vectorX ∈ TpMorthogonal	toξ,	we	have

I. Mihai and I.N. Rădulescu [99] improved the inequality from Theorem 2.61 for Legendrian submanifolds in
Sasakian space forms.

Theorem	2.63	([99]) LetM nbe	an	n-dimensional	Legendrian	submanifold	in	a	Sasakian	space	form
M̃ 2n+1(c)of	constantφ-sectional	curvature	c.	Then,	for	any	unit	tangent	vector	X	toM n,	we	have

The	equality	sign	holds	identically	if	and	only	if	either:
(i)

M nis	totally	geodesic	or  
(ii)

n = 2andM 2is	a	H-umbilical	Legendrian	surface	withλ = 3μ. 
In the following we improved the inequality from Theorem 2.62 for special contact slant submanifolds in
Sasakian space forms.

Let M be an (n + 1)-dimensional special contact slant submanifold of a (2n + 1)-dimensional Sasakian
space form M̃(c). We will take an orthonormal basis of TpM , respectively T ⊥

p M , in the same manner as in
the previous section. For a contact θ-slant submanifold ∑n

j=2 g
2(Te1, ej) = cos2θ.

By taking X = Z = e1, Y = W = ej, j = 2, … ,n, in the expression of the curvature tensor R̃ of the
Sasakian space form M̃(c), we obtain

(2.101)

∥H∥2 ≥ 2(n+2)
(n−1)(n+1) τ.

h(e1, e1) = 3μφe1, h(e2, e2) = … , = h(en, en) = μφe1,

h(ei, ej) = μφei, h(ej, ek) = 0 (2 ≤ j ≠ k ≠ n),

Ric(X) ≤ 1
4 [(n−1)(c + 3) + n2 ∥ H ∥2].

Ric(X) ≤ 1
4 [(n−1)(c + 3) + 3(||TX||2−2)(c−1) + n2 ∥ H ∥2].

Ric(X) ≤ n−1
4 (c + 3 + n||H||2).

R̃(e1, ej, e1, ej) = c+3
4 [g(e1, e1)g(ej, ej) − g(ej, e1)g(e1, ej)]



Then

We consider e1 = X. From the Gauss equation

But e0 = ξ and

because ∇̃ξξ = −ϕξ = 0.
Also,

The relation (2.101) implies
(2.102)

Using the same arguments as in the proof of Theorem 3.3 from [89], we obtain from (2.102)

Therefore we proved the following improved Chen-Ricci inequality.

Theorem	2.64	([91]) Let	M	be	an(n + 1)-dimensional	special	contact	slant	submanifold	of	a(2n + 1)-
dimensional	Sasakian	space	formM̃(c).Then,	for	any	unit	tangent	vector	X	to	M,	we	have

(2.103)
The	equality	holds	at	every	pointp ∈ M if	and	only	if	either:

(i)
M	is	a	totally	contact	geodesic	submanifold,	i.e.,

for	anyX,Y ∈ ΓTMor

 

(ii)
n = 2and	M	is	a	three-dimensional	H-umbilical	contact	slant	submanifold,	i.e.,

with	respect	to	an	orthonormal	frame{e0 = ξ, e1, e2}.

 

Remark The inequality (2.103) is also true for anti-invariant submanifolds in Sasakian space forms.

2.3	 Submanifolds	with	Semi-symmetric	Metric	(Nonmetric)	Connections

+ c−1
4 [−η(e1)η(e1)g(ej, ej) + η(ej)η(e1)g(e1, ej)]

−g(e1, e1)η(ej)η(ej) + g(ej, e1)η(e1)η(ej)

−g(ϕej, e1)g(ϕe1, ej) + g(ϕe1, e1)g(ϕej, ej) + 2g(ϕe1, ej)g(ϕe1, ej)

= c+3
4 + 3

4 g
2(ϕe1, ej)(c−1).

∑
n

j=2
R̃(e1, ej, e1, ej) + R̃(e1, e0, e1, e0)

= n c+3
4 + 3

4 ∑
n

j=2
g2(ϕe1, ej)(c−1) + 1 = n c+3

4 + 3
4 (c−1) cos2 θ + 1.

Ric(X) = n c+3
4 + 3

4 (c−1) cos2 θ + 1+

+∑
n

r=1
[hr

11h
r
00 − (hr

10)2]+∑
n

j=2
[hr

11h
r
jj − (hr

1j)
2
].

hr
00 = g(h(e0, e0), e∗

r) = g(h(ξ, ξ), e∗
r) = g(∇̃ξξ, e∗

r) = 0,

∑
n

r=1
(hr

10)
2 =∑

n

r=1
g2(h(e1, e0), e∗

r) =∑
n

r=1
g2(∇̃e1e0, e∗

r)

=∑
n

r=1
g2(ϕe1, e∗

r) =sin2 θ.

Ric(X) = n c+3
4 + 3

4 (c−1) cos2 θ + 1− sin2 θ

+∑
n

r=1
∑

n

j=1
[hr

11h
r
jj − (hr

1j)
2].

Ric(X) − n c+3
4 − 3

4 (c−1) cos2 θ− cos2 θ ≤ (n−1)(n+1)
4 ∥H∥2.

Ric(X) ≤ (n−1)(n+1)
4 ∥H∥2 + n c+3

4 + 3
4 (c−1) cos2 θ+ cos2 θ.

h(X,Y ) = η(X)h(Y , ξ) + η(Y )h(X, ξ),

h(e1, e1) = 3μe∗
1, h(e2, e2) = μe∗

1, h(e1, e2) = μe∗
2,



In [64], H.A. Hayden introduced the notion of a semi-symmetric metric connection on a Riemannian
manifold. K. Yano studied in [121] some properties of a Riemannian manifold endowed with a semi-
symmetric metric connection. In [65] and [66], T. Imai found some properties of a Riemannian manifold and
a hypersurface of a Riemannian manifold with a semi-symmetric metric connection. Z. Nakao [102] studied
submanifolds of a Riemannian manifold with semi-symmetric connections. In [86, 87] we proved Chen
inequalities for submanifolds of real space forms endowed with a semi-symmetric metric connection, i.e.,
relations between the mean curvature associated with the semi-symmetric metric connection, scalar and
sectional curvatures, Ricci curvatures, and the sectional curvature of the ambient space. The equality cases
are considered.

Let N n+p be an (n + p)-dimensional Riemannian manifold and ∇̃ a linear connection on N n+p. If the
torsion tensor T̃  of ∇̃, de�ined by

for any vector �ields X̃ and Ỹ  on N n+p satis�ies

for a 1-form ϕ, then the connection ∇̃ is called a semi-symmetric	connection.
Let g be a Riemannian metric on N n+p. If ∇̃g = 0, then ∇̃ is called a semi-symmetric	metric	connection

on N n+p.
Following [121], a semi-symmetric metric connection ∇̃ on N n+p is given by

for any vector �ields X̃ and Ỹ  on N n+p, where 
∘

∇̃ denotes the Levi-Civita connection with respect to the
Riemannian metric g and P is a vector �ield de�ined by g(P , X̃) = ϕ(X̃), for any vector �ield X̃.

We will consider a Riemannian manifold N n+p endowed with a semi-symmetric metric connection ∇̃

and the Levi-Civita connection denoted by 
∘

∇̃.
Let M n be an n-dimensional submanifold of an (n + p)-dimensional Riemannian manifold N n+p. On the

submanifold M n we consider the induced semi-symmetric metric connection denoted by ∇ and the induced
Levi-Civita connection denoted by 

∘
∇.

Let R̃ be the curvature tensor of N n+p with respect to ∇̃ and 
∘

R̃ the curvature tensor of N n+p with

respect to 
∘

∇̃. We also denote by R and 
∘
R the curvature tensors of ∇ and 

∘
∇, respectively, on M n.

The Gauss formulas with respect to ∇ and, respectively, 
∘
∇ can be written as

where 
∘
h is the second fundamental form of M n in N n+p and h is a (0, 2)-tensor on M n. According to the

formula (7) from [102] h is also symmetric.
One denotes by 

∘
H the mean curvature vector of M n in N n+p.

Let N n+p(c) be a real space form of constant sectional curvature c endowed with a semi-symmetric
metric connection ∇̃.

The curvature tensor 
∘

R̃ with respect to the Levi-Civita connection 
∘

∇̃ on N n+p(c) is expressed by

Then the curvature tensor R̃ with respect to the semi-symmetric metric connection ∇̃ on N n+p(c) can
be written as [66]

T̃(X̃, Ỹ ) = ∇̃
X̃
Ỹ − ∇̃

Ỹ
X̃ − [X̃, Ỹ ],

T̃(X̃, Ỹ ) = ϕ(Ỹ )X̃ − ϕ(X̃)Ỹ ,

∇̃
X̃
Ỹ =

∘

∇̃
X̃
Ỹ + ϕ(Ỹ )X̃ − g(X̃, Ỹ )P ,

∇̃XY = ∇XY + h(X,Y ), X,Y ∈ χ(M),
∘

∇̃XY =
∘
∇XY +

∘
h(X,Y ), X,Y ∈ χ(M),

∘

R̃(X,Y ,Z,W) = c{g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)}.



for any vector �ields X,Y ,Z,W ∈ χ(M n), where α is a (0, 2) -tensor �ield de�ined by

From the last relations it follows that the curvature tensor R̃ can be expressed as

Denote by λ the trace of α.
For submanifolds of real space forms endowed with a semi-symmetric metric connection, we established

the following optimal inequality, which we will call the Chen	�irst	inequality:

Theorem	2.65	([86]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real	space
formN n+p(c)of	constant	sectional	curvaturec,endowed	with	a	semi-symmetric	metric	connection∇̃.	We	have

(2.104)
whereπis	a 2-plane	section	ofTxM

n,x ∈ M n .

Recall the following important result (Proposition 1.2) from [65].

Proposition The	mean	curvature	H	ofM nwith	respect	to	the	semi-symmetric	metric	connection	coincides
with	the	mean	curvature

∘
HofM nwith	respect	to	the	Levi-Civita	connection	if	and	only	if	the	vector	�ield	P	is

tangent	toM n.

Remark According to the formula (7) from [102] it follows that h =
∘
h if P is tangent to M n.

For P tangent to M n the inequality (2.104) is written as in the following

Corollary	2.66	([86]) Under	the	same	assumptions	as	in	Theorem2.72,	if	the	vector	�ield	P	is	tangent	toM n,
then	we	have

(2.105)

Theorem	2.67	([86]) If	the	vector	�ield	P	is	tangent	toM n,	then	the	equality	case	of	inequality (2.104) holds
at	a	pointx ∈ M nif	and	only	if	there	exist	an	orthonormal	basis{e1, e2, … , en}ofTxM

nand	an	orthonormal
basis{en+1, … , en+p}ofT ⊥

x M nsuch	that	the	shape	operators	ofM ninN n+p(c)at	x	have	the	following	forms:

R̃(X,Y ,Z,W) =
∘

R̃(X,Y ,Z,W) − α(Y ,Z)g(X,W)
+α(X,Z)g(Y ,W) − α(X,W)g(Y ,Z) + α(Y ,W)g(X,Z),

α(X,Y ) = (
∘

∇̃Xϕ)Y − ϕ(X)ϕ(Y ) + 1
2 ϕ(P)g(X,Y ), ∀X,Y ∈ χ(M).

R̃(X,Y ,Z,W) = c{g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)}
−α(Y ,Z)g(X,W) + α(X,Z)g(Y ,W)
−α(X,W)g(Y ,Z) + α(Y ,W)g(X,Z).

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c
2 − λ]− trace (α∣π⊥),

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥
∘
H∥

2
+ (n + 1) c

2 − λ]− trace(α∣
π⊥).

Aen+1 = , a + b = μ,

⎛⎜⎝a 0 0 ⋯ 0
0 b 0 ⋯ 0
0 0 μ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ μ

⎞⎟⎠



wherehr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n,	andn + 1 ≤ r ≤ n + p.

We also established a sharp relation between the Ricci curvature in the direction of a unit tangent vector X
and the mean curvature H with respect to the semi-symmetric metric connection ∇̃.

We denote

Theorem	2.68	([87]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real	space
formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	metric	connection∇̃.	Then:

(i)
For	each	unit	vector	X	inTxMwe	have

(2.106)
 

(ii)
IfH(x) = 0,	then	a	unit	tangent	vector	X	at	x	satis�ies	the	equality	case	of (2.106) if	and	only	if
X ∈ N(x).

 

Corollary	2.69	([86]) If	the	vector	�ield	P	is	tangent	toM n,	then	the	equality	case	of	inequality (2.106) holds
identically	for	all	unit	tangent	vectors	at	x	if	and	only	if	either	x	is	a	totally	geodesic	point	orn = 2and	x	is	a
totally	umbilical	point.

We stated a relationship between the sectional curvature of a submanifold M n of a real space form N n+p(c)
of constant sectional curvature c endowed with a semi-symmetric metric connection ∇̃ and the associated
squared mean curvature ∥H∥2. Using this inequality, we proved a relationship between the k-Ricci
curvature of M n (intrinsic invariant) and the squared mean curvature ∥H∥2 (extrinsic invariant). We
assume that the vector �ield P is tangent to M n.

Theorem	2.70	([86]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real	space
formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	metric	connection∇̃such	that
the	vector	�ield	P	is	tangent	toM n.	Then	we	have

(2.107)

Using Theorem 2.70, we obtain the following:

Theorem	2.71	([86]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real	space
formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	metric	connection∇̃,	such	that
the	vector	�ield	P	is	tangent	toM n.	Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	pointp ∈ M n,	we	have

(2.108)
whereΘk(p) = 1

k−1 infX,Lk RicLk(X), Lkruns	over	all	k-plane	sections	inTpM ,	and	X	runs	over	all	unit
vectors	inLk.

In [88] we continued the study of Chen inequalities for submanifolds in space forms with semi-symmetric
metric connections, more precisely Chen inequalities for submanifolds in complex, respectively, Sasakian
space forms endowed with semi-symmetric metric connection.

Let N 2m be a Kaehler manifold and J the canonical almost complex structure. The sectional curvature of 
N 2m in the direction of an invariant 2-plane section by J is called the holomorphic	sectional	curvature. If the
holomorphic sectional curvature is constant 4c for all plane sections π of TxN

2m invariant by J for any 

Aen+i
= , 2 ≤ i ≤ p,

⎛⎜⎝hr
11 hr

12 0 ⋯ 0
hr

12 −hr
11 0 ⋯ 0

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0

⎞⎟⎠N(x) = {X ∈ TxM
n ∣ h(X,Y ) = 0, ∀Y ∈ TxM

n}.

∥H∥2 ≥ 4
n2 [Ric(X) − (n−1)c + λ + (n−2)α(X,X)].

∥H∥2 ≥ 2τ
n(n−1) − c + 2

n
λ.

∥H∥2(p) ≥ Θk(p) − c + 2
n
λ,



x ∈ N 2m, then N 2m is called a complex	space	form and is denoted by N 2m(4c). The curvature tensor 
∘

R̃ with

respect to the Levi-Civita connection 
∘

∇̃ on N 2m(4c) is given by
(2.109)

If N 2m(4c) is a complex space form of constant holomorphic sectional curvature 4c with a semi-
symmetric metric connection ∇̃, then the curvature tensor R̃ of N 2m(4c) can be expressed as

(2.110)

Let M n,n ≥ 3, be an n-dimensional submanifold of a 2m -dimensional complex space form N 2m(4c) of
constant holomorphic sectional curvature 4c. For any tangent vector �ield X to M n, we put 
JX = PX + FX, where PX and FX are the tangential and normal components of JX, respectively. We de�ine

Following [3], we denoted Θ2(π) = g2(Pe1, e2) = g2(Je1, e2), where {e1, e2} is an orthonormal basis
of a 2-plane section π. Θ2(π) is a real number in [0, 1], independent of the choice of e1, e2.

We proved the following:

Theorem	2.72	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a 2m-dimensional	complex	space
formN 2m(4c)of	constant	holomorphic	sectional	curvature4c,endowed	with	a	semi-symmetric	metric
connection∇̃.	We	have

whereπis	a 2-plane	section	ofTxM
n, x ∈ M n.

Remark Because h =
∘
h if U is tangent to M n (according to the formula (7) from [102]; see also

Proposition 1.2 from [65]), the inequality proved in Theorem 2.72 becomes

Theorem	2.73	([88]) Under	the	same	assumptions	as	in	Theorem2.72,	if	the	vector	�ield	U	is	tangent	toM n,
then	the	equality	case	of	inequality	from	Theorem2.72holds	at	a	pointx ∈ M nif	and	only	if	there	exist	an
orthonormal	basis{e1, e2, … , en}ofTxM

nand	an	orthonormal	basis{en+1, … , e2m}ofT ⊥
x M nsuch	that	the

shape	operators	ofM ninN 2m(4c)at	x	have	the	following	forms:

∘

R̃(X,Y ,Z,W) = c[g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W) − g(JX,Z)g(JY ,W)

+g(JX,W)g(JY ,Z)−2g(X,JY )g(Z,JW)].

R̃(X,Y ,Z,W) = c[g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W) − g(JX,Z)g(JY ,W)

+g(JX,W)g(JY ,Z)−2g(X,JY )g(Z,JW)] − α(Y ,Z)g(X,W)

+α(X,Z)g(Y ,W) − α(X,W)g(Y ,Z) + α(Y ,W)g(X,Z).

∥P∥2 =∑
n

i,j=1
g2(Jei, ej).

τ(x) − K(π) ≤ n−2
2 [ n2

n−1 ∥H∥2 + (n + 1)c−2λ]− [6Θ2(π)−3∥P∥2] c
2

−trace(α∣
π⊥),

τ(x) − K(π) ≤ n−2
2 [ n2

n−1 ∥
∘
H∥

2
+ (n + 1)c−2λ]− [6Θ2(π)−3∥P∥2] c

2

− trace(α∣
π⊥).

Aen+1 = , a + b = μ,

⎛⎜⎝a 0 0 ⋯ 0
0 b 0 ⋯ 0
0 0 μ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ μ

⎞⎟⎠



where	we	denotehr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n,	andn + 2 ≤ r ≤ 2m.

We proved relationships between the Ricci curvature of a submanifold M n of a complex space form 
N 2m(4c) of constant holomorphic sectional curvature, endowed with a semi-symmetric metric connection,
and the squared mean curvature ∥H∥2, under the assumption that the vector �ield U is tangent to M n.

Theorem	2.74	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a 2m-dimensional	complex	space
formN 2m(4c)of	constant	holomorphic	sectional	curvature 4c	endowed	with	a	semi-symmetric	metric
connection∇̃such	that	the	vector	�ield	U	is	tangent	toM n.	Then	we	have

(2.111)

Using the above theorem, we obtain the following:

Theorem	2.75	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a 2m-dimensional	complex	space
formN 2m(4c)of	constant	holomorphic	sectional	curvature 4c	endowed	with	a	semi-symmetric	metric
connection∇̃,	such	that	the	vector	�ield	U	is	tangent	toM n.	Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	point
x ∈ M n,	we	have

We considered also submanifolds of Sasakian space forms.
Recall that a (2m + 1)-dimensional Riemannian manifold (N 2m+1, g) is a Sasakian	manifold if it admits a

(1, 1)-tensor �ield φ, a vector �ield ξ, and a 1-form η satisfying

for any vector �ields X,Y  on TN, and

where [ϕ,ϕ] is the Nijenhuis torsion of ϕ.
A Sasakian manifold with constant φ-sectional curvature c is said to be a Sasakian	space	form and is

denoted by N 2m+1(c). The curvature tensor 
∘

R̃ with respect to the Levi-Civita connection 
∘

∇̃ on N 2m+1(c) is
expressed by

(2.112)

for vector �ields X,Y ,Z,W  on N 2m+1(c).
If N 2m+1(c) is a (2m + 1)-dimensional Sasakian space form of constant φ-sectional curvature c

endowed with a semi-symmetric metric connection ∇̃, it follows that the curvature tensor R̃ of N 2m+1(c)
can be expressed as

(2.113)

Aer = , n + 2 ≤ i ≤ 2m,
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⎞⎟⎠∥H∥2 ≥ 2τ
n(n−1) + 2

n
λ − c − 3c

n(n−1) ∥P∥2.

∥H∥2(x) ≥ Θk(p) + 2
n
λ − c − 3c

n(n−1) ∥P∥2.

φ2X = −X + η(X)ξ, η(ξ) = 1,

g(φX,φY ) = g(X,Y ) − η(X)η(Y ), g(X, ξ) = η(X),

g(X,ϕY ) = dη(X,Y ),

[ϕ,ϕ] + 2dη ⊗ ξ = 0,

∘

R̃(X,Y ,Z,W) = c+3
4 [g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)]

+ c−1
4 [η(X)η(Z)g(Y ,W) − η(Y )η(Z)g(X,W)

+η(Y )η(W)g(X,Z) − η(X)η(W)g(Y ,Z)

+g(X,φZ)g(φY ,W) − g(Y ,φZ)g(φX,W) + 2g(X,φY )g(φZ,W)],



Let M n,n ≥ 3, be an n-dimensional submanifold of a (2m + 1) -dimensional Sasakian space form of
constant φ-sectional curvature N n+p(c) of constant sectional curvature c. For any tangent vector �ield X to 
M n, we put φX = PX + FX, where PX and FX are tangential and normal components of φX, respectively,
and we decompose ξ = ξ⊤ + ξ⊥, where ξ⊤ and ξ⊥ denote the tangential and normal parts of ξ.

Recall that Θ2(π) = g2(Pe1, e2) = g2(Je1, e2), where {e1, e2} is an orthonormal basis of a 2-plane
section π, is a real number in [0, 1], independent of the choice of e1, e2.

For submanifolds of Sasakian space forms endowed with a semi-symmetric metric connection, we
established the following optimal inequality.

Theorem	2.76	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a(2m + 1)-dimensional	Sasakian
space	formN 2m+1(c)of	constantϕ-sectional	curvature	endowed	with	a	semi-symmetric	metric	connection∇̃.
We	have

(2.114)

whereπis	a 2-plane	section	ofTxM
n,x ∈ M n .

Corollary	2.77	([88]) Under	the	same	assumptions	as	in	Theorem2.76,	ifξis	tangent	toM n,	we	have

Ifξis	normal	toM n,	we	have

Remark Because h =
∘
h, if U is tangent to M n [102], the inequality (2.114) becomes

Theorem	2.78	([88]) If	the	vector	�ield	U	is	tangent	toM n,	then	the	equality	case	of	inequality(2.114)holds
at	a	pointx ∈ M nif	and	only	if	there	exist	an	orthonormal	basis{e1, e2, … , en}ofTxM

nand	an	orthonormal
basis{en+1, … , en+p}ofT ⊥

x M nsuch	that	the	shape	operators	ofM ninN 2m+1(c)at	x	have	the	following	forms:

R̃(X,Y ,Z,W) = c+3
4 [g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)]

+ c−1
4 [η(X)η(Z)g(Y ,W) − η(Y )η(Z)g(X,W)

+η(Y )η(W)g(X,Z) − η(X)η(W)g(Y ,Z)

+g(X,φZ)g(φY ,W) − g(Y ,φZ)g(φX,W) + 2g(X,φY )g(φZ,W)]

−α(Y ,Z)g(X,W) + α(X,Z)g(Y ,W) − α(X,W)g(Y ,Z) + α(Y ,W)g(X,Z).

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c+3
8 − λ]+

+ c−1
8 [3 ∥ P ∥2 −6Θ2(π)−2(n−1) ∥ ξ⊤ ∥2 +2∥ξπ∥2]− trace(α∣

π⊥),

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c+3
8 − λ]

+ c−1
8 [3 ∥ P ∥2 −6Θ2(π)−2(n−1) + 2∥ξπ∥2]− trace(α∣

π⊥).

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c+3
8 − λ]− trace(α∣

π⊥).

τ(x) − K(π) ≤ (n−2)[ n2

2(n−1) ∥
∘
H∥

2
+ (n + 1) c+3

8 − λ]

+ c−1
8 [3 ∥ P ∥2 −6Θ2(π)−2(n−1) ∥ ξ⊤ ∥2 +2∥ξπ∥2]− trace(α∣π⊥).
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where	we	denotehr
ij = g(h(ei, ej), er), 1 ≤ i, j ≤ n,	andn + 2 ≤ r ≤ 2m + 1.

We also stated a relationship between the sectional curvature of a submanifold M n of a Sasakian space form
N 2m+1(c) of constant ϕ-sectional curvature c endowed with a semi-symmetric metric connection ∇̃ and the
squared mean curvature ∥H∥2. Using this inequality, we prove a relationship between the k-Ricci curvature
of M n (intrinsic invariant) and the squared mean curvature ∥H∥2 (extrinsic invariant).

Theorem	2.79	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a(2m + 1)-dimensional	real
space	formN 2m+1(c)of	constantϕ-sectional	curvature	c	endowed	with	a	semi-symmetric	metric	connection∇̃
such	that	the	vector	�ield	U	is	tangent	toM n.	Then	we	have

(2.115)

From the above theorem we derived the following:

Theorem	2.80	([88]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	a(2m + 1)-dimensional	Sasakian
space	formN 2m+1(c)of	constantφ-sectional	curvature	c	endowed	with	a	semi-symmetric	metric	connection∇̃,
such	that	the	vector	�ield	U	is	tangent	toM n.	Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	pointx ∈ M n,	we
have

(2.116)

Motivated by the above studies, in [81] we improved Chen-Ricci inequalities for a Lagrangian submanifold 
M n of dimension n(n ≥ 2) in a complex space form M̃ 2n(4c) of constant holomorphic sectional curvature c
with a semi-symmetric metric connection and a Legendrian submanifold M n in a Sasakian space form 
M̃ 2n+1(c) of constant φ-sectional curvature c with a semi-symmetric metric connection, respectively.

Let M n,n ≥ 2, be an n-dimensional submanifold of a 2m-dimensional complex space form M̃ 2m(4c) of
constant holomorphic sectional curvature 4c. If J(TpM

n) ⊂T ⊥
p M n, then M n is called an anti-invariant

submanifold of M̃ 2m. For an anti-invariant submanifold of a Kaehlerian manifold, it is known that (see
[122])

or equivalently, 
∘
h
k

ij =
∘
h
j

ik =
∘
h
i

jk, ∀i, j, k = 1, … ,n, where 
∘
A is the shape operator with respect to 

∘

∇̃ and

Recall that a Lagrangian	submanifold is a totally real submanifold of maximum dimension.

Theorem	2.81	([81]) LetM nbe	a	Lagrangian	submanifold	of	dimension	n(n ≥ 2)in	a 2n-dimensional
complex	space	formM̃ 2n(4c)of	constant	holomorphic	sectional	curvature	c	with	a	semi-symmetric	metric
connection	such	that	the	vector	�ield	P	is	tangent	toM n.	Then	for	any	unit	tangent	vector	X	toM nwe	have

(2.117)
The	equality	sign	holds	identically	if	and	only	if	either:

(i)
M nis	totally	geodesic	or  

(ii) n = 2,	andM 2is	a	H-umbilical	Lagrangian	surface	withλ = 3 μ.

Aer = , n + 2 ≤ i ≤ 2m + 1,
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⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0

⎞⎟⎠∥H∥2 ≥ 2τ
n(n−1) + 2

n
λ − c+3

4 − c−1
4n(n−1) [−2(n−1) ∥ ξ⊤ ∥2 +∥P∥2].

∥H∥2(x) ≥ Θk(x) + 2
n
λ − c+3

4 − c−1
4n(n−1) [−2(n−1) ∥ ξ⊤ ∥2 +∥P∥2].

∘
AJXY =

∘
AJYX,   X,Y ∈ TpM,

∘
h
k

ij = g(
∘
h(ei, ej),Jek), i, j, k = 1, … ,n.

Ric(X) + (n−2)α(X,X) + trace α ≤ (n−1)(c + n
4 ∥H∥2).



 
We improved Chen-Ricci inequality for submanifolds of Sasakian space forms with a semi-symmetric metric
connection.

A submanifold M n of a Sasakian manifold M̃ 2m+1 normal to ξ is called a C-totally	real	submanifold. On
such a submanifold, φ maps any tangent vector to M n at p ∈ M n into the normal space T ⊥

p M n. In
particular, if n = m, i.e., M n has a maximum dimension, then it is a Legendrian	submanifold. For a
Legendrian submanifold M n we may choose an orthonormal basis of T ⊥

p M n of the form 
{en+1 = φe1, … , e2n = φen, e2n+1 = ξ}. One has (see [122])

or equivalently, 
∘
h
k

ij =
∘
h
j

ik =
∘
h
i

jk, ∀i, j, k = 1, … ,n, where 
∘
A is the corresponding shape operator and 

∘
h
k

ij = g(
∘
h(ei, ej),φek), i, j, k = 1, … ,n.

Theorem	2.82	([81]) LetM nbe	an	n-dimensional	Legendrian	submanifold	in	a	Sasakian	space	form
M̃ 2n+1(c)of	constantφ-sectional	curvature	c	with	a	semi-symmetric	metric	connection	such	that	the	vector
�ield	P	is	tangent	toM n.	Then,	for	any	unit	tangent	vector	X	toM n,	we	have

(2.118)
The	equality	sign	holds	identically	if	and	only	if	either:

(i)
M nis	totally	geodesic	or  

(ii)
n = 2,	andM 2is	a	H-umbilical	Legendrian	surface	withλ = 3μ. 

The notion of a connection is one of the most important in Geometry. Its history is long and interesting, being
written by Christoffel, Ricci, Levi-Civita, Cartan, Darboux, and Koszul (see, e.g., [70]).

There are various physical problems involving the semi-symmetric metric connection. In [111] the
following two examples are given.

If	a	man	is	moving	on	the	surface	of	the	earth	always	facing	one	de�inite	point,	say	Jerusalem	or	Mekka	or	the
North	Pole,	then	this	displacement	is	semi-symmetric	and	metric.
During	the	mathematical	congress	in	Moscow	in 1934 one	evening	mathematicians	invented	the	Moscow
displacement.	The	streets	of	Moscow	are	approximately	straight	lines	through	the	Kremlin	and	concentric
circles	around	it.	If	a	person	walks	in	the	street	always	facing	the	Kremlin,	then	this	displacement	is	semi-
symmetric	and	metric.

In [82], we constructed examples of different types of connections starting from a semi-symmetric
metric connection ∇̃ on a Riemannian manifold, for example, a connection which is a symmetric metric
connection with respect to a conformally related metric g∗, but symmetric nonmetric with respect to the
initial metric g.

We formulated an open problem: �ind a parallel complex structure on a Kaehler manifold with respect to
such a new connection.

We recall that K. Yano [121] showed that a semi-symmetric metric connection ∇̃ is given by

where ∇∘ is the Levi-Civita connection on Ñ  with respect to g and P is a vector �ield de�ined by P = Φ#,
equivalent to g(P ,X) = Φ(X), for any vector �ield X. So, the above relation can be written as

(2.119)
Let us consider only a part of formula (2.119) and de�ine

with Φ a 1-form.

∘
AφXY =

∘
AφYX, X,Y ∈ TpM

n,

Ric(X) + (n−2)α(X,X) + traceα ≤ n−1
4 (c + 3 + n∥H∥2).

∇̃XY = ∇∘
XY + Φ(Y )X − g(X,Y )P ,

∇̃XY = ∇∘
XY + g(P ,Y )X − g(X,Y )P .

∇′
XY = ∇∘

XY + Φ(Y )X,



We proved that ∇′ is a semi-symmetric connection, but it is not metric.
More precisely we have the following proposition:

Proposition	2.83	([82]) Let(Ñ, g)be	an	n-dimensional	Riemannian	manifold	and∇∘its	Levi-Civita
connection	with	respect	to	g.	Then	the	connection∇′de�ined	by

withΦa 1-form	onÑis	a	semi-symmetric	nonmetric	connection	onÑ.

On the other hand, on the Riemannian manifold (Ñ, g) denote by Ω1(Ñ) the space of 1-forms on Ñ.
Following Yano [121], to any 1-form Φ corresponds to a metric semi-symmetric connection

We shall consider two cases:
(i)

Φ is closed. 
(ii)

Φ is exact.  
By direct calculation we have

Then Φ is closed if and only if g(∇∘
XP ,Y ) − g(∇∘

YP ,X) = 0.
In the case (ii), Φ exactly implies that ∃f ∈ C∞(Ñ) such that Φ = df . Then 

g(P ,X) = Φ(X) = df(X) = Xf,P = gradf, and, Φ being closed, we have

For an exact 1-form Φ, i.e., ∃f ∈ C∞(Ñ) such that Φ = df, we de�ine a conformally	related	metricg∗ by 
g∗ = e2fg (which remains Riemannian metric) and denote by ∇∗ its Levi-Civita connection (on (Ñ, g∗)).

Proposition	2.84	([82]) Let(Ñ, g)be	an	n-dimensional	Riemannian	manifold	andg∗ = e2fga	conformally
related	metric	to	g,	withf ∈ C∞(Ñ).	Let∇∗be	the	Levi-Civita	connection	with	respect	tog∗.	Then:

(i)
The	connection∇∗is	given	by

i.e.,

where∇̃is	the	semi-symmetric	metric	connection	with	respect	to	g.

 

(ii)
The	connection∇∗is	a	symmetric	nonmetric	connection	with	respect	to	g. 

A Kaehler manifold is one of the most interesting manifolds from the class of complex manifolds and is well
determined by its metric g and its almost complex structure J and then is usually denoted by (M, g,J). It is
known that a Hermitian manifold (M, g,J) is Kaehler if and only if its almost complex structure J is parallel
with respect to the Levi-Civita connection associated with the Riemannian metric g, i.e., ∇∘J = 0.

Let ∇̃ be the semi-symmetric metric connection with respect to g on a Kaehler manifold (M, g,J) and 
∇∘ be the Levi-Civita connection associated with g.

We calculate

∇′
XY = ∇∘

XY + Φ(Y )X

∇̃XY = ∇∘
XY + Φ(Y )X − g(X,Y )Φ♮.

dΦ(X,Y ) = XΦ(Y ) − YΦ(X) − Φ([X,Y ]) = Xg(P ,Y ) − Y g(P ,X) − g(P , [X,Y ])

= g(∇∘
XP ,Y ) + g(P , ∇∘

XY ) − g(∇∘
YP ,X) − g(P , ∇∘

YX) − g(P , [X,Y ])

= g(∇∘
XP ,Y ) − g(∇∘

YP ,X) + [g(P , ∇∘
XY ) − g(P , ∇∘

YX) − g(P , [X,Y ]]

= g(∇∘
XP ,Y ) − g(∇∘

YP ,X).

g(∇∘
Xgrad f,Y ) = g(∇∘

Y grad f,X).

∇∗
XY = ∇∘

XY + Φ(Y )X − g(X,Y )Φ♮ + Φ(X)Y ,

∇∗
XY = ∇̃XY + Φ(X)Y ,

(∇̃XJ)Y = ∇̃XJY − J∇̃XY



Remark ∇̃J ≠ 0, so J cannot be parallel with respect to the semi-symmetric metric connection ∇̃.

Indeed, if X is orthogonal to P and JP, then P ,JP ,X, and JX are linearly independent; therefore 
(∇̃XJ)Y ≠ 0.

Starting from the semi-symmetric connection ∇̃ on the Kaehler manifold (M, g,J), we can derive
another connection ∇∗.

We formulated the following open	problem:
Find	another	almost	complex	structureJ ∗on	the	Kaehler	manifold(M, g,J)such	thatJ ∗is	parallel

with	respect	to∇∗(i.e.,∇∗J ∗ = 0).
On the other hand, when the real space form is endowed with a semi-symmetric nonmetric connection,

in [107, 108] we proved Chen inequalities for its submanifolds, more precisely relations between the mean
curvature associated with a semi-symmetric nonmetric connection, scalar and sectional curvatures, Ricci
curvatures, and the sectional curvature of the ambient space. The equality cases were considered.

Let g be a Riemannian metric on N n+p. If ∇̃g ≠ 0, where ∇̃ is a semi-symmetric connection, then ∇̃ is
called a semi-symmetric	nonmetric	connection on N n+p.

Following [1], a semi-symmetric nonmetric connection ∇̃ on N n+p is given by

for any vector �ields X̃ and Ỹ  on N n+p, where 
∘

∇̃ denotes the Levi-Civita connection with respect to the
Riemannian metric g and ϕ is a 1 -form. Denote P = ϕ♯, i.e., the vector �ield P is de�ined by g(P , X̃) = ϕ(X̃),
for any vector �ield X̃ on N n+p.

We will consider a Riemannian manifold N n+p endowed with a semi-symmetric nonmetric connection 

∇̃ and the Levi-Civita connection denoted by 
∘

∇̃.
Let M n be an n-dimensional submanifold of an (n + p)-dimensional Riemannian manifold N n+p. On the

submanifold M n we consider the induced semi-symmetric nonmetric connection denoted by ∇ and the
induced Levi-Civita connection denoted by 

∘
∇.

Let R̃ be the curvature tensor of N n+p with respect to ∇̃ and 
∘

R̃ the curvature tensor of N n+p with

respect to 
∘

∇̃. We also denote by R and 
∘
R the curvature tensors of ∇ and 

∘
∇, respectively, on M n.

The Gauss formulas with respect to ∇ and, respectively, 
∘
∇ can be written as

where 
∘
h is the second fundamental form of M n in N n+p and h is a (0, 2)-tensor on M n. According to the

formula (3.4) in [2],
(2.120)

One denotes by H the mean curvature vector of M n in N n+p.
Let N n+p(c) be a real space form of constant sectional curvature c endowed with a semi-symmetric

nonmetric connection ∇̃.

The curvature tensor 
∘

R̃ with respect to the Levi-Civita connection 
∘

∇̃ on N n+p(c) is expressed by

Then the curvature tensor R̃ with respect to the semi-symmetric nonmetric connection ∇̃ on N n+p(c)
can be written as (see [1])

= ∇∘
XJY + Φ(JY )X − g(X,JY )Φ# − J(∇∘

XY + Φ(Y )X − g(X,Y )Φ#)

= ∇∘
XJY − J(∇∘

XY ) + Φ(JY )X − JΦ(Y )X − g(X,JY )Φ# + Jg(X,Y )Φ#

= Φ(JY )X − JΦ(Y )X − g(X,JY )Φ# + Jg(X,Y )Φ#.

∇̃
X̃
Ỹ =

∘

∇̃
X̃
Ỹ + ϕ(Ỹ )X̃,

∇̃XY = ∇XY + h(X,Y ), X,Y ∈ Γ(TM n),
∘

∇̃XY =
∘
∇XY +

∘
h(X,Y ), X,Y ∈ Γ(TM n),

h =
∘
h.

∘

R̃(X,Y ,Z,W) = c{g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)}.



for any vector �ields X,Y ,Z,W ∈ χ(M n), where s is a (0, 2) -tensor �ield de�ined by

It follows that the curvature tensor R̃ can be expressed as
(2.121)

Denote by λ the trace of s.
Using (2.120), the Gauss equation for the submanifold M n into the real space form N n+p(c) is

(2.122)
Decomposing the vector �ield P on M uniquely into its tangent and normal components P T  and P ⊥,

respectively, we have P = P T + P ⊥.
Denote

(2.123)
for a unit vector X tangent to M n at a point x.

In general for submanifolds M n of a real space form endowed with a semi-symmetric nonmetric
connection, the sectional curvature K(π) of a plane section (and consequently the Chen invariants) cannot
be de�ined by the standard de�inition because it depends on the choice of the orthonormal basis of π. For
this reason we put the condition Ω(X) = constant for all unit vectors tangent to M n.

For submanifolds of real space forms endowed with a semi-symmetric nonmetric connection, we
establish the following optimal inequality, which will call Chen	�irst	inequality:

Theorem	2.85	([107]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real
space	formN n+p(c)of	constant	sectional	curvaturec,endowed	with	a	semi-symmetric	nonmetric	connection∇̃.
We	have

whereπis	a 2-plane	section	ofTxM
n,x ∈ M n.	Equality	holds	at	a	pointx ∈ M nif	and	only	if	there	exist	an

orthonormal	basis{e1, e2, … , en}ofTxM
nand	an	orthonormal	basis{en+1, … , en+p}ofT ⊥

x M nsuch	that	the
shape	operators	ofM ninN n+p(c)at	x	have	the	following	forms:

Proof From [2], the Gauss equation with respect to the semi-symmetric nonmetric connection is
(2.124)

R̃(X,Y ,Z,W) =
∘

R̃(X,Y ,Z,W) + s(X,Z)g(Y ,W) − s(Y ,Z)g(X,W),

s(X,Y ) = (
∘

∇̃Xϕ)Y − ϕ(X)ϕ(Y ), ∀X,Y ∈ χ(M n).

R̃(X,Y ,Z,W) = c{g(X,W)g(Y ,Z) − g(X,Z)g(Y ,W)}

+s(X,Z)g(Y ,W) − s(Y ,Z)g(X,W).

∘

R̃(X,Y ,Z,W) =
∘
R(X,Y ,Z,W) + g(h(X,Z),h(Y ,W)) − g(h(X,W),h(Y ,Z)).

Ω(X) = s(X,X) + g(P ⊥,h(X,X)),

δM n(x) ≤ Ω + (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c
2 ]− 1

2 (n−1)λ − 1
2 n

2ϕ(H),

Aen+1 = , a + b = μ,

⎛⎜⎝a 0 0 ⋯ 0
0 b 0 ⋯ 0
0 0 μ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ μ

⎞⎟⎠Aen+i
= , 2 ≤ i ≤ p.

⎛⎜⎝hn+i
11 hn+i

12 0 ⋯ 0

hn+i
12 −hn+i

11 0 ⋯ 0
0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎞⎟⎠R̃(X,Y ,Z,W) = R(X,Y ,Z,W) + g(h(X,Z),h(Y ,W)) − g(h(Y ,Z),h(X,W))

+g(P ⊥,h(Y ,Z))g(X,W) − g(P ⊥,h(X,Z))g(Y ,W).



Let x ∈ M n and {e1, e2, … , en} and {en+1, … , en+p} be orthonormal basis of TxM
n and T ⊥

x M n,
respectively. For X = W = ei,Y = Z = ej, i ≠ j, from Eq. (2.121) it follows that

(2.125)
From the last two equations we get

By summation after 1 ≤ i, j ≤ n, it follows from the above relation that
(2.126)

where we recall that λ is the trace of s and denote

One takes
(2.127)

Then (2.123) becomes
(2.128)

Let x ∈ M n, π ⊂ TxM
n, dim π = 2, π = sp{e1, e2}. We de�ine en+1 = H

∥H∥ , and from the relation
(2.128) we obtain

or equivalently,

(2.129

By using the Chen lemma we derive

(2.130)

The Gauss equation for X = W = e1,Y = Z = e2 gives

which implies

R̃(ei, ej, ej, ei) = c − s(ej, ej).

c − s(ej, ej) = R(ei, ej, ej, ei) + g(h(ei, ej),h(ei, ej))
−g(h(ei, ei),h(ej, ej)) + ϕ(h(ej, ej)).

(n2 − n)c − (n−1)λ = 2τ + ∥h∥2 − n2∥H∥2 + n2ϕ(H),

∥h∥2 =∑
n

i,j=1
g(h(ei, ej),h(ei, ej)),

H = 1
n

trace h, ϕ(H) = 1
n
∑

n

j=1
ϕ(h(ej, ej)) = g(P ⊥,H).

ε = 2τ − n2(n−2)
n−1 ∥H∥2 + (n−1)λ − (n2 − n)c + n2ϕ(H).

n2∥H∥2 = (n−1)(∥h∥2 + ε).

(∑
n

i=1
hn+1
ii )

2

= (n−1)(∑
n

i,j=1
∑

n+p

r=n+1
(hr

ij)
2 + ε),

(∑
n

i=1
hn+1
ii )

2

= (n−1){∑
n

i=1
(hn+1

ii )2
+∑

i≠j
(hn+1

ij )2
+∑

n

i,j=1
∑

n+p

r=n+2
(hr

ij)
2

+ ε}.

2hn+1
11 hn+1

22 ≥∑
i≠j

(hn+1
ij

)2 +∑n

i,j=1
∑n+p

r=n+2
(hr

ij
)2 + ε.

K(π) = R(e1, e2, e2, e1) = c − s(e2, e2)

−g(P ⊥,h(e2, e2)) +∑
p

r=n+1
[hr

11h
r
22 − (hr

12)2]

≥ c − s(e2, e2) − ϕ(h(e2, e2)) + 1
2 [∑i≠j

(hn+1
ij )

2
+∑

n

i,j=1
∑

n+p

r=n+2
(hr

ij)
2 + ε]

+∑
n+p

r=n+2
hr

11h
r
22 −∑

n+p

r=n+1
(hr

12)2 = c − s(e2, e2) − ϕ(h(e2, e2))

+ 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
n

i,j=1
∑

n+p

r=n+2
(hr

ij)
2 + 1

2 ε +∑
n+p

r=n+2
hr

11h
r
22 −∑

n+p

r=n+1
(hr

12)2

= c − s(e2, e2) − g(P ⊥,h(e2, e2)) + 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
n+p

r=n+2
∑

i,j>2
(hr

ij)
2

+ 1
2 ∑

n+p

r=n+2
(hr

11 + hr
22)2 +∑

j>2
[(hn+1

1j )
2

+ (hn+1
2j )

2] + 1
2 ε

≥ c − s(e2, e2) − g(P ⊥,h(e2, e2)) + ε
2 ,



Let {e1, e2, … , en} be an orthonormal basis of TxM
n with π = sp{e1, e2}. The formula (2.123) implies

that

Denote it simply by Ω. By using (2.127) we get

which represents the inequality to prove.
The equality case holds at a point x ∈ M n if and only if it achieves the equality in all the previous

inequalities and, we have the equality in the lemma.

We may choose {e1, e2} such that hn+1
12 = 0, and we denote a = hr

11, b = hr
22,μ = hn+1

33 = … = hn+1
nn .

It follows that the shape operators take the desired forms.
We also established a sharp relation between the Ricci curvature in the direction of a unit tangent vector

X and the mean curvature H with respect to the semi-symmetric nonmetric connection ∇̃.
Denote the relative null subspace of the tangent space by

Theorem	2.86	([108]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real
space	formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	nonmetric	connection∇̃.
Then:
(i)

For	each	unit	vector	X	inTxMwe	have
(2.131)

 
(ii)

IfH(x) = 0,	then	a	unit	tangent	vector	X	at	x	satis�ies	the	equality	case	of (2.131) if	and	only	if
X ∈ N(x).

 
(iii)

The	equality	case	of	inequality (2.131) holds	identically	for	all	unit	tangent	vectors	at	x	if	and	only	if
either	x	is	a	totally	geodesic	point	orn = 2and	x	is	a	totally	umbilical	point.

 
A relationship between the sectional curvature of a submanifold M n of a real space form N n+p(c) of
constant sectional curvature c endowed with a semi-symmetric nonmetric connection ∇̃ and the associated
squared mean curvature ∥H∥2 was established in [107]. Using this inequality, we proved a relationship
between the k-Ricci curvature of M n (intrinsic invariant) and the squared mean curvature ∥H∥2 (extrinsic
invariant).

Theorem	2.87	([107]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real
space	formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	nonmetric	connection∇̃.
Then	we	have

(2.132)

Using the above theorem, we obtain the following:

K(π) ≥ c − s(e2, e2) − g(P ⊥,h(e2, e2)) + ε
2 .

Ω(e1) = Ω(e2) = … = Ω(en).

K(π) ≥ τ − Ω − (n−2)[ n2

2(n−1) ∥H∥2 + (n + 1) c
2 ]+ 1

2 (n−1)λ + 1
2 n

2ϕ(H),

hn+1
ij

= 0, ∀i ≠ j, i, j > 2,

hr
ij = 0, ∀i ≠ j, i, j > 2, r = n + 1, … ,n + p,

hr
11 + hr

22 = 0, ∀r = n + 2, … ,n + p,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = … = hn+1

nn .

N(x) = {X ∈ TxM
n ∣ h(X,Y ) = 0, ∀Y ∈ TxM

n}.

∥H∥2 ≥ 4
n2 [Ric(X) − (n−1)(c − Ω)].

∥H∥2 ≥ 2τ
n(n−1) − c + 1

n
λ + n

n−1 ϕ(H).



Corollary	2.88	([107]) LetM n,n ≥ 3,be	an	n-dimensional	submanifold	of	an(n + p)-dimensional	real
space	formN n+p(c)of	constant	sectional	curvature	c	endowed	with	a	semi-symmetric	nonmetric	connection∇̃.
Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	pointx ∈ M n,	we	have

(2.133)

Recently, in [85] we have proposed a de�inition of the sectional curvature of the semi-symmetric nonmetric
connection, which does not depend on the orthonormal basis of a 2-plane section, i.e., is well de�ined.

More precisely, let (M, g) be a Riemannian manifold endowed with a semi-symmetric nonmetric
connection ∇. Recall that

where ∇0 is the Levi-Civita connection on (M, g).
We remarked in the previous section that one cannot de�ine the sectional curvature of a plane section 

π = span {e1, e2} ⊂ TpM , p ∈ M , by g(R(e1, e2)e2, e1).
This is the reason for which a well-de�ined sectional curvature is necessary; the steps to get there are

below (see [85]).
First we consider the linear connection

Then we prove the �irst result.

Proposition	2.89	([85]) Let(M, g)be	a	Riemannian	manifold,∇a	semi-symmetric	nonmetric	connection
given	by

and∇′a	linear	connection	de�ined	by

Then∇and∇′are	conjugate	connections,	i.e.,

Proof Let X,Y ,Z ∈ Γ(TM). Then

The basic properties of the connection ∇′ are given in the following.

Proposition	2.90	([85]) Let(M, g)be	a	Riemannian	manifold	and∇′the	connection	de�ined	by
∇′

XY = ∇0
X
Y − g(X,Y )P ,	where∇0is	the	Levi-Civita	connection.	Then:

(i)
∇′is	symmetric,	i.e.,	its	torsionT ′ = 0. 

(ii)
∇′is	nonmetric.  

Proof Let X,Y ,Z ∈ Γ(TM). We have:

(i)  
(ii)  

Next, we prove an important relation between the curvatures of the conjugate connections ∇ and ∇′.

∥H∥2(p) ≥ Θk(p) − c + 1
n
λ + n

n−1 ϕ(H).

∇XY = ∇0
XY + ω(Y )X,

∇′
XY = ∇0

XY − g(X,Y )P .

∇XY = ∇0
XY + ω(Y )X,

∇′
XY = ∇0

XY − g(X,Y )P .

Zg(X,Y ) = g(∇ZX,Y ) + g(X, ∇′
ZY ), ∀X,Y ,Z ∈ Γ(TM).

g(∇ZX,Y ) + g(X, ∇′
ZY ) = g(∇0

Z
X + ω(X)Z,Y ) + g(X, ∇0

Z
Y − g(Z,Y )P)

= Zg(X,Y ) + ω(X)g(Z,Y ) − g(Z,Y )g(X,P) = Zg(X,Y ).

T ′(X,Y ) = ∇′
XY − ∇′

YX − [X,Y ]

= ∇0
X
Y − g(X,Y )P − ∇0

Y
X + g(X,Y )P − [X,Y ] = 0.

(∇′
Xg)(Y ,Z) = Xg(Y ,Z) − g(∇0

X
Y − g(X,Y )P ,Z) − g(Y , ∇0

X
Z − g(X,Z)P)

= −g(X,Y )ω(Z) + g(X,Z)ω(Y ) ≠ 0.



Theorem	2.91	([85]) Let(M, g)be	a	Riemannian	manifold,∇a	semi-symmetric	nonmetric	connection,	and
∇′its	conjugate	connection	de�ined	by

Then

Proof Let X,Y ,Z,W ∈ Γ(TM). Then,

Inspired by an idea of B. Opozda [106], we then de�ine a (0, 4)-tensor �ield S by

Theorem 2.91 implies

and

Let p ∈ M  and π ⊂ TpM  a plane section. For an orthonormal basis {e1, e2} of π, we derive

By the formula of the curvature tensor of a semi-symmetric nonmetric connection, it follows that

which does not depend on the orthonormal basis {e1, e2} of π.

Therefore, we are now able to introduce the following de�inition of a sectional curvature of the semi-
symmetric nonmetric connection ∇.

De�inition The sectional	curvature of the plane section π ⊂ TpM  spanned by the orthonormal basis 
{e1, e2} is de�ined by

Using the above de�inition, we can compute the scalar curvature and the Ricci curvature of a Riemannian
space form admitting a semi-symmetric nonmetric connection.

Let M(c) be an n-dimensional Riemannian space form (the sectional curvature associated with the Levi-
Civita connection is a constant c) admitting a semi-symmetric nonmetric connection ∇. Let p ∈ M(c) and 
{e1, … , en} be an orthonormal basis of TpM .

The scalar	curvature with respect to ∇ is

where ei ∧ ej is the plane section spanned by ei and ej.
By using the de�inition of the sectional curvature K, we have

By the formula of the curvature tensor of a semi-symmetric nonmetric connection, it follows that

∇XY = ∇0
XY + ω(Y )X,

∇′
XY = ∇0

X
Y − g(X,Y )P .

g(R′(X,Y )Z,W) = −g(R(X,Y )W ,Z).

g(R(X,Y )Z,W) = g(∇X∇YZ − ∇Y ∇XZ − ∇[X,Y ]Z,W)

= Xg(∇YZ,W) − g(∇YZ, ∇′
XW) − Y g(∇XZ,W)

+g(∇XZ, ∇′
YW) − [X,Y ]g(Z,W) + g(Z, ∇′

[X,Y ]W)

= XY g(Z,W) − Xg(Z, ∇′
YW) − Y g(Z, ∇′

XW) + g(Z, ∇′
Y ∇′

XW)

−YXg(Z,W) + Y g(Z, ∇′
XW) + Xg(Z, ∇′

YW) − g(Z, ∇′
X∇′

YW)

−[X,Y ]g(Z,W) + g(Z, ∇′
[X,Y ]W) = −g(Z,R′(X,Y )W).

S(X,Y ,Z,W) = 1
2 [g(R(X,Y )W ,Z) + g(R′(X,Y )W ,Z)].

S(X,Y ,Z,W) = −S(X,Y ,W ,Z)

S(X,Y ,Z,W) = 1
2 [g(R(X,Y )W ,Z) − g(R(X,Y )Z,W)].

S(e1, e2, e1, e2) = 1
2 [g(R(e1, e2)e2, e1) − g(R(e1, e2)e1, e2)].

S(e1, e2, e1, e2) = R0(e1, e2, e1, e2) − 1
2 [s(e2, e2) + s(e1, e1)],

K(π) = 1
2 [g(R(e1, e2)e2, e1) + g(R(e2, e1)e1, e2)].

τ =∑
1≤i<j≤n

K(ei ∧ ej),

τ = 1
2 ∑1≤i<j≤n

[g(R(ei, ej)ej, ei) + g(R(ej, ei)ei, ej)] =∑
1≤i,j≤n

g(R(ei, ej)ej, ei).



Let p ∈ M(c), X ∈ TpM  unit, and {e1 = X, e2, … , en} be an orthonormal basis of TpM . It is known
that

On the other hand, recall that B.Y. Chen [29] established an estimate of the mean curvature in terms of the
Ricci curvature for any Riemannian submanifold of dimension n in a Riemannian space form M̃(c) of
constant sectional curvature c:

known as the Chen-Ricci	inequality.
As an application of the new de�inition, we established in [85] the Chen-Ricci inequality for submanifolds

in a Riemannian space form admitting a semi-symmetric nonmetric connection by using the sectional
curvature de�ined in the previous section.

Let M̃(c) be an m-dimensional Riemannian space form, ∇̃ a semi-symmetric nonmetric connection on 
M̃(c), and M an n-dimensional (n ≥ 2) submanifold of M̃(c).

The Gauss formulae for the semi-symmetric connection ∇̃ and the Levi-Civita connection ∇̃0,
respectively, are written as

for all vector �ields X,Y  on the submanifold M. In the above formulae, h0 is the second fundamental form of
M, and h is a (0, 2)-tensor on M. In [2], it is proven that h0 = h.

We decompose the vector �ield P on M uniquely into its tangent and normal components P ⊤ and P ⊥,
respectively; we have P = P ⊤ + P ⊥.

The Gauss equation with respect to the semi-symmetric nonmetric connection is given by (see also [2])

for any vector �ields X, Y , Z, and W on M.

Theorem	2.92	([85]) LetM̃(c)be	an	m-dimensional	Riemannian	space	form,∇̃a	semi-symmetric	nonmetric
connection	on	it,	and	M	an	n-dimensional(n ≥ 2)submanifold	ofM̃(c).	Then	we	have	the	following:

1.
For	each	unit	vectorX ∈ TpM ,

(2.134)
 

2.
IfH(p) = 0,	then	a	unit	tangent	vector	X	at	p	satis�ies	the	equality	case	of	the	inequality (2.134) if	and	only
ifX ∈ Np,	whereNp = {X ∈ TpM|h(X,Y ) = 0, ∀Y ∈ TpM}.

 
3.

The	equality	case	of	the	inequality (2.134) holds	identically	for	all	unit	tangent	vectors	at	p	if	and	only	if
either:
(i)

p	is	a	totally	geodesic	point	or  
(ii)

n = 2and	p	is	a	totally	umbilical	point. 

 

τ = 1
2 n(n−1)c + 1

2 (n−1)trace s.

Ric(X) =∑
n

j=2
K(X ∧ ej) = 1

2 ∑
n

j=2
[g(R(X, ej)ej,X) + g(R(ej,X)X, ej)]

= (n−1)c + 1
2 [(n−2)s(X,X) + trace s].

Ric(X) ≤ (n−1)c + n2

4 ∥ H ∥2,

∇̃XY = ∇XY + h(X,Y ),

∇̃0
XY = ∇0

XY + h0(X,Y ),

g(R̃(X,Y )Z,W) = g(R(X,Y )Z,W) + g(h(X,Z),h(Y ,W))
−g(h(X,W),h(Y ,Z))

+g(P ⊥,h(Y ,Z))g(X,W) − g(P ⊥,h(X,Z))g(Y ,W),

Ric(X) ≤ n2

4 ∥ H ∥2 +(n−1)c − 1
2 [trace s + (n−2)s(X,X)]

− 1
2 [nω(H) + (n−2)g(P ⊥,h(X,X))].



Proof 1. Let p ∈ M  and X ∈ TpM  be a unit tangent vector. Consider an orthonormal basis 
{e1, … , en, en+1, … , em} in TpM̃(c), with e1 = X, e2, … , en tangent to M at p.

As usual, one denotes hr
ij = g(h(ei, ej), er), i, j ∈ {1, … ,n}, r ∈ {n + 1, … ,m}. We have

If we take X = W = e1 and Y = Z = ej in the Gauss equation, we have

respectively, and from the Gauss equation if we put X = Z = e1, Y = W = ej, we obtain

Because

from the previous two relations, we have

By substitution we �ind

The last equation implies

Obviously one has

with equality if and only if

It follows that

2. If a unit vector X at p satis�ies the equality case in (2.134), we get

Therefore, because H(p) = 0, we have hr
1j = 0, for all j ∈ {1, … ,n}, r ∈ {n + 1, … ,m}, that is, 

X ∈ Np.
3. The equality case of the inequality (2.134) holds for all unit tangent vectors at p if and only if

which imply h(ei, ej) = 0, 1 ≤ i ≠ j ≤ n, and (n−2)H(p) = 0.

Ric(X) =∑n

j=2
K(e1 ∧ ej).

g(R(e1, ej)ej, e1) = c − s(ej, ej) +∑
m

r=n+1
[hr

11h
r
jj − (hr

1j)
2] − g(P ⊥,h(ej, ej)),

g(R(ej, e1)e1, ej) = c − s(e1, e1) +∑
m

r=n+1
[hr

11h
r
jj − (hr

1j)
2] − g(P ⊥,h(e1, e1)).

K(e1 ∧ ej) = 1
2 [g(R(e1, ej)ej, e1) + g(R(ej, e1)e1, ej)],

K(e1 ∧ ej) = c − 1
2 [s(ej, ej) + s(e1, e1)] +∑

m

r=n+1
[hr

11h
r
jj − (hr

1j)
2]

− 1
2 [g(P ⊥,h(ej, ej)) + g(P ⊥,h(e1, e1))].

Ric(X) = (n−1)c − 1
2 [trace s + (n−2)s(X,X)]

− 1
2 [nω(H) + (n−2)g(P ⊥,h(X,X))]

+∑
n

j=2
∑

m

r=n+1
[hr

11h
r
jj − (hr

1j)
2].

Ric(X) ≤ (n−1)c − 1
2 [trace s + (n−2)s(X,X)]

− 1
2 [nω(H) + (n−2)g(P ⊥,h(X,X))] +∑

n

j=2
∑

m

r=n+1
hr

11h
r
jj.

hr
11(∑

n

j=2
hr
jj) ≤ 1

4 (∑
n

i=1
hr
ii)

2

,

hr
11 = hr

22 + ⋯ + hr
nn.

Ric(X) ≤ n2

4 ∥ H ∥2 +(n−1)c − 1
2 [trace s + (n−2)s(X,X)]

− 1
2 [nω(H) + (n−2)g(P ⊥,h(X,X))].

hr
1i = 0, 2 ≤ i ≤ n, ∀r ∈ {n + 1, … ,m},

hr
11 = hr

22 + … + hr
nn, ∀r ∈ {n + 1, … ,m}.

hr
ij = 0, 1 ≤ i ≠ j ≤ n, r ∈ {n + 1, … ,m},

hr
11 + … + hr

nn−2hr
ii = 0, i ∈ {1, … ,n}, r ∈ {n + 1, … ,m},



We distinguish two cases:
(i)

n ≠ 2; h(ei, ej) = 0, ∀i, j ∈ {1, … ,n}, i.e., hp vanishes on TpM .  
(ii)

n = 2; then h(ei, ej) = g(ei, ej)H(p), for any i, j ∈ {1, 2}, i.e., p is a totally umbilical point. 
Remark This de�inition of the sectional curvature of the semi-symmetric nonmetric connection was used
in the very recent work of M.E. Aydin, R. Lopez, and A. Mihai (see [6, 9]) for the study of constant sectional
curvature surfaces with a semi-symmetric nonmetric connection, respectively, in the classi�ication of
translation surfaces in R3 with constant sectional curvature.

2.4	 Statistical	Submanifolds
In this subsection, we study the behavior of submanifolds in statistical manifolds of constant curvature. We
investigate curvature properties of such submanifolds. Some inequalities for submanifolds with any
codimension and hypersurfaces of statistical manifolds of constant curvature are also established.

Statistical manifolds introduced, in 1985, by Amari have been studied in terms of information geometry.
Since the geometry of such manifolds includes the notion of dual connections, also called conjugate
connections in af�ine geometry, it is closely related to af�ine differential geometry. Also, a statistical structure
is a generalization of a Hessian structure [114].

Let (M̃, g̃) be a Riemannian manifold and M a submanifold of M̃ . If (M, ∇, g) is a statistical manifold,

then we call (M, ∇, g) a statistical submanifold of (M̃, g̃), where ∇ is an af�ine connection on M and g is

the metric tensor on M induced from the Riemannian metric g̃ on M̃. Let ∇̃ be an af�ine connection on M̃. If 
(M̃, g̃, ∇̃) is a statistical manifold and M a submanifold of M̃, then (M, ∇, g) is also a statistical manifold

by induced connection ∇ and metric g. In the case that (M̃, g̃) is a semi-Riemannian manifold, the induced

metric g has to be nondegenerate. For details, see [116, 119].
In the geometry of submanifolds, Gauss formula, Weingarten formula, and the equations of Gauss,

Codazzi, and Ricci are known as fundamental equations. Corresponding fundamental equations on statistical
submanifolds were obtained in [119]. A condition for the curvature of a statistical manifold to admit a kind
of standard hypersurface was given by H. Furuhata [58, 59], and he introduced a complex version of the
notion of statistical structures as well.

On the other hand, B.Y. Chen [24] established basic inequalities for submanifolds in real space forms,
well known as Chen inequalities. In particular, a sharp relationship between the Ricci curvature and the
squared mean curvature for any n-dimensional Riemannian submanifold of a real space form was proved in
[29], which is known as the Chen-Ricci inequality. Moreover, Chen’s inequalities for submanifolds of real
space forms endowed with a semi-symmetric metric connection were obtained in [86, 87].

In [7] we obtained some inequalities for submanifolds with any codimension and hypersurfaces of
statistical manifolds.

We �irst introduce the statistical submanifolds.
Let (M̃, g̃) be a Riemannian manifold of dimension (n + k) and ∇̃ an af�ine connection on M̃. One

denotes the set of sections of a vector bundle E → M̃  by Γ(E). Thus, the set of tensor �ields of type (p, q) on
M̃  is denoted by Γ(TM̃ (p,q)).

De�inition	([58]) Let T̃ ∈ Γ(TM̃ (1,2)) be the torsion tensor �ield of ∇̃. Then a pair (∇̃, g̃) is called a

statistical	structure on M̃  if
(2.135)

holds for X,Y ,Z ∈ Γ(TM̃), and

(2.136)

(∇̃Xg̃)(Y ,Z) − (∇̃Y g̃)(X,Z) = g̃(T̃ (X,Y ),Z)

T̃ = 0.



A statistical	manifold is a Riemannian manifold (M̃, g̃) of dimension (n + k), endowed with a pair of

torsion-free af�ine connections ∇̃ and ∇̃∗ satisfying
(2.137)

for any X,Y , and Z ∈ Γ(TM̃). One denotes a statistical manifold by (M̃, g̃, ∇̃). The connections ∇̃ and 

∇̃∗ are called dual	connections, and it is easily shown that (∇̃∗)
∗

= ∇̃. If (∇̃, g̃) is a statistical structure on 

M̃, then (∇̃∗, g̃) is also a statistical structure [4, 119].

On the other hand, any torsion-free af�ine connection ∇̃ always has a dual connection given by
(2.138)

where ∇̃0 is Levi-Civita connection on M̃ .
Denote by R̃ and R̃∗ the curvature tensor �ields of ∇̃ and ∇̃∗, respectively.
A statistical structure (∇̃, g̃) is said to be of	constant	curvaturec ∈ R if

(2.139)
A statistical structure (∇̃, g̃) of constant curvature 0 is called a	Hessian	structure.

The curvature tensor �ields R̃ and R̃∗ of dual connections satisfy
(2.140)

from which it follows immediately that if (∇̃, g̃) is a statistical structure of constant structure c, then 

(∇̃∗, g̃) is also a statistical structure of constant c. In particular, if (∇̃, g̃) is Hessian, so is (∇̃∗, g̃).

Let M be an n-dimensional submanifold of M̃ . Then, for any X,Y ∈ Γ(TM), according to [119], the
corresponding Gauss formulas are

(2.141)
(2.142)

where h and h∗are symmetric and bilinear, called the imbedding	curvature	tensor of M in M̃  for ∇̃ and the
imbedding	curvature	tensor of M in M̃  for ∇̃∗, respectively.

In [119], it is also proved that (∇, g) and (∇∗, g) are dual statistical structures on M, where g is induced
metric on Γ(TM) from the Riemannian metric g̃ on M̃.

Since h and h∗are bilinear, we have the linear transformations Aξ and A∗
ξ  de�ined by

(2.143)
(2.144)

for any ξ ∈ Γ(TM ⊥) and X,Y ∈ Γ(TM). Further, in [119], the corresponding Weingarten formulas are as
follows:

(2.145)
(2.146)

for any ξ ∈ Γ(TM ⊥) and X ∈ Γ(TM). The connections ∇⊥
X

 and ∇∗⊥
X

 given by (2.145) and (2.146) are
Riemannian dual connections with respect to induced metric on Γ(TM ⊥).

The corresponding Gauss, Codazzi, and Ricci equations are given by the following:

Proposition	2.93	([119]) Let∇̃be	a	dual	connection	onM̃and∇the	induced	connection	onM.LetR̃and	R	be
the	Riemannian	curvature	tensors	of∇̃and∇,respectively.	Then

(2.147)

(2.148)

Zg̃(X,Y ) = g̃(∇̃ZX,Y )+ g̃(X, ∇̃∗
ZY ),

∇̃ + ∇̃∗ = 2∇̃0,

R̃(X,Y )Z = c{g̃(Y ,Z)X − g̃(X,Z)Y }.

g̃(R̃∗(X,Y )Z,W) = −g̃(Z, R̃(X,Y )W),

∇̃XY = ∇XY + h(X,Y ),
∇̃∗

XY = ∇∗
XY + h∗(X,Y ),

g(AξX,Y ) = g̃(h(X,Y ), ξ),

g(A∗
ξX,Y ) = g̃(h∗(X,Y ), ξ),

∇̃Xξ = −A∗
ξX + ∇⊥

Xξ,

∇̃∗
Xξ = −AξX + ∇∗⊥

X ξ,

g̃(R̃(X,Y )Z,W) = g(R(X,Y )Z,W) + g̃(h(X,Z),h∗(Y ,W))

−g̃(h∗(X,W),h(Y ,Z)),

(R̃(X,Y )Z)
⊥

= ∇⊥
Xh(Y ,Z) − h(∇XY ,Z) − h(Y , ∇XZ)



(2.149)

whereR⊥is	the	Riemannian	curvature	tensor	onTM ⊥, ξ, η ∈ Γ(TM ⊥)and[A∗
ξ ,Aη] = A∗

ξAη − AηA
∗
ξ .

For the equations of Gauss, Codazzi, and Ricci with respect to the dual connection ∇̃∗ on M̃ , we have the
following proposition:

Proposition	2.94	([119]) Let∇̃∗be	a	dual	connection	onM̃and∇∗the	induced	connection	onM.LetR̃∗and
R∗be	the	Riemannian	curvature	tensors	for∇̃∗and∇∗,respectively.	Then

(2.150)

(2.151)

(2.152)
whereR∗⊥is	the	Riemannian	curvature	tensor	for∇⊥∗onTM ⊥, ξ, η ∈ Γ(TM ⊥)and

[Aξ,A∗
η] = AξA

∗
η − A∗

ηAξ.

Let (M̃, g̃, ∇̃) be a statistical manifold and f : M → M̃  be an immersion. We de�ine a pair g and ∇ on M by

(2.153)

for any X,Y ,Z ∈ Γ(TM), where the connection induced from ∇̃ by f on the induced bundle f ∗TM̃ → M

is denoted by the same symbol ∇̃. Then the pair (∇, g) is a statistical	structure on M, which is called the
statistical structure induced by f from (∇̃, g̃) (cf. [58]).

De�inition	([58]) Let (M, g, ∇) and (M̃, g̃, ∇̃) be two statistical manifolds. An immersion f : M → M̃  is

called a statistical	immersion if (∇, g) coincides with the induced statistical structure, i.e., if (2.153) holds.

Let f : (M, g, ∇) → (M̃, g̃, ∇̃) be a statistical immersion of codimension one, and ξ ∈ Γ(f ∗TM̃) be a unit

normal vector �ield of f. Also we denote the dual connection of ∇̃ with respect to g̃ by ∇̃∗. Thus, from [58],
we have the following Gauss and Weingarten formulas:

(2.154)
(2.155)
(2.156)
(2.157)

where h,h∗ ∈ Γ(TM (0,2)),A,A∗ ∈ Γ(TM (1,1)), and τ, τ ∗ ∈ Γ(TM ∗) satisfy
(2.158)
(2.159)

for any X,Y ∈ Γ(TM).
Denote by R̃, R̃∗,R, and R∗ the curvature tensor �ields of the connections ∇̃, ∇̃∗, ∇, and ∇∗,

respectively. Then, for the Gauss equation of a statistical hypersurface, we calculate
(2.160)

The normal component of R̃(X,Y )Z is
(2.161)

−∇⊥
Y
h(Y ,Z) + h(∇YX,Z) + h(X, ∇YZ),

g̃(R⊥(X,Y )ξ, η) = g̃(R̃(X,Y )ξ, η)+ g([A∗
ξ ,Aη]X,Y ),

g̃(R̃∗(X,Y )Z,W) = g(R∗(X,Y )Z,W) + g̃(h∗(X,Z),h(Y ,W))

−g̃(h(X,W),h∗(Y ,Z)),

(R̃∗(X,Y )Z)
⊥

= ∇∗⊥
X
h∗(Y ,Z) − h∗(∇∗

XY ,Z) − h∗(Y , ∇∗
XZ)

−∇∗⊥
Y h∗(Y ,Z) + h∗(∇∗

YX,Z) + h∗(X, ∇∗
YZ),

g̃(R∗⊥(X,Y )ξ, η) = g̃(R̃∗(X,Y )ξ, η)+ g([Aξ,A∗
η]X,Y ),

g = f ∗g̃, g(∇XY ,Z) = g̃(∇̃Xf∗Y , f∗Z),

∇̃Xf∗Y = f∗∇XY + h(X,Y )ξ,
∇̃Xξ = −f∗A

∗X + τ ∗(X)ξ,
∇̃∗

Xf∗Y = f∗∇∗
XY + h∗(X,Y )ξ,

∇̃∗
Xξ = −f∗AX + τ(X)ξ,

h(X,Y ) = g(AX,Y ); h∗(X,Y ) = g(A∗X,Y ),
τ(X) + τ ∗(X) = 0,

R̃(X,Y )Z = R(X,Y )Z − h(Y ,Z)A∗X + h(X,Z)A∗Y + (∇Xh)(Y ,Z)ξ

−(∇Y h)(X,Z)ξ + τ ∗(X)h(Y ,Z)ξ − τ ∗(Y )h(X,Z)ξ.



which is known as the Codazzi equation. Similarly we get the Ricci equation of a statistical hypersurface as
follows:

(2.162)

The equations of Gauss, Codazzi, and Ricci with respect to the dual connection ∇̃∗ on M̃  are
(2.163)

(2.164)

(2.165)

In the case when the ambient space is of constant curvature c, the equations of Gauss, Codazzi, and Ricci
reduce to

(2.166)
(2.167)
(2.168)
(2.169)

and the dual ones reduce to
(2.170)
(2.171)
(2.172)
(2.173)

In [7] we obtained general inequalities for statistical submanifolds.
Let M̃  be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R, denoted by M̃(c),

and M be an n-dimensional statistical submanifold of M̃(c).
We use the notation

and, similarly,

where R and R∗ are the curvature tensor �ields of ∇ and ∇∗.
Let {e1, … , en} and {en+1, … , en+k} be orthonormal tangent and normal frames, respectively, on M.
The mean curvature vector �ields are given by

(2.174)

and

(2.175)

Then we have the following.

Proposition	2.95	([7]) Let	M	be	an	n-dimensional	submanifold	of	an(n + k)-dimensional	statistical
manifoldM̃(c)of	constant	curvaturec ∈ R.	Assume	that	the	imbedding	curvature	tensors	h	andh∗satisfy

for	anyX,Y ∈ Γ(TM).Then	M	is	also	a	statistical	manifold	of	constant	curvaturec + g(H,H ∗),	whenever
g(H,H ∗)is	constant.

(R̃(X,Y )Z)
⊥

= (∇Xh)(Y ,Z)ξ

−(∇Y h)(X,Z)ξ + τ ∗(X)h(Y ,Z)ξ − τ ∗(Y )h(X,Z)ξ,

R̃(X,Y )ξ = −(∇XA
∗)Y + (∇YA

∗)X − τ ∗(Y )A∗X + τ ∗(X)A∗Y

−h(X,A∗Y )ξ + h(A∗X,Y )ξ + dτ ∗(X,Y )ξ.

R̃∗(X,Y )Z = R∗(X,Y )Z − h∗(Y ,Z)AX + h∗(X,Z)AY + (∇∗
Xh

∗)(Y ,Z)ξ

−(∇∗
Y h

∗)(X,Z)ξ + τ(X)h∗(Y ,Z)ξ − τ(Y )h∗(X,Z)ξ,

(R̃∗(X,Y )Z)
⊥

= (∇∗
Xh

∗)(Y ,Z)ξ

−(∇∗
Y h

∗)(X,Z)ξ + τ(X)h∗(Y ,Z)ξ − τ(Y )h∗(X,Z)ξ,
R̃∗(X,Y )ξ = −(∇∗

XA)Y + (∇∗
YA)X − τ(Y )AX + τ(X)AY

−h∗(X,AY )ξ + h∗(AX,Y )ξ + dτ(X,Y )ξ.

R(X,Y )Z = c{g(Y ,Z)X − g(X,Z)Y } + {h(Y ,Z)A∗X − h(X,Z)A∗Y },
(∇Xh)(Y ,Z) + τ ∗(X)h(Y ,Z) = (∇Y h)(X,Z) + τ ∗(Y )h(X,Z),

(∇XA
∗)Y − τ ∗(X)A∗Y = (∇YA

∗)X − τ ∗(Y )A∗X,
h(X,A∗Y ) − h(A∗X,Y ) = dτ ∗(X,Y ),

R∗(X,Y )Z = c{g(Y ,Z)X − g(X,Z)Y } + {h∗(Y ,Z)AX − h∗(X,Z)AY },
(∇∗

Xh
∗)(Y ,Z) + τ(X)h∗(Y ,Z) = (∇∗

Y h
∗)(X,Z) + τ(Y )h∗(X,Z),

(∇∗
XA)Y − τ(X)AY = (∇∗

YA)X − τ(Y )AX,
h∗(X,AY ) − h∗(AX,Y ) = dτ(X,Y ).

R(X,Y ,Z,W) = g(R(X,Y )W ,Z)

R∗(X,Y ,Z,W) = g(R∗(X,Y )W ,Z),

H = 1
n
∑

n

i=1
h(ei, ei) = 1

n
∑

k

α=1
(∑

n

i=1
hα
ii
)en+α, hα

ij
= g̃(h(ei, ej), en+α)

H ∗ = 1
n
∑

n

i=1
h∗(ei, ei) = 1

n
∑

k

α=1
(∑

n

i=1
h∗α
ii
)en+α, h∗α

ij
= g̃(h∗(ei, ej), en+α).

h(X,Y ) = g(X,Y )H, h∗(X,Y ) = g(X,Y )H ∗,



De�inition	([103]) Let M̃  be an (n + k)-dimensional statistical manifold. Then the Ricci	tensorS̃ (of type 
(0, 2)) is de�ined by

where R̃ is the curvature tensor �ield of the af�ine connection ∇̃ on M̃ .

Thus we have the following result.

Theorem	2.96	([7]) LetM̃(c)be	an(n + k)-dimensional	statistical	manifold	of	constant	curvaturec ∈ Rand
M	an	n-dimensional	statistical	submanifold	ofM̃(c).	Also	let{e1, … , en}and{n1, … ,nk}be	orthonormal
tangent	and	normal	frames,	respectively,	onM.Then	Ricci	tensor	S	and	dual	Ricci	tensorS ∗of	M	satisfy

(2.176)

(2.177)

The proof is technical.

De�inition	([103]) Let ∇ be a torsion-free af�ine connection on a Riemannian manifold M that admits a
parallel volume element ω. If ω is a volume element on M such that ∇ω = 0, then (∇,ω) is called an
equiaf�ine	structure on M.

Proposition	([103]) An	af�ine	connection∇with	zero	torsion	has	symmetric	Ricci	tensor	if	and	only	if	it	is
locally	equiaf�ine.

Thus we have the following result for statistical manifolds having equiaf�ine connection.

Lemma	2.97	([7]) LetM̃(c)be	an(n + k)-dimensional	statistical	manifold	of	constant	curvaturec ∈ Rand
M	an	n-dimensional	submanifold	ofM̃(c).Assume	that	the	af�ine	connection∇of	M	is	equiaf�ine.	Then	one
veri�ies

Corollary	2.98	([7]) LetM̃(c)be	an(n + k)-dimensional	statistical	manifold	of	constant	curvaturec ∈ Rand
M	an	n-dimensional	equiaf�ine	submanifold	M	ofM̃(c).Let	S	andS ∗denote	the	dual	Ricci	tensors	of	M.	Then	we
have

We established an estimate of the scalar curvature of a statistical submanifold in terms of its mean curvature
vectors and the lengths of the imbedding curvature tensors.

Proposition	2.99	([7]) LetM̃(c)be	an(n + k)-dimensional	statistical	manifold	of	constant	curvaturec ∈ R

and	M	an	n-dimensional	statistical	submanifold	ofM̃(c).We	have
(2.178)

whereτ is	the	scalar	curvature	of	M.

Proof From (2.147), we have the Gauss equation as follows:

where X,Y ,Z, and W ∈ Γ(TM). Putting X = Z = ei and Y = W = ej,i, j = 1, … ,n, we write

S̃(Y ,Z) = trace{X → R̃(X,Y )Z},

S(X,Y ) = c(n−1)g(X,Y ) +∑
k

i=1
[g(Ani

X,Y )tr A∗
ni

− g(Ani
Y ,A∗

ni
X)],

S ∗(X,Y ) = c(n−1)g(X,Y ) +∑
k

i=1
g(A∗

ni
X,Y )tr Ani

− g(Ani
X,A∗

ni
Y ).

∑
k

i=1
[Ani

,A∗
ni
] = 0.

(S − S ∗)(X,Y ) =∑
k

i=1
g((Ani

− A∗
ni
)X,Y )tr(A∗

ni
− Ani

).

2τ ≥ n(n−1)c + n2g̃(H,H ∗) − ∥h∥∥h∗∥,

R(X,Y ,Z,W) = c[g(X,Z)g(Y ,W) − g(X,W)g(Y ,Z)]

+g̃(h∗(X,Z),h(Y ,W)) − g̃(h(X,W),h∗(Y ,Z)),



By summing over 1 ≤ i, j ≤ n, it follows that

(2.179)

which gives (2.178).

Remark On any statistical submanifold M of M̃(c) the equality τ = τ ∗ holds.

Let ∇0 be the Levi-Civita connection of an n-dimensional submanifold M in an (n + k)-dimensional
statistical manifold M̃(c) of constant curvature c. Denote by H 0 the mean curvature vector �ield. Then a
sharp relationship between the Ricci curvature and the squared mean curvature obtained by B.Y. Chen [29]
is the following:

(2.180)
which is known as the Chen-Ricci	inequality.

From (2.138) we get 2H 0 = H + H ∗ and thus
(2.181)

Therefore, from the last two equations we derive
(2.182)

For statistical hypersurfaces we also obtained some inequalities.
By analogy with Proposition 2.99, we have an inequality for statistical hypersurfaces as follows:

Proposition	2.100	([7]) Let	M	be	a	statistical	hypersurface	of	an(n + 1)-dimensional	statistical	manifold
M̃(c)of	constant	curvaturec ∈ R.We	have

(2.183)

The proof uses the well-known Cauchy-Buniakowski-Schwarz inequality.

Proposition	2.101	([7]) Let	M	be	a	statistical	hypersurface	of	an(n + 1)-dimensional	statistical	manifold
M̃(c).For	eachX ∈ Tp(M)we	have

Example Recall Example 5.4 from [58]. Let (H, g̃) be the upper half space of constant curvature −1

An af�ine connection ∇̃ on H is given by

where i, j = 1, … ,n. The curvature tensor �ield R̃ of ∇̃ is identically zero, i.e., c = 0. Thus (H, ∇̃, g̃) is a
Hessian manifold of constant Hessian curvature 4.

For a constant y0 > 0, we get the following immersion by f0:

R(ei, ej, ei, ej) = c[g(ei, ei)g(ej, ej) − g(ei, ej)
2]+ g̃(h∗(ei, ei),h(ej, ej))

−g̃(h(ei, ej),h∗(ej, ei)).

2τ = (n2 − n)c + n2g(H,H ∗) −∑
n

i,j=1
∑

k

α=1
hα
ijh

∗α
ij

≥ n(n−1)c + n2g̃(H,H ∗) − ∥h∥∥h∗∥,

Ric0(X) ≤ n2

4 ∥H 0∥2 + (n−1)c,

∥H 0∥2 = 1
4 (∥H∥2 + ∥H ∗∥2 + 2g(H,H ∗)).

Ric0(X) ≤ n2

16 ∥H∥2 + n2

16 ∥H ∗∥2 + n2

8 g̃(H,H ∗) + (n−1)c.

2τ ≥ n(n−1)c + n2∥H∥∥H ∗∥ − ∥h∥∥h∗∥.

Ric(X) = (n−1)c + ng̃(h∗(X,X),H) −∑
n

i=1
hi1h

∗
i1,

Ric∗(X) = (n−1)c + ng̃(h(X,X),H ∗) −∑
n

i=1
hi1h

∗
i1.

H := {y = (y1, … , yn+1) ∈ Rn+1|yn+1 > 0}, g̃ := (yn+1)−2∑
n+1

k=1
dykdyk.

∇̃ ∂
∂yn+1

∂
∂yn+1 = (yn+1)

−1 ∂
∂yn+1 ,

∇̃ ∂
∂yi

∂
∂yj = 2δij(yn+1)

−1 ∂
∂yn+1 ,

∇̃ ∂
∂yi

∂
∂yn+1 = ∇̃ ∂

∂yn+1

∂
∂yj = 0,



Let (∇, g) be the statistical structure on Rn induced by f0 from (∇̃, g̃). We then get that (∇, g) is a

Hessian structure and K (∇,g) = 0. In other words, f0 is a statistical immersion of the trivial Hessian
manifold (Rn, ∇, g) into the upper half Hessian space (H, ∇̃, g̃). It is easy to calculate that

(2.184)

which means that the equality case of (2.183) is satis�ied for (Rn, ∇, g) and (H, ∇̃, g̃).

On the other hand this example can be generalized by using Lemma 5.3 of [58]. Let (H, ∇̃, g̃) be a
Hessian manifold of constant Hessian curvature c̃ ≠ 0,(M, ∇, g) a trivial Hessian manifold, and f : M → H

a statistical immersion of codimension one. Then the following expressions hold:

thus the immersion f has codimension one and satis�ies the equality case of (2.183).

Next, we give the complete proof of the Chen-Ricci inequalities for statistical submanifolds (of arbitrary
codimension) in statistical manifold of constant curvature.

Let M̃(c) be an (n + k)-dimensional statistical manifold of constant curvature c ∈ R and M an n-
dimensional statistical submanifold of M̃(c). Recall the Gauss equation:

By setting X = Z = ei and Y = W = ej,i, j = 1, … ,n and summing over 1 ≤ i, j ≤ n, then we have

where H and H ∗ are the mean curvature vector �ields de�ined by (2.174) and (2.175).
From this, we get

From 2H 0 = H + H ∗ it follows that
(2.185)

On the other hand we can write

We similarly derive

f0 : Rn → H, f0(y1, … , yn) = (y1, … , yn, y0).

ξ = y0
∂

∂yn+1 , h = 2g, h∗ = 0, ∥H ∗∥ = 0,

A∗ = 0, h∗ = 0, ∥H ∗∥ = 0;

R̃(X,Y ,Z,W) = R(X,Y ,Z,W) + g̃(h(X,Z),h∗(Y ,W))
−g̃(h∗(X,W),h(Y ,Z)).

n(n−1)c = 2τ − n2g̃(H,H ∗) +∑n

i,j=1
g̃(h∗(ei, ej),h(ei, ej)),

n(n−1)c = 2τ − n2

2 [g̃(H + H ∗,H + H ∗) − g̃(H,H) − g(H ∗,H ∗)]

+ 1
2 ∑

n

i,j=1
[g̃(h∗(ei, ej) + h(ei, ej),h∗(ei, ej) + h(ei, ej))

−g̃(h(ei, ej),h(ei, ej)) − g̃(h∗(ei, ej),h∗(ei, ej))].

n(n−1)c = 2τ−2n2g̃(H 0,H 0) + n2

2 g̃(H,H) + n2

2 g̃(H ∗,H ∗)

+2∑
n

i,j=1
g̃(h0(ei, ej),h0(ei, ej)) − 1

2 (∥h∥2 + ∥h∗∥2).

∥h∥2 =∑
k

α=1
{(hα

11)2 + (hα
22 + … + hα

nn)2 + 2∑
1≤i<j≤n

(hα
ij)

2
}

−∑
k

α=1
∑

2≤i≠j≤n
hα
iih

α
jj

= 1
2 ∑

k

α=1
{(hα

11 + hα
22 + … + hα

nn)2 + (hα
11 − hα

22 − … − hα
nn)2}

+2∑
k

α=1
∑

1≤i<j≤n
(hα

ij)
2

−∑
k

α=1
∑

2≤i≠j≤n
hα
iih

α
jj ≥ 1

2 n
2∥H∥2

−∑
k

α=1
∑

2≤i≠j≤n
[hα

iih
α
jj − (hα

ij)
2].



(2.186)

Thus we have the following inequality:

(2.187)

Substituting (2.187) into (2.185), we obtain

Since

the previous inequality becomes

Then we get
(2.188)

By the Gauss equation with respect to the Levi-Civita connection, we have

and, respectively,

Substituting in (2.188) it follows that

Finally we obtain

We denote by max K̃ 0(X ∧ ⋅) the maximum of the sectional curvature function of M̃(c) with respect to 
∇̃ restricted to 2-plane sections of the tangent space TpM  which are tangent to X.

Summing up, we can state the following Chen-Ricci inequality:

∥h∗∥2 ≥ 1
2 n

2∥H ∗∥2 −∑
k

α=1
∑

2≤i≠j≤n
[h∗α

ii h
∗α
jj − (h∗α

ij )2].

∥h∥2 + ∥h∗∥2 ≥ 1
2 n

2∥H∥2 + 1
2 n

2∥H ∗∥2 −∑
k

α=1
∑

2≤i≠j≤n
(hα

ii + h∗α
ii )(hα

jj + h∗α
jj )

+2∑
k

α=1
∑

2≤i≠j≤n
hα
iih

∗α
jj +∑

k

α=1
∑

2≤i≠j≤n
[(hα

ij)
2 + (h∗α

ij )2].

n(n−1)c ≤ 2τ−2n2g̃(H 0,H 0) + n2

2 g̃(H,H) + n2

2 g̃(H ∗,H ∗) + 2||h0||2

+2∑
k

α=1
∑

2≤i≠j≤n
h0α
ii h

0α
jj − n2

4 g̃(H,H) − n2

4 g̃(H ∗,H ∗) −∑
k

α=1
∑

2≤i≠j≤n
hα
iih

∗α
jj

− 1
2 ∑

k

α=1
∑

2≤i≠j≤n
[(hα

ij)
2 + (h∗α

ij )2].

∑
2≤i≠j≤n

R(ei, ej, ei, ej) = (n−1)(n−2)c +∑
k

α=1
∑

2≤i≠j≤n
(hα

iih
∗α
jj − hα

ijh
∗α
ij ),

n(n−1)c ≤ 2τ−2n2g̃(H 0,H 0) + n2

4 g̃(H,H) + n2

4 g̃(H ∗,H ∗) + 2 ∥ |h0||2

+2∑
k

α=1
∑

2≤i≠j≤n
h0α
ii h

0α
jj −∑

2≤i≠j≤n
R(ei, ej, ei, ej) + (n−1)(n−2)c

− 1
2 ∑

k

α=1
∑

2≤i≠j≤n
(hα

ij + h∗α
ij )2.

Ric(X) ≥ n2g̃(H 0,H 0) − n2

8 g̃(H,H) + n2

8 g̃(H ∗,H ∗) + (n−1)c

−||h0||2 −∑
k

α=1
∑

2≤i≠j≤n
[h0α

ii h
0α
jj − (h0α

ij )2].

∑
1≤i≠j≤n

R̃0(ei, ej, ei, ej) = 2τ 0 − n2g̃(H 0,H 0) + ||h0||2,

∑
2≤i≠j≤n

R̃0(ei, ej, ei, ej) =∑
2≤i≠j≤n

R0(ei, ej, ei, ej)

−∑
k

α=1
∑

2≤i≠j≤n
[h0α

ii h
0α
jj − (h0α

ij )2].

Ric(X) ≥ 2τ 0 −∑
1≤i≠j≤n

R̃0(ei, ej, ei, ej) − n2

8 g̃(H,H) − n2

8 g̃(H ∗,H ∗)

+(n−1)c −∑
2≤i≠j≤n

R0(ei, ej, ei, ej) +∑
2≤i≠j≤n

R̃0(ei, ej, ei, ej).

Ric(X) ≥ 2Ric0(X) − n2

8 g̃(H,H) − n2

8 g̃(H ∗,H ∗) + (n−1)c−2∑
n

i=2
K̃ 0(X ∧ ei).



Theorem	2.102	([7]) Let	M	be	an	n-dimensional	statistical	submanifold	of	an(n + k)-dimensional
statistical	manifoldM̃(c).For	eachX ∈ Tp(M)unit,	we	have

Particular	Case M is a minimal submanifold. Because H 0 = 0, we have H + H ∗ = 0. Then the previous
inequality implies the following:

Corollary	2.103	([7]) Let	M	be	a	minimal	n-dimensional	statistical	submanifold	of	an(n + k)-dimensional
statistical	manifoldM̃(c).For	eachX ∈ Tp(M)unit,	we	have

Remark Similar inequalities can be stated for the Ricci curvature Ric∗.

In 2017, in [8], we proved the generalized Wintgen inequality for statistical submanifolds in statistical
manifolds of constants curvature. The Wintgen inequality is a sharp geometric inequality for surfaces in the
four-dimensional Euclidean space involving the Gauss curvature (intrinsic invariant) and the normal
curvature and squared mean curvature (extrinsic invariants), respectively.

Recall that De Smet, Dillen, Verstraelen, and Vrancken [54] conjectured a generalized Wintgen inequality
for submanifolds of arbitrary dimension and codimension in Riemannian space forms. This conjecture was
proved by Lu [72] and by Ge and Tang [60], independently.

For surfaces M 2 of the Euclidean space E3, the Euler inequality G ≤∥ H ∥2 is ful�illed, where G is the
(intrinsic) Gauss curvature of M 2 and ∥ H ∥2 is the (extrinsic) squared mean curvature of M 2.

Furthermore, G =∥ H ∥2 everywhere on M 2 if and only if M 2 is totally umbilical, or still, by a theorem
of Meusnier, if and only if M 2 is (a part of) a plane E2 or, it is (a part of) a round sphere S 2 in E3.

In 1979, P. Wintgen [120] proved that the Gauss curvature G, the squared mean curvature ∥H∥2, and the
normal curvature G⊥ of any surface M 2 in E4 always satisfy the inequality

the equality holds if and only if the ellipse of curvature of M 2 in E4 is a circle.
The Whitney 2-sphere satis�ies the equality case of the Wintgen inequality identically.
A survey containing recent results on surfaces satisfying identically the equality case of Wintgen

inequality can be read in [41].
Later, the Wintgen inequality was extended by B. Rouxel [110] and by I.V. Guadalupe and L. Rodriguez

[63] independently, for surfaces M 2 of arbitrary codimension m in real space forms M̃ 2+m(c), namely

The equality case was also investigated.
A corresponding inequality for totally real surfaces in n-dimensional complex space forms was obtained

in [74]. The equality case was studied, and a nontrivial example of a totally real surface satisfying the
equality case identically was given.

In 1999, P.J. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken [54] formulated the conjecture on Wintgen
inequality for submanifolds of real space forms, which is also known as the DDVV	conjecture.

This conjecture was proven by the authors for submanifolds M n of arbitrary dimension n ≥ 2 and
codimension 2 in real space forms M̃ n+2(c) of constant sectional curvature c. The DDVV conjecture was
�inally settled for the general case by Z. Lu [72] and independently by J. Ge and Z. Tang [60].

Generalized Wintgen inequalities for Lagrangian submanifolds in complex space forms [96] and
Legendrian submanifolds in Sasakian space forms [97] were obtained, respectively. Moreover, in [5] a
version of the Euler inequality and the Wintgen inequality for statistical surfaces in statistical manifolds of
constant curvature was stated.

By using the sectional curvature K on M n de�ined in [5] and also in [105]:

Ric(X) ≥ 2Ric0(X) − n2

8 g̃(H,H) − n2

8 g̃(H ∗,H ∗)

+(n−1)c−2(n−1) max K̃ 0(X ∧ ⋅).

Ric(X) ≥ 2Ric0(X) + n2

4 g̃(H,H ∗) + (n−1)c−2(n−1) max K̃ 0(X ∧ ⋅).

G ≤ ∥H∥2 − |G⊥|;

G ≤ ∥H∥2 − |G⊥| + c.

K(X ∧ Y ) = 1
2 [g(R(X,Y )X,Y ) + g(R∗(X,Y )X,Y )],



for any orthonormal vectors X,Y ∈ TpM
n,p ∈ M n, we derive a generalized Wintgen inequality for

statistical submanifolds in statistical manifolds of constant curvature:

Theorem	2.104	([8]) LetM nbe	a	submanifold	in	a	statistical	manifold(M̃ n+m, c)of	constant	curvaturec.
Then

3	 Warped	Product	Submanifolds
We recall the results obtained in [75–77] on warped product submanifolds in complex space forms,
generalized complex space forms, and quaternion space forms, respectively.

B.Y. Chen [37] established a sharp inequality for the warping function of a warped product submanifold
in a Riemannian space form in terms of the squared mean curvature. In [36], he studied warped product
submanifolds in complex hyperbolic spaces.

The notion of warped	product plays some important role in Differential Geometry and physics [35]. For
instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a
massive star or a black hole is given as a warped product.

One of the fundamental problems in the theory of submanifolds is the immersibility (or non-
immersibility) of a Riemannian manifold in a Euclidean space (or, more generally, in a space form).
According to a well-known theorem on Nash, every Riemannian manifold can be isometrically immersed in
some Euclidean spaces with suf�iciently high codimension.

Nash’s theorem implies, in particular, that every warped product M1 ×f M2 can be immersed as a
Riemannian submanifold in some Euclidean space. Moreover, many important submanifolds in real and
complex space forms are expressed as a warped product submanifold.

Every Riemannian manifold of constant curvature c can be locally expressed as a warped product whose
warping function satis�ies Δf = cf . For example, Sn(1) is locally isometric to (0,π) ×cost S

n−1(1), En is
locally isometric to (0, ∞) ×x S

n−1(1), and H n(−1) is locally isometric to R ×ex En−1 (see [35]).
Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive differentiable function on M1.

The warped	product of M1 and M2 is the Riemannian manifold

where g = g1 + f 2g2 (see, for instance, [37]).
Let x : M1 ×f M2 → M̃(c) be an isometric immersion of a warped product M1 ×f M2 into a complex

space form M̃(c). We denote by h the second fundamental form of x and Hi = 1
ni

trace hi, where trace hi is
the trace of h restricted to Mi and ni =dim Mi(i = 1, 2).

Recall that for a warped product M1 ×f M2, we denote by D1 and D2 the distributions given by the
vectors tangent to leaves and �ibers, respectively. Thus, D1 is obtained from the tangent vectors of M1 via
the horizontal lift and D2 by tangent vectors of M2 via the vertical lift.

In [75] we established an inequality between the warping function f (intrinsic structure) and the squared
mean curvature ∥ H ∥2 and the holomorphic sectional curvature c (extrinsic structures) for warped product
submanifolds M1 ×f M2 with JD1 ⊥ D2 (in particular, CR-warped product submanifolds and CR-
Riemannian products) in any complex space form M̃(c). Examples of such submanifolds which satisfy the
equality case are given.

Recall that a submanifold N in a Kaehler manifold M̃  is called a CR-submanifold (see [83]) if there exists
on N a holomorphic distribution D  whose orthogonal complementary distribution D ⊥ is a totally real
distribution, i.e., JD ⊥

x ⊂ T ⊥
p N . A CR-submanifold of a Kaehler manifold M̃  is called a CR- product if it is a

Riemannian product of a Kaehler submanifold and a totally real submanifold. There do not exist warped
product CR-submanifolds of the form M⊥ ×f M⊤, with M⊥ a totally real submanifold and M⊤ a complex
submanifold, other than CR-products. A CR-warped	product is a warped product CR-submanifold of the form 
M⊤ ×f M⊥, by reversing the two factors [33].

As applications we will give some non-immersions theorems.

ρ⊥ + 3ρ ≤ 15
2 ∥H∥2 + 15

2 ∥H ∗∥2 + 12g(H,H ∗)−3c + 30(ρ̃0 − ρ0).

M1 ×f M2 = (M1 × M2, g),



Theorem	3.1	([75]) Letx : M1 ×f M2 → M̃(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	withJD1 ⊥ D2into	a 2m-dimensional	complex	space	formM̃(c).	Then,

(3.1)
whereni =dim Mi, i = 1, 2,	andΔis	the	Laplacian	operator	ofM1.	Moreover,	the	equality	case	of	holds

identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion	andn1H1 = n2H2,	whereHi, i = 1, 2,are	the
partial	mean	curvature	vectors.

Proof Let M1 ×f M2 be a warped product submanifold into a complex space form M̃(c) of constant
holomorphic sectional curvature c.

Since M1 ×f M2 is a warped product, it is known that
(3.2)

for any vector �ields X,Z tangent to M1,M2, respectively.
If X and Z are unit vector �ields, it follows that the sectional curvature K(X ∧ Z) of the plane section

spanned by X and Z is given by
(3.3)

We choose a local orthonormal frame {e1, … , en, en+1, … , e2m}, such that e1, … , en1  are tangent to 
M1, en1+1, … , en are tangent to M2, and en+1 is parallel to the mean curvature vector H.

Then, using (3.3), we get

(3.4)

for each s ∈ {n1 + 1, … ,n}.
From the equation of Gauss, we have

(3.5)
We set

(3.6)
Then, (3.5) can be written as

(3.7)
With respect to the above orthonormal frame, (3.7) takes the following form:

If we put a1 = hn+1
11 , a2 = ∑n1

i=2 h
n+1
ii , and a3 = ∑n

t=n1+1 h
n+1
tt , the above equation becomes

Thus a1, a2, a3 satisfy the lemma of Chen (for n = 3), i.e.,

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3.
In the case under consideration, this means

(3.8)

The equality holds if and only if
(3.9)

Δf
f

≤ n2

4n2
∥ H ∥2 +n1

c
4 ,

∇XZ = ∇ZX = 1
f

(Xf)Z,

K(X ∧ Z) = g(∇Z∇XX − ∇X∇ZX,Z) = 1
f

{(∇XX)f − X 2f}.

Δf

f
=∑

n1

j=1
K(ej ∧ es),

n2 ∥ H ∥2= 2τ+ ∥ h ∥2 −n(n−1) c
4 −3 ∥ P ∥2 c

4 .

δ = 2τ − n(n−1) c
4 −3 ∥ P ∥2 c

4 − n2

2 ∥ H ∥2 .

n2 ∥ H ∥2= 2(δ+ ∥ h ∥2).

(∑n

i=1
hn+1
ii

)
2

= 2{δ +∑n

i=1
(hn+1

ii
)2 +∑

i≠j
(hn+1

ij
)2 +∑2m

r=n+2
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i,j=1
(hr

ij
)2}.
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i=1
ai)

2

= 2{δ +∑3
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a2
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1≤i≠j≤n
(hn+1

ij
)2 +∑2m

r=n+2
∑n

i,j=1
(hr

ij
)2
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hn+1
jj hn+1

kk
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hn+1
ss hn+1
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ai)

2
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3

i=1
a2
i).

∑
1≤j<k≤n1

hn+1
jj hn+1

kk +∑
n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ
2 +∑

1≤α<β≤n
(hn+1

αβ
)

2
+ 1

2 ∑
2m

r=n+2
∑

n

α,β=1
(hr

αβ
)2.



Using again the Gauss equation, we have

(3.10)

Combining (3.8) and (3.10) and taking account of (3.4), we obtain

(3.11)

Since we assume that JD1 ⊥ D2, the last relation implies the inequality (3.1).
We see that the equality sign of (3.11) holds if and only if

(3.12)
and

(3.13)

Obviously (3.12) is equivalent to the mixed totally geodesics of the warped product M1 ×f M2 (i.e., 
h(X,Z) = 0, for any X in D1 and Z in D2), and (3.9) and (3.13) imply n1H1 = n2H2.

The converse statement is straightforward. □

Remark For c ≤ 0 the inequality is true, without the condition JD1 ⊥ D2 (see [36]).

As applications, we derive certain obstructions to the existence of minimal warped product submanifolds in
complex hyperbolic spaces [36].

Let x : M1 ×f M2 → M̃(c) be an isometric minimal immersion. Then the above theorem implies

Thus, if c < 0, f cannot be a harmonic function or an eigenfunction of Laplacian with positive eigenvalue.
One resumes this remark into the following.

Proposition	3.2	([36]) If	f	is	a	harmonic	function,	thenM1 ×f M2does	not	admit	any	isometric	minimal
immersion	into	a	complex	hyperbolic	space.

∑
n1

i=1
hn+1
ii =∑

n

t=n1+1
hn+1
tt .

n2
Δf

f
= τ −∑

1≤j<k≤n1
K(ej ∧ ek) −∑
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= τ − n1(n1−1)(c)
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jjh
r
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4 .



Proposition	3.3	([36]) If	f	is	an	eigenfunction	of	Laplacian	onM1with	corresponding	eigenvalueλ > 0,	then
M1 ×f M2does	not	admit	any	isometric	minimal	immersion	into	a	complex	hyperbolic	space	or	a	complex
Euclidean	space.

Next, we will give some examples that satisfy the equality case of the inequality (3.1).
Recall that the Hopf	submersion is the canonical projection of Cn+1 − {0} → P n(C), restricted to S 2n+1

(where S 2n+1 is regarded as the set {z ∈ Cn+1;∑n+1
j=1 |zj|2 = 1}).

Example	3.4 Let us consider the following immersion: ψ : M → S 7, where 
M = (−π / 2,π / 2) ×cost N

2, with N 2 a minimal C-totally real submanifold in S 7, de�ined by

where v is a vector tangent to S 7, but normal to S 5.
Let π : S 7 → P 3(C) be the Hopf submersion. Then π ∘ ψ : M → P 3(C) is a Lagrangian minimal

immersion which satis�ies the equality case.

Example	3.5 Let ψ : Sn → S 2n+1 be an immersion de�ined by

and π : S 2n+1 → P n(C) the Hopf submersion.
Then π ∘ ψ : Sn → P n(C) satis�ies the equality case.

Example	3.6 On Sn1+n2  let us consider the spherical coordinates u1, … ,un1+n2  and on Sn1  the function

(f is an eigenfunction of Δ).
Then Sn1+n2 = Sn1 ×f S

n2 .
Let i : Sn1+n2 → Sn1+n2+1 be the standard immersion and π the Hopf submersion.
Then π ∘ i : Sn1+n2 → P n1+n2(C) satis�ies the equality case.

Moreover, the examples given by B.Y. Chen in [37] for c = 0 in the real case are true in the complex case too,
for c = 0.

In [76] we established an inequality between the warping function f (intrinsic structure) and the squared
mean curvature ∥ H ∥2 and the holomorphic sectional curvature c (extrinsic structures) for warped product
submanifolds M1 ×f M2 in any generalized complex space form M̃(c,α).

We shall consider a class of almost Hermitian manifolds, called RK-manifolds, which contains nearly
Kaehler manifolds.

De�inition	([117]) An RK-manifold(M̃,J, g) is an almost Hermitian manifold for which the curvature
tensor R̃ is invariant by J, i.e.,

for any X,Y ,Z,W ∈ ΓTM̃.
An almost Hermitian manifold M̃  is of pointwise	constant	type if for any p ∈ M̃  and X ∈ TpM̃  we have 

λ(X,Y ) = λ(X,Z), where

and Y  and Z are unit tangent vectors on M̃  at p, orthogonal to X and JX, i.e., g(Z,Z) = g(Y ,Y ) = 1, 
g(X,Y ) = g(JX,Y ) = g(X,Z) = g(JX,Z) = 0.

The manifold M̃  is said to be of constant	type if for any unit X,Y ∈ ΓTM̃  with 
g(X,Y ) = g(JX,Y ) = 0, λ(X,Y ) is a constant function.

Recall the following result.

ψ(t, p) = (cos t)p + (sin t)v,

ψ(x1, … ,xn+1) = (x1, 0,x2, 0, … ,xn+1, 0)

f(u1, …un1)) =cos u1 … cos un1

R̃(JX,JY ,JZ,JW) = R̃(X,Y ,Z,W),

λ(X,Y ) = R̃(X,Y ,JX,JY ) − R̃(X,Y ,X,Y ),



Theorem	([117]) LetM̃be	an	RK-manifold.	ThenM̃ is	of	pointwise	constant	type	if	and	only	if	there	exists	a
functionαonM̃such	that

for	anyX,Y ∈ ΓTM̃.Moreover,M̃ is	of	constant	type	if	and	only	if	the	above	equality	holds	good	for	a
constantα.

In this case, α is the constant	type of M̃.

De�inition A generalized	complex	space	form is an RK -manifold of constant holomorphic sectional
curvature and of constant type.

We denote a generalized complex space form by M̃(c,α) , where c is the constant holomorphic sectional
curvature and α the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The
sphere S 6 endowed with the standard nearly-Kaehler structure is an example of generalized complex space
form which is not a complex space form.

Let M̃(c,α) be a generalized complex space form of constant holomorphic sectional curvature c and of
constant type α. Then the curvature tensor R̃ of M̃(c,α) has the following expression [117]:

(3.14)

Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space form M̃(c,α) of
constant holomorphic sectional curvature c and constant type α. One denotes by K(π) the sectional
curvature of M associated with a plane section π ⊂ TpM, p ∈ M , and ∇ the Riemannian connection of M,
respectively. Also, let h be the second fundamental form and R the Riemann curvature tensor of M.

Lemma	3.7	([76]) Letx : M1 ×f M2 → M̃(c,α)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 2m-dimensional	generalized	complex	space	formM̃(c,α).	Then

(3.15)

whereni =dim Mi, i = 1, 2,	andΔis	the	Laplacian	operator	ofM1.

From the above lemma, it follows the theorem:

Theorem	3.8	([76]) Letx : M1 ×f M2 → M̃(c,α)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 2m-dimensional	generalized	complex	space	formM̃(c,α).	Then:

(i)
Ifc < α,	then

(3.16)
Moreover,	the	equality	case	of (3.16) holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic

immersion,n1H1 = n2H2,	whereHi, i = 1, 2,are	the	partial	mean	curvature	vectors	andJD1 ⊥ D2.

 

(ii)
Ifc = α,	then

(3.17)
Moreover,	the	equality	case	of (3.17) holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic

immersion	andn1H1 = n2H2,	whereHi, i = 1, 2,are	the	partial	mean	curvature	vectors.

 

(iii) Ifc > α,	then
(3.18)

Moreover,	the	equality	case	of (3.18) holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic
immersion,n1H1 = n2H2,	whereHi, i = 1, 2,are	the	partial	mean	curvature	vectors	and	bothM1and
M2are	totally	real	submanifolds.

 

λ(X,Y ) = α[g(X,X)g(Y ,Y ) − (g(X,Y ))2 − (g(X,JY ))2],

R̃(X,Y )Z = c+3α
4 [g(Y ,Z)X − g(X,Z)Y ]

+ c−α
4 [g(X,JZ)JY − g(Y ,JZ)JX + 2g(X,JY )JZ].

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c+3α
4 + 3 c−α

4n2
∑

1≤i≤n1
∑

n1+1≤s≤n
g2(Jei, es),

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c+3α
4 .

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c+3α
4 .

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c+3α
4 + 3 c−α

8 ∥ P ∥2 .



Corollary	3.9	([76]) Let	M	be	an	n-dimensional	CR-warped	product	submanifold	of	a 2m-dimensional
generalized	complex	space	formM̃(c,α).	Then,

(3.19)
Moreover,	the	equality	case	holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion,

n1H1 = n2H2,	whereHi, i = 1, 2,are	the	partial	mean	curvature	vectors.

We derive the following nonexistence results.

Corollary	3.10	([76]) LetM̃(c,α)be	a	generalized	complex	space	form,M1ann1-dimensional	Riemannian
manifold,	and	f	a	differentiable	function	onM1.	If	there	is	a	pointp ∈ M1such	that(Δf)(p) > n1

c+3α
4 f(p),

then	there	does	not	exist	any	minimal	CR-warped	product	submanifoldM1 ×f M2inM̃(c,α).

Corollary	3.11	([76]) LetM̃(c,α)be	a	generalized	complex	space	form,	withc > α, M1ann1-dimensional
totally	real	submanifold	ofM̃(c,α),	and	f	a	differentiable	function	onM1.	If	there	is	a	pointp ∈ M1such	that
(Δf)(p) > n1

c+3α
4 f(p),	then	there	does	not	exist	any	totally	real	submanifoldM2inM̃(c,α)such	that

M1 ×f M2is	a	minimal	warped	product	submanifold	inM̃(c,α).

In [77] we studied warped product submanifolds in quaternion space forms.

De�inition Let Mm be a 4m-dimensional Riemannian manifold with metric g. Mm is called a quaternion
Kaehlerian	manifold if there exists a three-dimensional vector space E of tensors of type (1, 1) with local
basis of almost Hermitian structures ϕ1,ϕ2, and ϕ3, such that:

(i)
ϕ1ϕ2 = −ϕ2ϕ1 = ϕ3,ϕ2ϕ3 = −ϕ3ϕ2 = ϕ1,ϕ3ϕ1 = −ϕ1ϕ3 = ϕ2.  

(ii)
For any local cross-section ϕ of E and any vector X tangent to M , ▽Xϕ is also a cross-section in E
(where ▽ denotes the Riemannian connection in M), or, equivalently, there exist local 1-forms p, q, r
such that

 

If X is a unit vector in M , then X,ϕ1X,ϕ2X, and ϕ3X form an orthonormal set on M , and one denotes
by Q(X) the 4-plane spanned by them. For any orthonormal vectors X,Y  on M , if Q(X) and Q(Y ) are
orthogonal, the 2-plane π(X,Y ) spanned by X,Y  is called a totally	real	plane. Any 2-plane in Q(X) is called
a quaternionic	plane. The sectional curvature of a quaternionic plane π is called a quaternionic	sectional
curvature. A quaternion Kaehler manifold M  is a quaternion	space	form if its quaternionic sectional
curvatures are constant.

It is well known that a quaternion Kaehlerian manifold M  is a quaternion space form M(c) if and only if
its curvature tensor R has the following form (see [67]):

(3.20)

for vectors X,Y ,Z tangent to M .
A submanifold M of a quaternion Kaehler manifold M  is called quaternion (respectively, totally	real)

submanifold if each tangent space of M is carried into itself (respectively, the normal space) by each section
in E.

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c+3α
4 .

¯̄

¯̄

¯̄

⎧⎪⎨⎪⎩▽Xϕ1 = r(X)ϕ2 − q(X)ϕ3,

▽Xϕ2 = −r(X)ϕ1 + p(X)ϕ3,

▽Xϕ3 = q(X)ϕ1 − p(X)ϕ2.

¯

¯

¯

¯̄

¯

¯

¯̄

¯

R(X,Y )Z = c
4 {g(Y ,Z)X − g(X,Z)Y¯

+g(ϕ1Y ,Z)ϕ1X − g(ϕ1X,Z)ϕ1Y + 2g(X,ϕ1Y )ϕ1Z

+g(ϕ2Y ,Z)ϕ2X − g(ϕ2X,Z)ϕ2Y + 2g(X,ϕ2Y )ϕ2Z

+g(ϕ3Y ,Z)ϕ3X − g(ϕ3X,Z)ϕ3Y + 2g(X,ϕ3Y )ϕ3Z},
¯

¯



The curvature tensor R of M is related to the curvature tensor R of M  by the Gauss equation

where h is the second fundamental form of M.

De�inition	([10]) A submanifold M of a quaternion Kaehler manifold M  is called a quaternion	CR-
submanifold if there exist two orthogonal complementary distributions D and D⊥ such that D is invariant
under quaternion structures, that is, ϕi(Dx) ⊆ Dx, i = 1, 2, 3, ∀x ∈ M , and D⊥ is totally real, that is, 
ϕi(D⊥

x ) ⊆ T ⊥
x M , i = 1, 2, 3, ∀x ∈ M .

A submanifold M of a quaternion Kaehler manifold M  is a quaternion submanifold (resp. totally real
submanifold) if dim D⊥ = 0 (respectively, dim D = 0).

In this context, the following results were proved.

Lemma	3.12	([77]) Letx : M1 ×f M2 → M(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 4m-dimensional	quaternion	space	formM(c).	Then

Theorem	3.13	([77]) Letx : M1 ×f M2 → M(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 4m-dimensional	quaternion	space	formM(c)withc < 0.	Then

Moreover,	the	equality	case	holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion,
n1H1 = n2H2andϕkD1 ⊥ D2,	for	anyk = 1, 2, 3.

As applications, one derives certain obstructions to the existence of minimal warped product submanifolds
in quaternion hyperbolic space.

Corollary	3.14	([77]) If	f	is	a	harmonic	function	onM1,	then	the	warped	productM1 ×f M2does	not	admit
any	isometric	minimal	immersion	into	a	quaternion	hyperbolic	space.

Corollary	3.15	([77]) There	do	not	exist	minimal	warped	product	submanifolds	in	a	quaternion	hyperbolic
space	withM1compact.

Theorem	3.16	([77]) Letx : M1 ×f M2 → M(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 4m-dimensional	�lat	quaternion	space	form.	Then

Moreover,	the	equality	case	holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion	and
n1H1 = n2H2.

Corollary	3.17	([77]) If	f	is	an	eigenfunction	of	Laplacian	onM1with	corresponding	eigenvalueλ > 0,	then
the	warped	productM1 ×f M2does	not	admit	any	isometric	minimal	immersion	into	a	quaternion	hyperbolic
space	or	a	quaternion	Euclidean	space.

A warped product is said to be proper if the warping function is nonconstant.

Corollary	3.18	([77]) There	does	not	exist	minimal	proper	warped	product	submanifold	in	the	quaternion
Euclidean	spaceQmwithM1compact.

Theorem	3.19	([77]) Letx : M1 ×f M2 → M(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 4m-dimensional	quaternion	space	formM(c)withc > 0.	Then

¯̄

R(X,Y ,Z,W) = R(X,Y ,Z,W)¯

−g(h(X,Z),h(Y ,W)) + g(h(X,W),h(Y ,Z)),

¯

¯

¯

¯

n2
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¯
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Moreover,	the	equality	case	holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion,
n1H1 = n2H2andϕkD1 ⊥ D2,	for	anyk = 1, 2, 3.

Also, Lemma 3.12 implies another inequality for certain submanifolds (in particular quaternion CR-
submanifolds) in quaternion space forms with c > 0.

Theorem	3.20	([77]) Letx : M1 ×f M2 → M(c)be	an	isometric	immersion	of	an	n-dimensional	warped
product	into	a 4m-dimensional	quaternion	space	formM(c)withc > 0,	such	thatϕkD1 ⊥ D2,	for	any
k = 1, 2, 3.	Then

Moreover,	the	equality	case	holds	identically	if	and	only	if	x	is	a	mixed	totally	geodesic	immersion	and
n1H1 = n2H2.

Next, we will give some examples which satisfy identically the equality case of the inequality given in
Theorem 3.20.

Example	3.21 Let ψ : Sn → S 4n+3 be an immersion de�ined by

and π : S 4n+3 → P n(Q) the Hopf submersion.
Then π ∘ ψ : Sn → P n(Q) satis�ies the equality case.

Example	3.22 On Sn1+n2  let us consider the spherical coordinates u1, … ,un1+n2  and on Sn1  the function

(f is an eigenfunction of Δ).
Then Sn1+n2 = Sn1 ×f S

n2 .
Let ψ : Sn1+n2 → S 4(n1+n2)+3 be the above standard immersion and π the Hopf submersion 

π : S 4(n1+n2)+3 → P n1+n2(Q).
Then π ∘ ψ : Sn1+n2 → P n1+n2(Q) satis�ies the equality case.

For a comprehensive study on the differential geometry of warped product manifolds and submanifolds see
the book by B.Y. Chen [42].

4	 Curvature	Symmetries	Characterizing	Einstein	Spaces
We recall the well-known de�inition of an Einstein space:

A Riemannian manifold (M, g) of dimension n ≥ 3 is called an Einstein	space if Ric = λ ⋅ id, where
trivially λ = κ; in this case one easily proves that λ = κ = const.

We recall the fact that any two-dimensional Riemannian n-manifold satis�ies the relation Ric = λ ⋅ id,
but for n = 2 the function λ = κ is not necessarily a constant. It is well known that any three-dimensional
Einstein space is of constant curvature. Thus the interest in Einstein spaces starts with dimension n = 4.

We give three concrete examples of Einstein spaces:

Example	4.1 Any Riemannian space form of arbitrary dimension n ≥ 2 is an Einstein manifold. In
particular, certain warped product manifolds are

Δf

f
≤ n2

4n2
∥ H ∥2 +n1

c
4 + 3 c

4 min { n1
n2

, 1}.

¯

¯

Δf

f
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c
4 .

ψ(x1, … ,xn+1) = (x1, 0, 0, 0,x2, 0, 0, 0, … ,xn+1, 0, 0, 0),

f(u1, …un1) =cos u1 … cos un1

(− π
2 , π

2 ) ×cosx S
n−1, c = 1,

(0, ∞) ×r S
n−1, c = 0,

R ×ex En−1, c = −1.



Example	4.2 The Schwarzschild space-time is an example of Einstein manifold (Ric = 0), which has no
constant sectional curvature.

Example	4.3 Let N k(a)
1 , N p

2 (b) (k, p ≥ 2) be Riemannian space forms;

and {e1, … , ek, ek+1, … , ek+p} orthonormal frame on M, such that e1, … , ek tangent to N k
1 (a), 

ek+1, … , ek+p tangent to N p
2 (b). Then ∀i = 1, … , k, Ric(ei) = (k−1)a; ∀j = 1, … , p, 

Ric(ek+j) = (p−1)b. Then M is Einstein space if and only if (k−1)a = (p−1)b.
In particular:
a = 0 ⇔ b = 0 trivial (Euclidean space, of null sectional curvature).
k = p ⇔ a = b (Einstein space of even dimension and nonconstant sectional curvature).
a ≠ 0 ⇒ b = k−1

p−1 a; remark ab > 0 (Einstein space of arbitrary dimension and nonconstant sectional
curvature).

In their famous paper [113] Singer and Thorpe considered four-dimensional Einstein spaces and started the
study of two interesting topics, more precisely:
(i)

The irreducible decomposition of the Riemannian (0, 4) curvature tensor; this study initialized
generalizations �irst to algebraic curvature tensors, see [12], and later to other types of curvature
tensors, see, e.g., [16] and [61].

 

(ii)
Symmetry properties of certain curvature functions  

Here we are interested in the second topic (ii). We recall the result of Singer and Thorpe. For span(ei, ej)
the orthogonal complement span(ei, ej)

⊥ is well de�ined; for simplicity we denote its sectional curvature by
κ⊥
ij.

Singer and Thorpe proved the following:

Theorem	([113]) Let(M, g)be	a	Riemannian	manifold	of	dimensionn = 4.Then	the	following	assertions	are
equivalent:
(i)

(M, g)is	an	Einstein	space.  
(ii)

At	any	pointp ∈ Mand	for	every 2-planespan{ei, ej} ⊂ TpM,wherei, j ∈ {1, 2, 3, 4}andi ≠ j,	we	have
the	following	equality	of	sectional	curvatures:

 

The result of Singer and Thorpe was generalized to even-dimensional Riemannian manifolds in [44]. For a
precise formulation we adopt some notational conventions from [44].

Let (M, g) be as before, and consider a k-dimensional subspace L ⊂ TpM  for k > 1. Let {e1, … , ek} be
an orthonormal basis of L. De�ine

in analogy to the above notation we write

2τk(L) is called the scalark-curvature of the subspace L. For k = n we get the scalar curvature of (M, g)
at p:

while for k = 2 the expression τ2(L) gives the sectional curvature of the plane L = span(eα, eβ) ⊂ Tp(M).
The authors of [44] proved the following:

M = N k
1 (a) × N

p
2 (b)

κij = κ⊥
ij.

τk(L) =∑
1≤α<β≤k

κ(eα ∧ eβ);

καβ = κ(eα ∧ eβ).

2τn(L) = R,



Theorem	([44]) Letdim M = n = 2kfork ≥ 2.	Then	the	following	statements	are	equivalent:
(M, g)is	an	Einstein	space.
For	anyp ∈ Mand	any	subspaceL ⊂ TpMwithdim(L) = k = dim(L⊥)andL ⊕ L⊥ = TpM ,	we	have

It is well known that three-dimensional Einstein spaces are of constant sectional curvature (see [12]). Thus
we consider arbitrary dimensions n ≥ 4.

Our main Theorem 4.4 generalizes the results cited above, being valid in any dimension.

Notations
(i)

Let (V , g) be a Euclidean vector space of dimension n ≥ 4 with inner product g. Let L ⊂ V  be a
subspace of dimension r, where 2 ≤ r = dim L ≤ n−2, and consider the orthogonal decomposition

with 2 ≤ s = dim L⊥ ≤ n−2, thus r + s = n.

 

(ii)
Additionally we introduce the following notation:

Set N = {1, … ,n} , and let σ : N → N  with {1, … ,n} ↦ {i1, … , in} be a permutation. We
consider a disjoint decomposition

with N σ
r = {i1, … , ir} and N σ

s := {ir+1, … , ir+s}.

 

(iii)
On a Riemannian manifold (M, g) with p ∈ M  consider an r-dimensional subspace L ⊂ TpM  with
orthonormal basis {ei1 , … , eir}; we extend it to an orthonormal basis {ei1 , … , eir , eir+1 , … , ein} of 
TpM ; thus {eir+1 , … , ein} is an orthonormal basis of the subspace L⊥ ⊂ TpM. From the foregoing
sections, the curvature invariants

are well de�ined.

 

Calculations To relate the scalar curvatures of subspaces we add up the Ricci curvatures:

We have

to prove the last equality we interchanged some subindices and used the symmetry κpi = κip.

Theorem	4.4	([92]) Let(M, g)be	a	Riemannian	manifold	of	dimension	n.	Using	the	notations	of	the
foregoing	subsections,	we	have	equivalence	of	the	following	two	conditions:
(I)

(M, g)is	an	Einstein	space.  
(II) Letr, s ∈ Nsatisfy	the	relationsr + s = nand2 ≤ r, s ≤ n−2.	For	anyp ∈ Mthere	exists	a	realc = cp,

independent	of	r,	such	that	for	any	subspaceL ⊂ TpMof	dimension	r	we	have  

τk(L) = τk(L⊥).

L ⊕ L⊥ = V ,

N = N σ
r ∪ N σ

s

2τ(L) =∑
p,q∈N σ

r

κpq and 2τ(L⊥) =∑
p,q∈N σ

s

κpq

∑
p∈N σ

r

ρp =∑
p∈N σ

r

∑
i∈N

κpi,

∑
p∈N σ

s

ρp =∑
p∈N σ

s

∑
i∈N

κpi.

∑
p∈N σ

r

ρp −∑
p∈N σ

s

ρp =∑
p∈N σ

r

∑
i∈N σ

r

κpi +∑
p∈N σ

r

∑
i∈N σ

s

κpi −∑
p∈N σ

s

∑
i∈N σ

s

κpi

−∑
p∈N σ

s

∑
i∈N σ

r

κpi = 2(τr(L) − τs(L⊥));



Proof For an Einstein space all Ricci curvatures have the same value ρi = 1
n
R, where as before R denotes

the scalar curvature of (M, g). Then cp = 1
n
R, and the preceding calculation shows that (I) implies (II).

Vice versa, for �ixed r consider two r-dimensional subspaces

having the (r−1)-dimensional intersection span{e2, … , er}; together with their orthogonal complements
both satisfy (II), respectively. The above calculation gives

and

A comparison of both equations gives ρ1 = ρr+1. Analogously we have ρ1 = ρr+2; thus also 
ρr+1 = ρ1 = ρr+2. In the same way we prove that all Ricci curvatures coincide at p, and as p is arbitrary, 
(M, g) is Einstein.

Remark	4.5 If n = 2r = 2s, we get the even-dimensional result from [44]; in the case r = s = 2 we get
the result of Singer and Thorpe.

Remark	4.6
(i)

Recall the fact that, for any Riemannian manifold, the sectional curvature function at p ∈ M
determines the Riemannian curvature tensor at p (see [68], p.198, Proposition 1.2).

 
(ii)

From the preceding Theorem 4.4, for an Einstein space, at any p ∈ M , the scalar (n−2)-curvatures 
τn−2(TpM) and the scalar curvature R = τn(TpM) together determine the scalar 2-curvatures 
τ2(TpM), which means the sectional curvatures at p.

 

(i) and (ii) together imply the following:

Corollary	([92]) Let(M, g)be	an	Einstein	space	of	dimensionn ≥ 5.At	anyp ∈ M ,	the	scalar (n−2)-
curvatures τn−2(TpM) together	with	the	scalar	curvatureR = τn(TpM)determine	the	Riemannian
curvature	tensor.

Remark	4.7 Let (M, g) be an Einstein space of dimension n = 4. Following the result of Singer and
Thorpe, at any p ∈ M  we have six sectional curvatures, which means three pairs as κij = κ⊥

ij; as three
representatives of the three pairs we can �ix an arbitrary index i ∈ {1, 2, 3, 4} and consider the three
sectional curvatures κij, where i ≠ j ∈ {1, 2, 3, 4}. Thus, for arbitrary i ∈ {1, 2, 3, 4}, these three
representatives determine the Riemannian curvature tensor at p ∈ M .

For n = 4 this fact suggests the following procedure:
Choose i = 1 for a curve starting at p with e1 as prescribed tangent vector at p. By a parallel

displacement a frame {e1, … , e4} moves from p along the curve. The sectional curvatures κ1j for j = 2, 3, 4
together determine the curvature tensor along the curve.

5	 Short	Review	of	the	Chapter
Beside the classical Riemannian invariants, as sectional, scalar and Ricci curvatures, a crucial role in this
topic is played by Chen invariants and, of course, by Chen-type inequalities involving them.

The de�inition of Chen invariants given by Professor B.Y. Chen and their study represented a huge
contribution in Submanifold Theory, opened many interesting directions and new geometrical
interpretations. The author is very indebted to Professor B.Y. Chen for the impact of his work in her research
and for the opportunity to collaborate.

(r − s)cp = 2(τr(L) − τs(L⊥)).

L = span{e1, e2, … , er} and M = span{er+1, e2, … , er}

(r − s)cp = (ρ1 +∑
2,…,r

ρp)− (ρr+1 +∑
r+2,…,n

ρp),

(r − s)cp = (ρr+1 +∑
2,…,r

ρp)− (ρ1 +∑
r+2,…,n

ρp).



This chapter represents a collection of results from the author’s papers on this topic; remark that the
proofs are given in detail, so the reader can follow the techniques. Results from this chapter were included in
the author’s Habilitation Thesis, which has not been published anywhere.

In the �irst section the basics of submanifolds in complex space forms and Sasakian space forms are
recalled. We then started to present Chen-type inequalities for different submanifolds in complex and
Sasakian space forms.

In the second section, we �irst stated the most important Chen inequalities in real space forms. We gave a
general construction method for purely real submanifolds and presented the geometric inequalities for
purely submanifolds in complex space forms. We obtained an improved Chen-Ricci inequality for Kaehlerian
slant submanifolds in complex space forms. Works on DDVV conjecture are also presented. Next subsection
contains results on submanifolds in Sasakian manifolds. We proved �irst Chen inequality for contact slant
submanifolds in Sasakian space forms. We de�ined Chen-type Sasakian invariants, obtained sharp
inequalities for these invariants, and derived characterizations of the equality case in terms of the shape
operator. We generalized a result of Chen and obtained a Chen-Ricci inequality for purely real submanifolds
with T parallel with respect to the Levi-Civita connection. The third subsection presented the results
obtained for submanifolds with semi-symmetric metric (respectively, nonmetric) connections. Subsection
2.4 dealt with statistical submanifolds, and their behavior in statistical manifolds of constant curvature is
studied.

Section 3 presented results on warped product submanifolds in complex space form, generalized
complex space forms, and quaternion space forms.

In Sect. 4 we gave a new characterization of Einstein spaces by using their curvatures symmetries.
Proofs were written explicitly. We would like to point out that, even the technique seems similar, each

case has its particularity and geometrical meaning, and for this reason we gave signi�icant proofs to almost
each situation.

We intended to organize this contribution as a monograph, and, having a lot of complete proofs and
examples, we hope it will be useful for the researchers in Submanifold Theory.
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102. Nakao, Z.: Submanifolds of a Riemannian manifold with semisymmetric metric connections. Proc. Am. Math. Soc. 54, 261–266 (1976)
[MathSciNet]

103. Nomizu, K., Sasaki, T.: Af�ine Differential Geometry. Cambridge University Press, Cambridge (2000)
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Abstract
This chapter explores Chen-Ricci inequalities for submanifolds of Kenmotsu space
forms endowed with a ϕ − η-connection, a special type of quarter-symmetric metric
connection. The geometric background of Kenmotsu space forms and the properties
of the ϕ − η-connection are brie�ly introduced, followed by the derivation of relevant
curvature relations. The study proceeds by examining submanifolds within this
framework, focusing on the behavior of curvature tensors and associated Riemannian
invariants. Using the properties of the ambient space and the chosen connection,
several inequalities involving Chen invariants and Ricci curvatures are obtained.

Keywords Chen inequality – Ricci inequality – Kenmotsu manifold – ϕ–η-connection

1	 Introduction
Structures on manifolds have become a central topic of interest among differential
geometers in recent years. These structures are typically de�ined on Riemannian or,
more generally, semi-Riemannian manifolds. When associated with a metric, a
structure on a manifold imparts signi�icant geometric properties to the space. The
most fundamental of these is the complex structure. A complex structure is an
endomorphism of the tangent bundle, represented by a (1, 1)-tensor �ield J. A
manifold endowed with such a structure is called an almost complex manifold. In
contrast, a manifold that is locally homeomorphic to complex Euclidean space is called
a complex manifold. An almost complex manifold becomes a complex manifold when
the complex structure J is integrable, a condition characterized by a speci�ic tensorial
relation. This framework for de�ining complex structures has been widely adopted in
the development of various geometric structures on manifolds.
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A contact structure on a manifold is a signi�icant geometric framework de�ined by
a contact form. In the 1960s, the tensorial perspective on contact manifolds greatly
expanded the �ield and sparked extensive research activity. One of the most in�luential
contributions came from Sasaki, who introduced the notion of normality by
establishing the integrability conditions for a contact structure on a Riemannian
manifold. Contact manifolds satisfying these conditions are known as Sasakian
manifolds, which are often considered the one-dimensional analogs of Kähler
manifolds. Following these developments, substantial efforts have been made to
classify contact manifolds. In particular, Kenmotsu [20] introduced a new class of
contact manifolds that are normal but not Sasakian—now known as Kenmotsu
manifolds. This class exhibits a rich and distinctive geometry. A notable contribution
to the study of these manifolds is the comprehensive monograph by Pitiş [26], which
explores the geometry of Kenmotsu manifolds in depth.

Even though a manifold may be locally similar to Euclidean space, determining
whether it possesses a speci�ic global structure remains a fundamental question in
differential geometry. One of the most powerful tools for investigating the global
geometry of a manifold is its curvature and associated curvature invariants. Certain
manifolds exhibit speci�ic types of curvature that facilitate their classi�ication. Such
manifolds are known as space forms. A Riemannian manifold is considered a space
form if it has constant sectional curvature. If a manifold is equipped with a complex
structure and has constant holomorphic sectional curvature with respect to that
structure, it is referred to as a complex space form. In contrast, a Kenmotsu space
form is a Kenmotsu manifold with constant ϕ-sectional curvature, which is
intrinsically linked to its underlying contact structure.

Riemannian curvature invariants, described by Chen as the “DNA” of Riemannian
manifolds [13], are intrinsic quantities that fundamentally in�luence the geometry and
behavior of manifolds. These invariants establish deep connections between intrinsic
properties—such as scalar curvature—and extrinsic measures, such as mean
curvature. These relationships lead to sharp inequalities and signi�icant insights in
areas like minimal immersions, rigidity theorems, and eigenvalue estimates. Their
applications extend across both mathematics and physics, serving as powerful tools
for analyzing the geometric and physical structures of various spaces.

In submanifold theory, a fundamental question is “what	are	the	simple
relationships	between	the	main	extrinsic	and	intrinsic	invariants	of	a	submanifold?” To
address this problem, Chen [10] introduced a novel Riemannian invariant, de�ined as 
δ(2) = τ− inf K, where τ  denotes the scalar curvature and K represents the sectional
curvature. Using this invariant, Chen established the following inequality for
submanifolds in a real space form Rm(c) with constant sectional curvature c:

(1.1)
where ∥ H ∥2 is the squared mean curvature of the submanifold M. This inequality,
known as Chen’s �irst inequality, has inspired extensive research across various
geometric structures. A comprehensive review on Chen inequalities has been
conducted by Chen and Vilcu [15]. If equality holds in (1.1), the submanifold is called a

δ(2) ≤ n−2
2 { n2

n−1 ∥ H ∥2 +(n + 1)c}, n =dim M ≥ 3,



δ(2)-ideal submanifold [15]. An important classi�ication theorem for such
submanifolds is given below:

Theorem	1.1	([10]) Let	M	be	an	n-dimensional	minimal	submanifold	ofRm.	Then	M
isδ(2)-ideal	if	and	only	if,	locally,	M	is	one	of	the	following:

1.
A	totally	geodesic	submanifold	ofEm  

2.
A	spherical	cylinderR × Sn−1(c)  

3.
A	direct	product	of	a	Euclidean	k-spaceEℓand	a	Riemannian(n − ℓ)-manifoldP n−ℓ

satisfyingδ(2) = 0,	such	thatM = E
k × P n−ℓ ⊂ E

mis	minimally	immersed	as	a
direct	product	submanifold.

 

Furthermore, in [11, 12], Chen proposed another approach for n-dimensional
submanifolds within a real space form Rm(c), leading to the following inequality:

(1.2)
where Ric(X) denotes the Ricci curvature along a unit vector X ∈ TM . This

result, now known as the Chen-Ricci inequality, has been widely studied and applied
in differential geometry.

In Riemannian geometry, the Levi-Civita connection is a derivative operator
associated with the metric that enables calculus on manifolds. It is a torsion-free and
metric-compatible connection. Beyond the Levi-Civita connection, there exist various
connections that, although lacking its symmetric and metric properties, yield
signi�icant geometric results. On a Riemannian manifold M, such a general connection 
D  is de�ined by

for all vector �ields V1,V2 ∈ Γ(TM), where ∇ is the Levi-Civita connection and T  is a
(1, 2)-type tensor �ield. Depending on the speci�ic properties of D , it is classi�ied into
various types, such as semi-symmetric metric, semi-symmetric nonmetric, semi-
symmetric quarter-metric, etc. A generalization of these connections was provided in
[31]. Several authors have explored the theory and applications of different
connections [1, 3, 8, 17–19, 21, 29, 34]. Studies on Kenmotsu manifolds with different
types of connections can be found in [2, 6, 9, 28, 30, 32]. Barman and U� nal [7]
introduced the ϕ − η-connection, a special type of connection, and applied it to
Kenmotsu manifolds.

In this study, Chen-Ricci inequalities for submanifolds of a Kenmotsu space form
are examined using the ϕ − η-connection. In the second section of the study, the
de�inition and properties of Kenmotsu space forms are provided, and the curvature
properties associated with the ϕ − η-connection are examined, resulting in various
equations. The third section contains general information about submanifolds and
discusses the curvature properties and Riemannian invariants of submanifolds in

Ric(X) ≤ n2

4 ∥ H ∥2 +(n−1)c, n ≥ 2,

DV1V2 = ∇V1V2 +T (V1,V2),



Kenmotsu space forms equipped with the ϕ − η-connection. Finally, the last section
presents results concerning Chen-Ricci inequalities for submanifolds of Kenmotsu
space forms admitting the ϕ − η-connection.

2	 Kenmotsu	Space	Forms
In this section, the concept of Kenmotsu space forms are introduced, and the ϕ-η
connection on these structures is examined.

An almost contact structure on a (2m + 1)-dimensional Riemann manifold M̄  is a
triple (ϕ, η, ξ) such that

where ϕ is a (1, 1)-type tensor �ield, ξ is a vector �ield, and η is a 1-form on M . A
Riemannian metric related with structure (ϕ, η, ξ) is given by

for any vector �ields V1,V2 ∈ Γ(TM), where Γ(TM) is the vector �ield space of M .
On an almost contact metric manifold (M ,ϕ, η, ξ, g) we have the following relations:

An almost contact metric manifold recalls as normal if ϕ is integrable, i.e., 
Nφ(V1,V2) = [φV1,φV2] − φ[φV1,V2] − φ[V1,φV2] + φ2[V1,V2] = 0, for all 
V1,V2 ∈ Γ(TM̄). A Kenmotsu manifold is a class of almost contact metric manifolds
which is normal and

where ω(V1,V2) = g(ϕV1,V2) recall as the fundamental 2-form of the contact
structure and dη is differential of η. The following theorem states when an almost
contact metric manifold is Kenmotsu.

Theorem	2.1 An	almost	contact	metric	manifold(M ,ϕ, η, ξ, g)is	a	Kenmotsu
manifold	if	and	only	if

(2.3)
is	satis�ied	for	any	vector	�ieldsV1,V2onM ,	where∇is	Levi-Civita	connection	onM

[20].

From (2.3) we have

for any vector �ields V1 on M .
Sectional curvature is a signi�icant parameter in the context of Riemannian

geometry, as it provides direct information about the curvature of a Riemann
manifold. Manifolds with constant sectional curvature are referred to as space forms
and are classi�ied based on this constant curvature. In addition to the sectional

ϕ2 = −I + η ⊗ ξ,
¯

g(ϕV1,ϕV2) = g(V1,V2) − η(V1)η(V2), η(V1) = g(V1, ξ),
¯̄̄

¯

η(ξ) = 1, ϕξ = 0, η ∘ ϕ = 0.

dω = 2ω ∧ η, dη = 0,

¯

(∇V1ϕ)V2 = −g(V1,ϕV2)ξ − η(V2)ϕV1
¯

¯̄̄

∇V1ξ = V1 − η(V1)¯
¯



curvature derived from the curvature of the manifold, there are different kinds of
sectional curvatures that arise due to speci�ic structures on the manifold. The
sectional curvature associated with an almost complex structure is termed
holomorphic sectional curvature. If the holomorphic sectional curvature of a
Hermitian manifold is constant, the manifold is called a complex space form. Similarly,
the curvature associated with a contact structure is referred to as the ϕ-holomorphic
sectional curvature. A Kenmotsu manifold M  with constant ϕ-holomorphic sectional
curvature c is denoted by M(c) and is called a Kenmotsu	space	form. The Riemannian
curvature tensor of a Kenmotsu space form is expressed as follows [26]:

(2.4)

Here, R denotes the Riemannian curvature tensor of the Kenmotsu space form.
In general, a connection on a Riemannian manifold M  is described by a mapping 

∇̂ : Γ(TM) × Γ(TM) → Γ(TM), de�ined as

for any V1,V2 ∈ Γ(TM), where ∇ represents the Levi-Civita connection, and T  is a
tensor �ield of type (1, 2). The connection is classi�ied and named by the de�inition of 
T . A specialized quarter-symmetric nonmetric connection was introduced in [7]
speci�ically for Kenmotsu manifolds as follows:

(2.5)
ˆ
∇ is called the quarter-symmetric	nonmetricϕ − η−connection [7]. In this study we

recall ∇̂ as a ϕ − η-connection.

Let R̂ denote the curvature tensor of M n+p with respect to ∇̂, where 

n + p = 2m + 1. In [7], the relation between the curvature tensors of ∇̂ and ∇ is
given by

(2.6)

Using (2.4) in (2.6), we have
(2.7)

¯

¯

R(V1,V2,V3,V4) = c−3
4 (g(V2,V3)g(V1,V4) − g(V1,V3)g(V2,V4))

+ c+1
4 [η(V1)η(V3)g(V2,V4) − η(V2)η(V3)g(V1,V4)

+η(V2)η(V4)g(V1,V3) − η(V1)η(V4)g(V2,V3)
+g(ϕV2,V3)g(ϕV1,V4) − g(ϕV1,V3)g(ϕV2,V4)

−2g(ϕV1,V2)g(ϕV3,V4)].

¯

¯

¯

¯̄̄

ˆ
∇V1V2 = ∇V1V2 +T (V1,V2),¯̄

¯̄

ˆ
∇V1V2 = ∇V1V2 − η(V1)ϕV2 + g(V1,V2)ξ − η(V2)V1 − η(V1)V2 + η(V1)η(V2)ξ.¯̄

¯

¯

¯̄̄

¯̄

R̂(V1,V2,V3,V4) = R(V1,V2)g(V3,V4) + g(V2,V3)g(V1,V4)
−g(V1,V3)g(V2,V4).

¯̄



for all V1,V2,V3,V4 ∈ Γ(TM).

3	 Submanifolds	of	Kenmotsu	Space	Forms
Submanifolds can exhibit geometric properties that differ from those of the ambient
manifold in which they are embedded. While some properties can be derived from the
ambient manifold, others may not be reducible. Moreover, the intrinsic geometry of
submanifolds can possess characteristics distinct from the ambient manifold. Some
equations and results originally introduced by Gauss for surfaces have been extended
to submanifolds, providing relationships between the tangential and normal
components of a vector �ield on a manifold. On the other hand, the properties of
submanifolds can also vary depending on the structure (complex, contact, etc.) of the
ambient manifold. In fact, there exist different classes (invariant, anti-invariant, etc.)
of submanifolds associated with structured manifolds. In this section, we will present
the general equations for submanifolds of a Kenmotsu space form and relate them
with the ϕ − η-connection.

Let M  be a Kenmotsu space form and M be an n-dimensional submanifold tangent
to ξ. Let us denote:

∇ the induced connection on M from the Levi-Civita connection ∇

∇̂ the induced ϕ − η-connection from ∇̂

Then, the Gauss formulas are given as follows:
(3.8)
(3.9)

for V1,V2 ∈ Γ(TM), where h is a (0, 2)-tensor second fundamental form of M  in 
M n+p, and ĥ is the second fundamental form on M  with ϕ − η-connection. By using
(2.5) and (3.8) and considering tangential and normal parts, we get ĥ = h. A
submanifold of a Riemannian manifold is called as totally	geodesic if h = 0. We
observe that the property of being totally geodesic is the same with respect to both ∇
and ∇̂. This situation could be changed by the de�inition of T  in the connection.
Crucially, the equality ȟ = h is determined by whether the structure vector �ield ξ is
tangent to the submanifold M. The norm square of h is given by

(3.10)

R̂(V1,V2,V3,V4) =
c + 1

4
[g(V2,V3)g(V1,V4) − g(V1,V3)g(V2,V4)

+η(V1)η(V3)g(V2,V4) − η(V2)η(V3)g(V1,V4)
+η(V2)η(V4)g(V1,V3) − η(V1)η(V4)g(V2,V3)
+g(ϕV2,V3)g(ϕV1,V4) − g(ϕV1,V3)g(ϕV2,V4)

−2g(ϕV1,V2)g(ϕV3,V4)],

¯

¯

¯

¯

¯

∇V1V2 = ∇V1V2 + h(V1,V2),¯

∇̂V1V2 = ∇̂V1V2 + ĥ(V1,V2),¯
¯

¯



By the de�inition of the direct sum of vector spaces, the space of vector �ields on the
ambient manifold can be expressed as

In this context, the bases of the manifold M could be given by

Thus, any vector �ield V1 can be written as

where this representation makes the tangential and normal components of the vector
�ield more explicit. By consider this decomposition and from (3.10), we obtain

(3.11)

where hr
ij = g(h(ei, ej), er), i, j = 1, … ,n, r ∈ {n + 1, … ,n + p}, the components

of the second fundamental form.
The trace of the second fundamental form is de�ined as the mean curvature which

is denoted by H and given by

(3.12)

where {e1, … , en} is an orthonormal basis of the tangent space TpM, p ∈ M . The
square norm of ||H|| is given by

and so, we have

Let us take

where hr
ii = g(h(ei, ei), er) and {en+1, … , en+p} is an orthonormal basis of the

normal space TpM
⊥. Substituting h(ei, ei) into the expression for ∥ H ∥2,

Since {er} is an orthonormal basis, ⟨er, es⟩ = δrs, where δrs is the Kronecker delta.
This simpli�ies the expression to

(3.13)

∥ h ∥2=∑
n

i,j=1
g(h(ei, ej),h(ei, ej)).

Γ(TM) = Γ(TM) ⊕ Γ(TM)⊥.¯

TpM = {e1, e2, … , en, ξ}, TpM
⊥ = {en+1, en+2, … , en+p}.

V1 =∑
n−1

i=1
V i

1 ei + η(V1)ξ +∑
n+p

r=n+1
V r

1 er,

∥ h ∥2=∑
2m+1

r=n+2
∑

n+1

i,j=1
(hr

ij)
2
,

H(p) = 1
n
∑n

i=1
h(ei, ei),

∥ H ∥2= g(H,H) = g( 1
n
∑

n

i=1
h(ei, ei), 1

n
∑

n

j=1
h(ej, ej)),

∥ H ∥2= 1
n2 ∑

n

i=1
∑

n

j=1
g(h(ei, ei),h(ej, ej)).

B(ei, ei) =∑
n+p

r=n+1
Br

iier,

∥ H ∥2= 1
n2 ∑

n

i=1
∑

n

j=1
∑

n+p

r=n+1
∑

n+p

s=n+1
hr
iih

s
jj⟨er, es⟩.

∥ H ∥2= 1
n2 ∑

n+p

r=n+1
(∑

n

i=1
hr
ii)

2

.



The squared norm of the mean curvature vector, ∥ H ∥2, frequently appears in the
study of geometric inequalities. It quanti�ies the total contribution of the mean
curvature H to the curvature in all normal directions. This formula establishes a
fundamental connection between the intrinsic geometry (characterized by the
dimension n) and the extrinsic geometry (represented by the second fundamental
form h) of the submanifold. Let us give a useful expression of (3.13). The expanded
form is given by

In a fully expanded form it is like

which can also be written as

(3.14)

Also, from (3.10) and (3.14) we have the following relation between the squared
second fundamental form and the squared mean curvature:

(3.15)

The contact structure on a manifold may behave differently on a submanifold. This
behavior is determined by the endomorphism ϕ that de�ines the contact structure. If 
V1 is a vector �ield on the submanifold, it is not immediately clear where ϕV1 will
project. For any vector �ield V1, let us write

(3.16)
where PV1 (respectively, FV1) denotes the tangential (respectively, normal)
component of ϕV1. Here, P acts as an endomorphism on the tangent bundle TM ,
while F represents a normal bundle-valued 1-form on TM . The norms of the
projections P and F are de�ined as

where ∥ P ∥2 and ∥ F ∥2 are independent of the choice of {e1, … , en} orthonormal
basis.

One of the most signi�icant results in submanifold theory is the Gauss equation,
which establishes a relationship between the curvature of the ambient manifold and
that of the submanifold. We present the Gauss equation, which describes these

∥ H ∥2= 1
n2 ∑

n+p

r=n+1
(hr

11 + hr
22 + ⋯ + hr

nn)2.

∥ H ∥2= 1
n2 ∑

n+p

r=n+1
(∑

n

i=1
hr
ii ⋅∑

n

j=1
hr
jj),

∥ H ∥2= 1
n2 ∑

n+p

r=n+1
(∑

n

i=1
(hr

ii)
2 +∑

1≤i<j≤n
2hr

iih
r
jj).

∥ h ∥2 =
1
2
n2 ∥ H ∥2 +

1
2

m

∑
r=n+1

(hr
11 − hr

22 − ⋯ − hr
nn)2

+2

m

∑
r=n+1

n

∑
j=2

(hr
1j)

2−2

m

∑
r=n+1

∑
2≤i<j≤n

(hr
iih

r
jj − (hr

ij)
2).

ϕV1 = PV1 + FV1,

∥ P ∥2=∑
n

i,j=1
g2(ei,Pej), ∥ F ∥2=∑

n

i=1
∥Fei∥

2,



curvatures, in different forms corresponding to the various connections discussed
above. Subsequently, we will relate these forms to one another and ultimately derive
the curvature associated with the connection induced from the ϕ − η-connection.

The	Gauss	Equations	with	Respect	to	∇	and	∇

(3.17)

where R and R are the curvature tensors of M  and M, respectively.

The	Gauss	Equation	with	Respect	to	∇̂	and	∇̂

(3.18)

for any vector �ields V1,V2,V3,V4 tangent to M. Here, R̂ is the curvature tensor of M
with respect to the ϕ − η-connection, and R̂ is the induced curvature tensor of the 
ϕ − η-connection on M.

Combining (2.6), (3.17), and (3.18), we derive

(3.19)

We now present the following lemma:

Lemma	3.1 A	submanifold	M	cannot	be	simultaneously∇-�lat	and∇̂-�lat.

Using (3.20) in (3.18) we get the Gauss equation with respect to ϕ − η-connection as
follows:

(3.20)

We mentioned that the decomposition of the vector �ield ϕV1 into its tangential and
normal components on a submanifold is not always clear. This situation can vary
depending on whether the vector �ield ξ is tangent to the submanifold. In this study,
we assume that ξ is tangent to the submanifold. The tangent space of the submanifold
can be decomposed into different subspaces, referred to as distributions, which allow
for a classi�ication. Below, we present some of these classi�ications. A submanifold M
of a Kenmotsu space form M  is de�ined as follows:
Invariant	submanifolds:ϕ(TpM)⊂ TpM , i.e., FV1 = 0 for any vector �ield V1 on M
Anti-invariant	submanifolds:ϕ(TpM) ⊂ T ⊥

p M , i.e., PV1 = 0 for any vector �ield 
V1 on M

¯

R(V1,V2,V3,V4) = R(V1,V2,V3,V4) + g(h(V1,V4),h(V2,V3))
−g(h(V1,V3),h(V2,V4)),

¯

¯̄

¯

R̂(V1,V2,V3,V4) = R̂(V1,V2,V3,V4) + g(h(V1,V4),h(V2,V3))
−g(h(V1,V3),h(V2,V4)),

¯

¯̄

R̂(V1,V2,V3,V4) = R(V1,V2,V3,V4) + (g(V2,V3)g(V1,V4)

−g(V1,V3)g(V2,V4)).

R̂(V1,V2,V3,V4) = R(V1,V2,V3,V4)

+(g(V2,V3)g(V1,V4) − g(V1,V3)g(V2,V4))
+g(h(V1,V4),h(V2,V3)) − g(h(V1,V3),h(V2,V4)).

¯

¯



CR-submanifold: There exists a pair of orthogonal differentiable distributions D
and D⊥ on M, such that TM = D ⊕ D⊥ ⊕ {ξ}, where {ξ} is the one-dimensional
distribution spanned by ξ:

– D is invariant by ϕ, i.e., ϕ(Dp) ⊂ Dp, for all p ∈ M . That is, FV1 = 0 if V1 on D.
– D⊥ is anti-invariant by ϕ, i.e., ϕ(D⊥

p ) ⊂ T ⊥
p M , for all p ∈ M . That is, PV1 = 0 if 

V1 on D⊥.
In particular, if D⊥ = {0} (respectively, D = {0}), M is an invariant (respectively,
anti-invariant) submanifold.

The relationships between the intrinsic invariants of submanifolds and the invariants
of the ambient manifold are among the key topics of study in submanifold theory.
These invariants are often referred to as Riemannian invariants or curvature
invariants. One of the most signi�icant of these is sectional curvature. The tangent
space of a submanifold is decomposed into two-dimensional sections, and their
sectional curvatures are studied. The sum of these curvatures gives the scalar
curvature. Below, further details regarding these concepts are provided; for more
details see [14].

Let π ⊂ TxM
n,x ∈ M n, be a 2-plane section. Denote by K(π) the sectional

curvature of M nϕ − η-connection ∇̂. The scalar curvature of M is given by

for any orthonormal basis {e1, … , em} of the tangent space TxM
n.

Let us consider a k-dimensional subspace L of the tangent space TxM
n at a point 

x ∈ M n and X be a unit vector lying within L. Let L be a k-dimensional subspace of the
tangent space TxM

n at a point x ∈ M n, and let X be a unit vector lying within L. The
k-Ricci curvature of L along X is then de�ined by

(3.21)
where we choose an orthonormal basis as {e1 = X, e2, … , ek}, where Kij denotes
the sectional curvature associated with the two-dimensional plane spanned by ei and 
ej.

The scalar curvature τ(L) of L is de�ined as

(3.22)

where K(ei ∧ ej) denotes the sectional curvature of the 2-plane spanned by ei and ej.
We denote the scalar curvature of the k-plane section spanned by {e1, … , er} as 
τ1⋯k. The scalar curvature τ(p) of M at a point p ∈ M  is simply the scalar curvature
of the tangent space TpM . When L is a two-dimensional plane section, τ(L) reduces
to the sectional curvature K(L) of L. Geometrically, τ(L) corresponds to the scalar
curvature at p of the image of L under the exponential map expp [14].

For a �ixed integer k such that 2 ≤ k ≤ n, a Riemannian invariant Θk on M n is
de�ined as

¯

τ(x) =∑
1≤i<j≤n

K(ei ∧ ej)

RicL(X) = K12 + K13 + ⋯ + K1k,

τ(L) =∑
i<j

K(ei ∧ ej), 1 ≤ i, j ≤ k,



(3.23)

where the in�imum is taken over all k-dimensional subspaces L ⊂ TxM
n and all unit

vectors X ∈ L.
The invariant Θk(x) generalizes the concept of Ricci curvature by considering k-

dimensional subspaces of the tangent space instead of the entire tangent space. It
measures the “worst-case” k-dimensional Ricci curvature, providing valuable insights
into the interaction between the intrinsic and extrinsic curvatures of submanifolds.
For k = 2, Θ2(x) corresponds to the minimum sectional curvature at x, and for k = n,
where n is the dimension of M n, Θn(x) corresponds to the traditional Ricci
curvature. The total scalar curvature τ(p) at a point p can be expressed in terms of 
Θk(p) by summing or averaging over all k-dimensional plane sections. Θk(x) plays a
crucial role in various geometric inequalities and is particularly signi�icant in the
study of submanifolds.

The concept of the relative	null	space is a crucial tool in submanifold theory,
providing insights into the relationship between the intrinsic geometry of a
submanifold and its embedding in the ambient Riemannian manifold. For a
submanifold M of a Riemannian manifold (M , g), the relative null space of M at a
point p ∈ M  is de�ined as

The relative null space Np consists of all tangent vectors at p that are “�lat” in terms of
their interaction with the second fundamental form. That is, vectors in Np do not
contribute to the bending of the submanifold in any direction. For a totally geodesic
submanifold, h = 0, and hence Np = TpM  for all p ∈ M . The dimension of Np

depends on the point p and the geometric properties of M. It re�lects how the
submanifold bends within the ambient manifold. If M is minimal, the mean curvature
vector H vanishes, which implies certain symmetry properties in h and affects Np. Np

provides a way to characterize submanifolds with speci�ic curvature properties, such
as null 2-type submanifolds or submanifolds with harmonic curvature. The size and
structure of Np in�luence the relationship between the intrinsic geometry of M (e.g.,
Ricci curvature) and its extrinsic properties (e.g., mean curvature).

4	 Chen-Ricci	Inequalities	on	Kenmotsu	Space	Forms
Admitting	ϕ − η-Connection
In this section, results related to Chen-Ricci inequalities for submanifolds of Kenmotsu
space forms with a ϕ − η-connection are presented. Various inequalities for
submanifolds of Kenmotsu space forms have been studied by several authors [4, 5, 16,
23–25, 27, 33].

The following lemma, proven by Chen [10], provides a useful relationship among
real numbers, which play a crucial role in deriving inequalities:

Θk(x) = 1
k−1 inf

L,X
RicL(X), x ∈ M n,

¯̄

Np = {X ∈ TpM ∣ h(X,Y ) = 0, ∀Y ∈ TpM}.



Lemma	4.1	([10]) Leta1, a2, … , anand	b	be(n + 1)real	numbers	withn ≥ 2,
satisfying	the	equation:

Then	the	inequality2a1a2 ≥ bholds,	with	equality	if	and	only	if

For submanifolds of Kenmotsu space forms endowed with a ϕ − η-connection, we
establish the Chen �irst inequality.

Theorem	4.2 LetM n,n ≥ 3,	be	an	n-dimensional	submanifold	of	an(n + p)-
dimensional	Kenmotsu	space	formM n+p(c)of	constant	sectional	curvature	c,	endowed

withϕ − η-connection∇̂.	Then	we	have
(4.24)

Here,πdenotes	a	two-dimensional	plane	section	ofTxM
n,	wherex ∈ M n.	At	a	point

x ∈ M n,	the	equality	holds	if	and	only	if	there	exist:
An	orthonormal	basis{e1, e2, … , en}for	the	tangent	spaceTxM

nand
An	orthonormal	basis{en+1, … , en+p}for	the	normal	spaceT ⊥

x M n

such	that	the	shape	operators	ofM ninM n+p(c)at	x	satisfy	the	following	conditions:

where	we	de�inehr
ij

= g(h(ei, ej), er)for1 ≤ i, j ≤ nandn + 1 ≤ r ≤ n + p.

Proof Let x ∈ M n, {e1, e2, … , en} and {en+1, … , en+p} be orthonormal basis of 
TxM

n and T ⊥
x M n, respectively. For V1 = V4 = ei,V2 = V3 = ej, i ≠ j, from Eq.

(2.6), and by summation on 1 ≤ i, j ≤ n we get

(∑
n

i=1
ai)

2

= (n−1)(∑
n

i=1
a2
i + b).

a1 + a2 = a3 = … = an.

¯

¯

δM(x) ≤ (n2−3n + 3||P ||2) c+1
8 −3 c−1

4 + (n−2)n2

2(n−1) ||H||2.

¯

Aen+1 = , a + b = γ,

⎛⎜⎝a 0 0 ⋯ 0
0 b 0 ⋯ 0
0 0 γ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ γ

⎞⎟⎠Aen+i
= , 2 ≤ i ≤ p,

⎛⎜⎝hn+i
11 hn+i

12 0 ⋯ 0

hn+i
12 −hn+i

11 0 ⋯ 0
0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 0

⎞⎟⎠



Similarly from (3.20) and by summation on 1 ≤ i, j ≤ n, it follows from (3.11) and
(3.13) that

(4.25)
First, multiplying Eq. (4.25) by (n−1) and then adding and subtracting n2 ∥ H ∥2 to
both sides, we get

Let us take

and thus we can write
(4.26)

Let x ∈ M n,π ⊂ TxM
n, dim π = 2,π = sp{e1, e2}, and de�ine en+1 = H

∥H∥ . By
using (3.11) and (3.12) and from the relation (4.26), we obtain

or equivalently

(4.27)

By using Lemma 4.1 and from (4.27), we have

(4.28)

On the other hand, from the Gauss equation we get

(4.29)

Let us take V1 = V4 = e1 and V2 = V3 = e2. Since e1, e2 ∈ Γ(TM), we have 
Pe1 = e1,Pe2 = e2 and so we obtain

R̂(ei, ej, ej, ei) = (n2−3n + 2−3||P ||2)
c + 1

4
.¯

(n2−3n + 2−3||P ||2) c+1
4 = 2τ + n2 − n + ||h||2 − n2||H||2.

n2||H||2 = (n−1)(||h||2 + 2τ − (n2−3n + 2−3||P ||2) c+1
4 + n2

−n − (n−2)n2

n−1 ||H||2).

ϑ(τ, c) = 2τ − (n2−3n + 2−3||P ||2) c+1
4 + n2 − n − (n−2)n2

n−1 ||H||2,

n2||H||2 = (n−1)(||h||2 + ϑ(τ, c)).

(∑
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ii )

2

= (n−1)(∑
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i,j=1
∑
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r=n+1
(hr

ij)
2

+ ϑ(τ, c))

n
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ii

2

= (n−1)

n

∑
i=1

(hn+1
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2
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i≠j

(hn+1
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2
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n

∑
i,j=1

n+p

∑
r=n+2

(hr
ij)

2 + ϑ(τ, c) .

⎛⎜⎝ ⎞⎟⎠ ⎧⎪⎨⎪⎩ ⎫⎪⎬⎪⎭2hn+1
11 hn+1

22 ≥∑
i≠j

(hn+1
ij

)
2

+∑n

i,j=1
∑n+p

r=n+2
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ij
)

2
+ ϑ(τ, c).

R(V1,V2,V3,V4) = R̂(V1,V2,V3,V4)
−(g(V2,V3)g(V1,V4) + g(V1,V3)g(V2,V4))
−g(h(V1,V4),h(V2,V3)) + g(h(V1,V3),h(V2,V4)).

¯



Thus considering (4.28) we have

and thus, we get

Let us set the expression of ϑ(τ, c) in the last inequality; then we get

and so, the inequality has the following form:

In the inequality obtained above, a necessary and suf�icient condition for the equality
to hold at an arbitrary point x ∈ M n is that equality must occur in all the previous
inequalities, as well as in the equality given in Lemma 4.1.
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2m+1

r=n+1
∑

2≤i<j≤n
[hr

iih
r
jj − (hr

ij)
2
].

K(π) ≥
c−1

2
+

1
2
∑

i≠j

(hn+1
ij )

2
+

n

∑
i,j=1

n+p

∑
r=n+2

(hr
ij)

2 + ϑ(τ, c)

+

n+p

∑
r=n+2

hr
11h

r
22 −

n+p

∑
r=n+1

(hr
12)2

=
c−1

2
+

1
2
∑

i≠j

(hn+1
ij )

2
+

1
2

n

∑
i,j=1

n+p

∑
r=n+2

(hr
ij)

2 +
1
2
ϑ(τ, c)

+

n+p

∑
r=n+2

hr
11h

r
22 −

n+p

∑
r=n+1

(hr
12)2,

⎡⎢⎣ ⎤⎥⎦K(π) ≥
c−1

2
+

1
2
∑

i≠j

(hn+1
ij )

2
+

1
2

n+p

∑
r=n+2

∑
i,j>2

(hr
ij)

2

+
1
2

n+p

∑
r=n+2

(hr
11 + hr

22)2 +∑
j>2

[(hn+1
1j )

2
+ (hn+1

2j )
2
] +

1
2
ϑ(τ, c)

=
c−1

2
+

1
2
ϑ(τ, c).

K̂(π) ≥ τ − 1
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2−3n−6 + 3||P ||2)c − 1
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2−3n + 6 + 3||P ||2)
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τ − K̂(π) ≤ (n2−3n + 3||P ||2) c+1
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Choosing {e1, e2} to be hn+1
12 = 0 and denoting a = hr

11, b = hr
22,μ =

hn+1
33 = ⋯ = hn+1

nn , the shape operators are obtained as a desired form. □

Every invariant submanifold of a Kenmotsu manifold is minimal [22]. We show that 
h = ĥ; thus from the de�inition of mean curvature, it is evident that if the submanifold
of a Kenmotsu manifold is minimal, then the submanifold of a Kenmotsu manifold
admitting a ϕ − η-connection is also minimal. On the other hand, for an invariant
submanifold and any unit tangent vector X ∈ TpM  orthogonal to ξ, since the
manifold is invariant, we have ∥ PX ∥=∥ ϕX ∥=∥ X ∥= 1. If M is anti-invariant,
then PX = 0. Thus, we can state the following result:

Corollary	4.3 Let	M	be	a	submanifold	of	Kenmotsu	space	formM(c)admitting	aϕ − η

-connection.
(i)

If	M	is	an	invariant	submanifold,	then	we	have  
(ii)

If	M	is	an	anti-invariant	submanifold,	then	we	have  

(iii)

If	M	is	CR-submanifold,	then	we	have:
(a)

For	each	unit	vectorX ∈ Dp,  

(b)
For	each	unit	vectorX ∈ D⊥

p ,	we	have  

 

Let X ∈ TxM  be a unit vector in the tangent space at x. We select an orthonormal
basis {e1, e2, … , en, en+1, … , en+p}, where {e1, e2, … , en} spans the tangent space
TxM  with e1 = X. Consider Eq. (4.25). From this equation we get

hn+1
ij = 0, ∀i ≠ j, i, j > 2,

hr
ij = 0, ∀i ≠ j, i, j > 2, r = n + 1, … ,n + p,

hr
11 + hr

22 = 0, ∀r = n + 2, … ,n + p,

hn+1
1j = hn+1

2j = 0, ∀j > 2,

hn+1
11 + hn+1

22 = hn+1
33 = ⋯ = hn+1

nn .

¯

δM ≤ (n2−3n + 3) c+1
8 −3 c−1

4 .

δM ≤ (n2−3n) c+1
8 −3 c−1

4 + (n−2)n2

2(n−1) ||H||2.

δM ≤ (n2−3n) c+1
8 −3 c−1

4 + (n−2)n2

2(n−1) ||H||2.

δM ≤ (n2−3n + 3) c+1
8 −3 c−1

4 + (n−2)n2

2(n−1) ||H||2.



(4.30)

From (4.29), V1 = ei,V2 = V3 = ej, we get

By summation, it follows that

Thus, using (4.30) and (3.15) we get

Hence we obtain
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c + 1
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.



Finally we get

(4.31)

Assume that H(p) = 0. Equality in (4.31) holds if and only if

This implies that hr
1j = 0 for all j ∈ {1, … ,n} and r ∈ {n + 1, … , 2m}, which

means X ∈ Np. Equality in (4.31) for all unit tangent vectors at p holds if and only if

Consequently, the point p is totally geodesic. The converse is straightforward and
follows directly. Finally we state the following result.

Theorem	4.4 LetM̄(c)be	an(n + p)-dimensional	Kenmotsu	space	form	admitting
ϕ − η-connection	and	M	an	n-dimensional	submanifold	tangent	toξ.	Then:

(i)
For	each	unit	vectorX ∈ TpMorthogonal	toξ,	we	have (4.31).  

(ii) IfH(p) = 0,	then	a	unit	tangent	vectorX ∈ TpMorthogonal	toξsatis�ies	the
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equality	case	of (4.31) if	and	only	ifX ∈ Np.  
(iii)

The	equality	case	of (4.31) holds	identically	for	all	unit	tangent	vectors
orthogonal	toξat	p	if	and	only	if	p	is	a	totally	geodesic	point.

 

For special submanifolds we have the following result.

Corollary	4.5 Let	M	be	a	submanifold	of	Kenmotsu	space	formM(c)admitting	aϕ − η

-connection.
(i)

If	M	is	an	invariant	submanifold,	then	we	have  

(ii)
If	M	is	an	anti-invariant	submanifold,	then	we	have  

(iii)
If	M	is	CR-submanifold,	then	we	have:
(a)

For	each	unit	vectorX ∈ Dp,  

(b)
For	each	unit	vectorX ∈ Dp

⊥,	we	have  

 

5	 k-Ricci	Curvature
k-Ricci curvature of M n is an intrinsic geometric invariant, and the squared mean
curvature ∥ H ∥2 is an extrinsic invariant. The k-Ricci curvature of M n is an intrinsic
geometric invariant, while the squared mean curvature H 2 is an extrinsic invariant. A
fundamental question in submanifold theory is to establish a sharp relation between
these invariants. In this subsection, we provide a new result concerning the interplay
between intrinsic and extrinsic properties.

Theorem	5.1 LetM n,n ≥ 3,	be	an	n-dimensional	submanifold	M	tangent	toξof	an
(n + p)-dimensional	Kenmotsu	space	formM n+p(c)of	constant	sectional	curvature	c

endowed	withϕ − η-connection∇̂.	Then	we	have

¯

Ric(X) ≤
1
8
[(n2−3n + 5)c − n2 + 11n−7].

Ric(X) ≤
1
8
[(n2−3n + 2)c − n2 + 12n−8 + n2 ∥ H ∥2].

Ric(X) ≤
1
4
[(n2−3n + 5)c − n2 + 11n−7 + n2 ∥ H ∥2].

Ric(X) ≤
1
4
[(n2−3n + 2)c − n2 + 12n−8 + n2 + n2 ∥ H ∥2].

¯

¯



(5.32)

Proof We begin by selecting an orthonormal basis {e1, … , en, en+1, … , e2m+1 = ξ}
at the point p ∈ M , such that:

en+1 is aligned with the mean curvature vector H(p).
e1, … , en diagonalize the shape operator An+1.

Under these assumptions, the shape operators are expressed as

Using the Gauss equation (4.25), we derive the following relationship:

(5.33)

To simplify further, we note the inequality

From this, it follows that

Thus, we deduce

Substituting this inequality into (5.33), we obtain

This completes the proof. □

Using this result, we derive the following theorem.

Theorem	5.2 LetM n,n ≥ 3,	be	an	n-dimensional	submanifold	M	tangent	toξof	an
(n + p)-dimensional	Kenmotsu	space	formM n+p(c)of	constant	sectional	curvature	c
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endowed	withϕ − η-connection∇̂.	Then	we	have
(5.34)

Proof Consider an orthonormal basis {e1, … , en} of TpM . Let Li1⋯ik  represent the
k-dimensional plane section spanned by the vectors ei1 , … , eik . From (3.21) and
(3.22), the following relations hold:

(5.35)

By combining (3.23) with (5.35), we derive the inequality:
(5.36)

From (5.32) and (5.36), we obtain (5.34). □

For special submanifolds of Kenmotsu space form we get the following corollary.

Corollary	5.3 Let	M	be	a	submanifold	of	Kenmotsu	space	formM(c)admitting	aϕ − η

-connection.	Then,	for	any	integerk, 2 ≤ k ≤ n,	and	any	pointp ∈ M :

(i)
If	M	is	an	invariant	submanifold,	we	have  

(ii)
If	M	is	an	anti-invariant	submanifold,	we	have  

(iii)
If	M	is	CR-submanifold,	we	have

where2h =dim D.

 

6	 Conclusion
In this study, we addressed the fundamental problem in submanifold theory, namely
�inding simple relationships between the main extrinsic and intrinsic invariants of a
submanifold, within the framework of Kenmotsu space forms. We investigated Chen
invariants and Ricci inequalities for submanifolds of Kenmotsu space forms endowed

¯
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with a special quarter-symmetric connection. The inequalities involving Chen
invariants on Kenmotsu space forms equipped with this special connection yielded
signi�icant geometric results.

These results were applied to invariant, anti-invariant, and CR-submanifolds,
which are special classes of submanifolds. The �indings of this study provide valuable
contributions to ongoing research in this �ield and offer a foundation for further
exploration. Additionally, the proposed connection allows for potential investigations
into other special submanifolds of Kenmotsu space forms. Moreover, extending this
connection to other geometric structures could lead to novel insights and diverse
applications in differential geometry.

This work underscores the importance of the proposed approach and invites
future studies to build upon these results, extending the scope of submanifold theory
in the context of Kenmotsu geometry and beyond.
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Abstract
This study is devoted to �ind Chen and Chen-Ricci -type inequalities for semi-slant ξ⊥-Riemannian
submersions from Sasakian space forms onto Riemannian manifolds. These inequalities reveal relationships
between intrinsic invariants, such as Ricci and scalar curvature, and extrinsic invariants like the second
fundamental form. Finally, we analyze the conditions under which equality is attained, and we present
illustrative examples.

1	 Introduction
In a series of pioneering works [13, 14], B. Y. Chen explored meaningful connections between the intrinsic
curvature quantities (such as Ricci, scalar, and k-Ricci curvature) and the extrinsic curvature quantities
(such as the squared mean curvature and shape operator) in submanifold geometry. These led to the
development of what are now known as the Chen inequalities, which provide sharp bounds involving
curvature invariants for Riemannian submanifolds in space forms (see: [13–16]). Since then, extensive
studies have expanded upon these results, leading to a wide array of inequalities applicable to various
classes of submanifolds and Riemannian submersions in diverse ambient geometries (e.g., [1, 3–5, 8–11, 18,
21–25, 27, 28, 30, 32–34, 37–39, 44, 48–53], among others).

The theory of Riemannian submersions, introduced by O’Neill [29] and further developed by Gray [20],
has proven to be a useful tool in the study of the geometric structure of manifolds. Later, Şahin [40] extended
this framework by introducing anti-invariant Riemannian submersions from almost Hermitian manifolds.
Motivated by these developments, researchers have proposed several generalizations such as slant, semi-
invariant, and semi-slant submersions, each offering novel insights into submersion geometry [2, 6, 7, 17,
26, 31, 36, 41–43, 45–47].

Speci�ically, Lee [26] introduced the concept of anti-invariant ξ⊥-Riemannian submersions from almost
contact metric manifolds. This notion was later generalized by Akyol et al. [7] to semi-invariant ξ⊥-
Riemannian submersions and subsequently extended to slant submersions from Sasakian manifolds by
Erken and Murathan [17]. Building on these contributions, Akyol and Sarı [6] proposed the notion of semi-
slant ξ⊥-Riemannian submersions, which generalizes the previous frameworks.

In this chapter, we examine Chen-Ricci inequalities for semi-slant ξ⊥-Riemannian submersions from
Sasakian space forms. We derive new inequalities, study their equality cases, and offer explicit examples to
illustrate the results.

This chapter is organized as follows. In Sect. 2, we review some fundamental geometric properties of
Riemannian submersions, Sasakian manifolds, and Sasakian space forms. In Sect. 3, we derive the Chen-Ricci
inequality and the Chen inequality for semi-slant ξ⊥-Riemannian submersions from Sasakian space forms.
We also discuss the equality cases. Finally, we provide some illustrative examples.
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2	 Preliminaries
De�inition	2.1 Let (M, g) and (M1, g1) be Riemannian manifolds, where dim(M) = m, dim(M1) = m1,
and m > m1. A Riemannian submersion ψ : M → M1 is a map of M onto M1 satisfying the following
axioms:
(i)

ψ has maximal rank.  
(ii)

The differential ψ∗ preserves the lengths of horizontal vectors, that is, ψ∗ is a linear isometry [29]. 
The geometry of Riemannian submersions is characterized by O’Neill’s tensors T  and A , de�ined as follows
[19]:

(2.1)
(2.2)

for any vector �ields U1 and U2 on M, where ∇ is the Levi-Civita connection of g. It is easy to see that TU1

and AU1  are skew-symmetric operators on the tangent bundle of M reversing the vertical and the horizontal
distributions. We now summarize the properties of the tensor �ields T  and A  . Let [19] V1,V2 be vertical
and X1,X2 be horizontal vector �ields on M, and then we have

(2.3)
(2.4)

By virtue of (2.1) and (2.2), we get
(2.5)
(2.6)
(2.7)
(2.8)

for all V1,V2 ∈ Γ(kerψ∗) and X1,X2 ∈ Γ((kerψ∗)⊥), where ∇̂V1
V2 = V∇V1

V2. If X1 is basic, 
H ∇V1X1 = AX1V1 [19]. We also note that:

(i)
For U1,U2 ∈ V (M), TU1U2 = TU2U1.  

(ii)
For X1,X2 ∈ H (M), AX1X2 = −AX2X1. 

Denote by R, R′, R̂, and R1 the Riemannian curvature tensor of Riemannian manifolds M, M1, the
vertical distribution V , and the horizontal distribution H , respectively. Then the Gauss-Codazzi-type
equations are given by

(2.9)

(2.10)

(2.11)

where
(2.12)

for all U1,U2,U3,U4 ∈ V (M) and X1,X2,X3,X4 ∈ H (M) [19, 29].
The mean curvature vector �ield H of any �iber of Riemannian submersion ψ is given by

(2.13)

where {U1, … ,Ur} is an orthonormal basis of the vertical distribution V . Moreover, ψ has totally geodesic
�ibers if T = 0 on H (M) and V (M) [19].

Now, we have the following lemma which shows that A  and T  are antisymmetric with respect to g.

Lemma	2.2	([29]) Let(M, g)and(M1, g1)be	Riemannian	manifolds	andψ : M → M1Riemannian
submersion.	ForE1,E2,E3 ∈ χ(M),	we	have

TU1U2 = V∇V U1H U2 + ∇V U1V U2,
AU1U2 = V∇H U1H U2 +H ∇H U1V U2

TV1
V2 = TV2

V1,
AX1X2 = −AX2X1 = 1

2 V [X1,X2].

∇V1
V2 = TV1

V2 + ∇̂V1
V2,

∇V1
X1 = TV1

X1 +H ∇V1
X1,

∇X1
V1 = AX1

V1 + V∇X1
V1,

∇X1
X2 = H ∇X1

X2 +AX1
X2,

R(U1,U2,U3,U4) = R̂(U1,U2,U3,U4) + g(TU1U4,TU2U3) − g(TU2U4,TU1U3)
R(X1,X2,X3,X4) = R∗(X1,X2,X3,X4)−2g(AX1X2,AX3X4)

+g(AX2X3,AX1X4) − g(AX1X3,AX2X4)
R(X1,U2,X2,U4) = g((∇XT )(U2,U4),X2) + g((∇VA )(X1,X2),U4)

−g(TU2X1,TU4X2) + g(AX2U4,AX1U2),

ψ∗(R∗(X1,X2)X3)) = R′(ψ∗X1,ψ∗X2)ψ∗X3

N = rH,N =∑
r

j=1
TUj

Uj,



(2.14)
(2.15)

A (2m + 1)-dimensional Riemannian manifold (M, g) is said to be a Sasakian manifold if it admits an
endomorphism ϕ of its tangent bundle TM, a vector �ield U, and a 1-form η satisfying

for any vector �ields X1, X2 on TM, where ∇M  denotes the Riemannian connection with respect to g.

De�inition	2.3 Let (M,ϕ, ξ, η, g) be a Sasakian manifold and (M1, g1) be a Riemannian manifold. A
Riemannian submersion ψ : (M,ϕ, ξ, η, g) → (M1, g1) is said to be semi-slant ξ⊥-Riemannian submersion
if there is a distribution D̃ ⊂ kerψ∗ such that

and the angle θ = θ(X) between ϕX and the space D̄q is constant for nonzero X ∈ Γ(D̄)q and q ∈ M ,
where D̄  is the orthogonal complement of D̃  in kerψ∗ [6]. Here we call the angle θ a semi-slant angle.

Remark	2.4 In this chapter, we suppose that the Reeb vector �ield ξ is vertical.

From now on, we will assume that ψ be a semi-slant ξ⊥-Riemannian submersion from a Sasakian manifold 
(M,ϕ, ξ, η, g) onto a Riemannian manifold (M1, g1).

Now [6], let ψ be a semi-slant ξ⊥-Riemannian submersion. Then, for U1 ∈ Γ(kerψ∗), we get

where φU1 and ωU1 are vertical and horizontal components of ϕU1, respectively. Similarly, for any 
X1 ∈ Γ((kerψ∗)⊥), we have

where BX1 (resp. CX1) is the vertical part (resp. horizontal part) of ϕX1. Then, the horizontal distribution
(kerψ∗)⊥ is decomposed as

Theorem	2.5 Letψbe	a	semi-slantξ⊥-Riemannian	submersion.	For	any U2 ∈ Γ(D̄),	we	have

whereθdenotes	the	semi-slant	angle	ofD̄[6].

Lemma	2.6	([6]) Letψbe	a	semi-slantξ⊥-Riemannian	submersion.	For	anyU1,U2 ∈ Γ(D̄),	we	have

A plane section π in TpM  is called a ϕ-section if it is spanned by X1 and ϕX1, where X1 is a unit tangent
vector orthogonal to U1. The sectional curvature of a ϕ-section is called a ϕ- sectional curvature. A Sasakian
manifold with constant ϕ-sectional curvature c is said to be a Sasakian space form and is denoted by M(c)
[12, 35]. The curvature tensor of M(c) of a Sasakian space form M(c) is given by

(2.16)

g(TE1E2,E3) = −g(E2,TE1E3),
g(AE1E2,E3) = −g(E2,AE1E3).

ϕ2 = −Id + η ⊗ ξ, η(U) = 1,ϕξ = 0, η ∘ ξ = 0,

g(ϕX1,ϕX2) = g(X1,X2) − η(X1)η(X2), η(X1) = g(X1, ξ),

(∇M
X1
ϕ)X2 = g(X1,X2)ξ − η(X2)X1, ∇M

X1
ξ = −ϕX1,

kerψ∗ = D̃ ⊕ D̄ ⊕ ⟨ξ⟩,J(D̃) = D̃,

ϕU1 = φU1 + ωU1,

ϕX1 = BX1 + CX1,

(kerψ∗)⊥ = ωD̄ ⊕ μ.

ϕ2U2 = − cos2 θU2,

g(φU1,φU2) =cos2 θg(U1,U2),

g(ωU1,ωU2) =sin2 θg(U1,U2).

R̃(X1,X2)X3 = (c+3)
4 {g(X2,X3)X1 − g(X1,X3)X2}

+ (c−1)
4 {η(X1)η(X3)X2

−η(X2)η(X3)X1 + g(X1,X3)η(X2)ξ − g(X2,X3)η(X1)ξ

+g(ϕX2,X3)ϕX1 − g(ϕX1,X3)ϕX2−2g(ϕX1,X2)ϕX3}



for any tangent vector �ields X1,X2,X3 on M(c).
Let (M(c), g), (M1, g1) be a Sasakian space form and a Riemannian manifold, respectively, and 

ψ : M(c) → M2 a semi-slant ξ⊥-Riemannian submersion. Furthermore, let {E1, … ,Er,F1, … ,Fn} be an
orthonormal basis of TpM(c) such that V = span{E1, … ,Er = ξ}, H = span{F1, … ,Fn}, and 
r = 2d1 + 2d2 + 1. Then we consider adapted semi-slant orthonormal frames

Here, we have

and then

3	 Chen-Ricci	Inequality	and	Chen	Inequalities
ψ : M(c) → M1 a semi-slant ξ⊥-Riemannian submersion. Furthermore, let {E1, … ,Er,F1, … ,Fn} be an
orthonormal basis of TpM(c) such that V = span{E1, … ,Er = ξ}, H = span{F1, … ,Fn}. By virtue of
(2.9), (2.10), and (2.16), we have

(3.17)

(3.18)

Theorem	3.1 Letψ : M(c) → Nbe	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then,	the
following	statements	are	true:
(i)

For	any	unit	vector	�ieldE ∈ Γ(D̃),	it	follows	that
(3.19)

The	equality	case	of (3.19) holds	for	a	unit	vertical	vectorE ∈ Γ(D̃)if	and	only	if	each	�iber	is	totally
geodesic.

 

(ii)
For	any	unit	vector	�ieldE ∈ Γ(D̄),	it	follows	that

(3.20)
The	equality	case	of (3.20) holds	for	a	unit	vertical	vectorE ∈ Γ(D̄)if	and	only	if	each	�iber	is	totally

geodesic.

 

E1,E2 = φE1, … ,E2d1−1,E2d1−1 = φE2d1 ,E2d1+1,

E2d1+2 = 1
cosθ

φE2d1+1, … ,E2d1+2d2−1,E2d1+2d2

= 1
cosθ

φE2d1+2d2−1,E2d1+2d2+1 = ξ.

g2(ϕEi,Ei+1) = {
1, for i ∈ {1, … , 2d1−1},

cos2θ, for i ∈ {2d1 + 1, … , 2d1 + 2d2−1},

∑
r

i,j=1
g2(ϕEi,Ej) = 2(d1 + d2cos

2θ).

R̂(U1,U2,U3,U4) =
(c+3)

4 {g(U2,U3)g(U1,U4) − g(U1,U3)g(U2,U4)}

+
(c−1)

4 {η(U1)η(U3)g(U2,U4) − η(U2)η(U3)g(U1,U4)

+η(U2)η(U4)g(U1,U3) − η(U1)η(U4)g(U2,U3)

+g(ϕU2,U3)g(ϕU1,U4)

−g(ϕU1,U3)g(ϕU2,U4)−2g(ϕU1,U2)g(ϕU3,U4)}

−g(TU1
U4,TU2

U3) + g(TU2
U4,TU1

U3),

R∗(F1,F2,F3,F4) =
(c+3)

4 {g(F2,F3)g(F1,F4) − g(F1,F3)g(F2,F4)}

+
(c−1)

4 {η(F1)η(F3)g(F2,F4) − η(F2)η(F3)g(F1,F4)

+η(F2)η(F4)g(F1,F3) − η(F1)η(F4)g(F2,F3)

+g(ϕF2,F3)g(ϕF1,F4) − g(ϕF2,F4)g(ϕF1,F3)

−2g(ϕF1,F2)g(F4,ϕF3)}

+2g(AF1
F2,AF3

F4) − g(AF2
F3,AF1

F4)

+g(AF1
F3,AF2

F4).

R̂ic(E) ≥ (c+3)
4 (r−1) + (c−1)

2 − rg(TEE,H).

R̂ic(E) ≥ (c+3)
4 (r−1) + (c−1)

4 (−1 + 3 cos2 θ) − rg(TEE,H).



Proof From (3.17), we have

(3.21)

where

If we get E ∈ Γ(D̃), we have

(3.22)

Similarly, if we get E ∈ Γ(D̄), we obtain

(3.23)

By virtue of the last two equations in (3.21), we get (3.19) and (3.20). □

Theorem	3.2 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then
(3.24)

The	equality	case	of (3.24) holds	if	and	only	if	each	�iber	is	totally	geodesic.

Proof By using the symmetry of T  in (3.17), we have

(3.25)

where

Since

(3.26)

then by using last two equations in (3.21), we obtain (3.24). □

For the horizontal distribution, in view of (3.18), since ψ is semi-slant ξ⊥-Riemannian submersion and ξ is
vertical, using the antisymmetry of A, we �ind

(3.27)

where

(3.28)

Now we de�ine

(3.29)

and then from (3.27) and (3.29), we obtain

(3.30)

From (3.30) we have:

Theorem	3.3 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then
(3.31)

The	equality	case	of (3.31) holds	if	and	only	ifH (M)is	integrable.

R̂ic(E) = (c+3)
4

(r−1)g(E,E) + (c−1)
2

{(2 − r)(η(E))2

−g(E,E) + 3∑
r

i=1
g2(ϕE,Ei)} − rg(TEE,H) + ∥TEEi∥

2,

R̂ic(E) =∑
r

i=1
R̂(E,Ei,Ei,E).

∑
r

i=1
g2(ϕE,Ei) = 1.

∑
r

i=1
g2(ϕE,Ei) =cos2 θ.

2τ̂ ≥ (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)} − r2∥H∥2.

2τ̂ = (c+3)
4

r(r−1) + (c−1)
4
{2(1 − r) + 3∑

r

i=1
g2(ϕE,Ei)}− r2∥H∥2

+∑
r

i,j=1
g(TEi

Ej,TEi
Ej),

τ̂ =∑
1≤i<j≤r

R̂(Ei,Ej,Ej,Ei).

∑
r

i=1
g2(ϕE,Ei) = 2d1 + 2d2 cos2 θ,

2τ ∗ = (c+3)
4 n(n−1) + 3∑

n

i,j=1
{ (c−1)

4 g(CFi,Fj)g(CFi,Fj)

−g(AFi
Fj,AFi

Fj)},

τ ∗ =∑
1≤i<j≤r

R∗(Fi,Fj,Fj,Fi).

∥C ∥2 =∑
n

i=1
g2(CFi,Fj),

2τ ∗ = (c+3)
4 n(n−1) + 3(c−1)

4 ∥C ∥2−3∑
n

i,j=1
g(AFi

Fj,AFi
Fj).

2τ ∗ ≤ (c+3)
4 n(n−1) + 3(c−1)

4 ∥C ∥2.



Let ψ : M(c) → M1 be a semi-slant ξ⊥-Riemannian submersion such that ξ is vertical and 
{E1, … ,Er,F1, … ,Fn} is an orthonormal basis of TpM(c) such that V p(M) = span{E1, … ,Er}, 
H p(M) = span{F1, … ,Fn}. Now we denote T s

ij  by
(3.32)

where 1 ≤ i, j ≤ r and 1 ≤ s ≤ n (see [22]).
Similarly, we denote A α

ij  by
(3.33)

where 1 ≤ i, j ≤ n and 1 ≤ α ≤ r. From [22], we use

(3.34)

From the binomial theorem, there is such as the following equation between the tensor �ields T :

(3.35)

Theorem	3.4 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then,	the
following	statements	are	true:
(i)

For	any	unit	vector	�ieldE1 ∈ Γ(D̃),	it	follows	that
(3.36)

 
(ii)

For	any	unit	vector	�ieldE1 ∈ Γ(D̄),	it	follows	that
(3.37)

The	equality	case	of (3.36) and (3.37) holds	if	and	only	if

 

Proof Let {E1, … ,E2d1 ,E2d1+1,E2d1+2, … ,E2d1+2d2−1,E2d1+2d2 ,E2d1+2d2+1} be an adapted semi-slant
basis of V p(M).

(i)

(i)

Due to the fact that one can choose the above adapted semi-slant basis such that E1 = E, it suf�ices to
prove (3.36) for E = E1. Considering (3.25) and (3.26), we have

(3.38)

By using (3.32) in (3.38) and the symmetry of T , we can write

(3.39)

Hence using (3.35) in (3.39), we obtain

(3.40)

Then from (3.40), we have
(3.41)

 

T s
ij = g(TEi

Ej,Fs),

A α
ij = g(AEi

Ej,Eα),

δ(N) =∑
n

i=1
∑

r

k=1
g((∇Fi

T )Ek
Ek,Fi).

∑
n

s=1
∑

r

i,j=1
(T s

ij )2 = 1
2
r2∥H∥2 + 1

2
(T s

11 −T s
22 − … −T s

rr)
2

+2∑
n

s=1
∑

r

j=2
(T s

1j)
2−2∑

n

s=1
∑

2≤i<j≤r
(

s

T
ii

s

T
jj

− (
s

T
ij

)
2

).

R̂ic(E1) ≥ (c+3)
4 (r−1) + (c−1)

2 − 1
4 r

2∥H∥2.

R̂ic(E1) ≥ (c+3)
4

(r−1) + (c−1)
4

(−1 + 3 cos2 θ) − 1
4
r2∥H∥2.

T s
11 = T s

22 + … +T s
rr,

T s
1j = 0, j = 2, … , r.

2τ̂ = (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)} − r2∥H∥2

+∑
r

i,j=1
g(TEi

Ej,TEi
Ej).

2τ̂ = (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)} − r2∥H∥2

+∑
n

s=1
∑

r

i,j=1
(T s

ij )2.

2τ̂ = (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)} − 1
2 r

2∥H∥2

+ 1
2

(T s
11 −T s

22 − … −T s
rr)

2 + 2∑
n

s=1
∑

r

j=2
(T s

1j)
2

−2∑
n

s=1
∑

2≤i<j≤r
(T s

iiT
s
jj − (T s

ij )2).



Besides, taking U1 = U4 = Ei, U2 = U3 = Ej in (3.17) and using (3.32), we obtain

(3.42)

Considering (3.42) in (3.41), we get

(3.43)

Moreover, we have

(3.44)

By using (3.44) in (3.43), we get

(3.45)

Since M is a Sasakian space form, its curvature tensor R satis�ies the equality (2.16), we have

(3.46)

If we get E1 ∈ Γ(D̃) in (3.46), we obtain

(3.47)

Taking into account of the last equation in (3.45), we get (3.36).

(ii)

(ii)

Due to the fact that in this case one can choose the adapted semi-slant basis 
{E1, … ,E2d1

,E2d1+1,E2d1+2, … ,E2d1+2d2−1,E2d1+2d2
} such that E2d1+1 = U , it suf�ices to prove

(3.37) for E = E2d1+1. If we get E1 ∈ Γ(D̄) in (3.46), we obtain:
With similar arguments as in case (i), we obtain

(3.48)

If we get E2d1+1 ∈ Γ(D̃) in (3.46), we obtain

(3.49)

Taking into account of the last equation in (3.48), we get (3.37).

 

□

2τ̂ ≥ (c+3)
4

r(r−1) + (c−1)
4

{2(1 − r) + 6(d1 + d2 cos2 θ)} − 1
2
r2∥H∥2

−2∑
n

s=1
∑

2≤i<j≤r
(T s

iiT
s
jj − (T s

ij )2).

2∑
2≤i<j≤r

R(Ei,Ej,Ej,Ei) = 2∑
2≤i<j≤r

R̂(Ei,Ej,Ej,Ei)

+2∑
n

s=1
∑

2≤i<j≤r
(T s

ii
T s

jj
− (T s

ij
)2).

2τ̂ ≥ (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)} − 1
2 r

2∥H∥2

+2∑
2≤i<j≤r

R̂(Ei,Ej,Ej,Ei)−2∑
2≤i<j≤r

R(Ei,Ej,Ej,Ei).

2τ̂ = 2∑
2≤i<j≤r

R̂(Ei,Ej,Ej,Ei) + 2∑
r

j=1
R̂(E1,Ej,Ej,E1).

2R̂ic(E1) ≥ (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)}

− 1
2 r

2∥H∥2−2∑
2≤i<j≤r

R(Ei,Ej,Ej,Ei).

∑
2≤i<j≤r

R(Ei,Ej,Ej,Ei) = (c+3)
8 (r−2)(r−1)

+ (c−1)
4
{(2 − r)∑

r

j=2
(η(Uj))2

+3∑
2≤i<j≤r

g2(ϕEi,Ej)}.

∑
2≤i<j≤r

R(Ei,Ej,Ej,Ei) = (c+3)
8

(r−2)(r−1) + (c−1)
4

{(2 − r)

+3((d1−1) + d2 cos2 θ)}.

2R̂ic(E2d1+1) ≥ (c+3)
4 r(r−1) + (c−1)

4 {2(1 − r) + 6(d1 + d2 cos2 θ)}

− 1
2 r

2∥H ∥2

−2∑
1≤k<s≤r; k,s≠2d1+1

R(Ek,Es,Es,Ek).

∑
1≤k<s≤r; k,s≠2d1+1

R(Ek,Es,Es,Ek) = (c+3)
8

(r−2)(r−1)

+ (c−1)
4

{(2 − r)

+3(d1 + (d2−1) cos2 θ)}.



Theorem	3.5 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.50)
The	equality	case	of (3.50) holds	if	and	only	if

Proof From (3.30) and (3.33), we have

(3.51)

Since A  is anti-symmetric on H (M(c)), (3.51) can be written as

(3.52)

Moreover, taking X1 = X4 = Fi,X2 = X3 = Fj in (3.18) and using (3.33), we get

(3.53)

By using (3.53) in (3.52), we get

(3.54)

Besides, from (3.18), we obtain

(3.55)

Then from (3.54) and (3.55), we derive

(3.56)

This completes the proof. □

Now, by taking into account of ξ is vertical, we compute the Chen-Ricci inequality between the vertical and
horizontal distributions. For the scalar curvature τ  of M(c), we have

(3.57)

(3.58)

Let us denote [22]

(3.59)

(3.60)

(3.61)

(3.62)

Ric∗(F1) ≤
(c+3)

4 (n−1) +
3(c−1)

4 ∥CF1∥2.

A α
1j = 0, j = 2, … ,n.

2τ ∗ = (c+3)
4 n(n−1) + 3(c−1)

4 ∥C ∥2−3∑
r

α=1
∑

n

i,j=1
(A α

ij )2.

2τ ∗ = (c+3)
4

n(n−1) + 3(c−1)
4

∥C ∥2−6∑
r

α=1
∑

n

j=2
(A α

1j )2

−6∑
r

α=1
∑

2≤i<j≤n
(A α

ij )2.

2∑
2≤i<j≤n

R(Fi,Fj,Fj,Fi) = 2∑
2≤i<j≤n

R∗(Fi,Fj,Fj,Fi)

+6∑
r

α=1
∑

2≤i<j≤n
(A α

ij
)2.

2τ ∗ = (c+3)
4

n(n−1) + 3(c−1)
4

∥C ∥2−6∑
r

α=1
∑

n

j=2
(A α

1j )2

+2∑
2≤i<j≤n

R∗(Fi,Fj,Fj,Fi)−2∑
2≤i<j≤n

R(Fi,Fj,Fj,Fi).

∑
2≤i<j≤n

R(Fi,Fj,Fj,Fi) = (c+3)
8 (n−2)(n−1)

+ 3(c−1)
4 ∑

2≤i<j≤n
g2(CFi,Fj).

2Ric∗(F1) = (c+3)
2

(n−1) + 3(c−1)
2

∥CF1∥2−6∑
r

α=1
∑

n

j=2
(A α

1j )2.

2τ =∑
n

s=1
Ric(Fs,Fs) +∑

r

k=1
Ric(Ek,Ek),

2τ =∑
r

j,k=1
R(Ej,Ek,Ek,Ej) +∑

n

i=1
∑

r

k=1
R(Fi,Ek,Ek,Fi)

+∑
n

i,s=1
R(Fi,Fs,Fs,Fi) +∑

n

s=1
∑

r

j=1
R(Ej,Fs,Fs,Ej).

∥T V ∥
2

=∑
n

i=1
∑

r

k=1
g(TEk

Fi,TEk
Fi),

∥T H ∥
2

=∑
r

k,j=1
g(TEk

Ej,TEk
Ej),

∥A V ∥
2

=∑
n

i,j=1
g(AFi

Fj,AFi
Fj),

∥A H ∥
2

=∑
n

i=1
∑

r

k=1
g(AFi

Ek,AFi
Ek).



Theorem	3.6 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have:
(i)

For	any	unit	vector	�ieldE1 ∈ Γ(D̃),	it	follows	that

(3.63)

 

(ii)
For	any	unit	vector	�ieldE1 ∈ Γ(D̄),	it	follows	that

(3.64)

The	equality	case	of (3.63) and (3.64) holds	if	and	only	if

 

Proof Since M(c) is a Sasakian space form, from (3.58) we obtain

(3.65)

Now, we de�ine

(3.66)

On the other hand, using the Gauss-Codazzi-type equations (2.9), (2.10), and (2.11), we get

(3.67)

Thus from (3.35) and (3.67), we derive

Using (3.42), (3.53), (3.65), and (3.66) in (3.68), we obtain
(3.69)

(c+3)
4 (nr + n + r−2) +

(c−1)
4 [2 − n + 3(∥B∥2 + ∥CF1∥2)] ≤ R̂ic(E1)

+Ric∗(F1)

+ 1
4 r

2∥H∥2 + 3∑
r

α=1
∑

n

s=2
(A α

1s)2 − δ(N) + ∥T V ∥
2

− ∥A H ∥
2
.

(c+3)
4 (nr + n + r−2) + (c−1)

4 [−1 − n + 3 cos2 θ + 3(∥B∥2 + ∥CF1∥2)]

≤ R̂ic(E1) + Ric∗(F1)

+ 1
4
r2∥H∥2 + 3∑

r

α=1
∑

n

s=2
(A α

1s)2 − δ(N) + ∥T V ∥
2

− ∥A H ∥
2
.

T s
11 = T s

22 + … +T s
rr,

T s
1j = 0, j = 2, … , r.

2τ = (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n)

+3{2(d1 + d2 cos2 θ) + ∥C ∥2 + 2∑
n

i=1
∑

r

k=1
g2(BFi,Ek)}].

∥B∥2 =∑
n

i=1
∑

r

k=1
g2(BFi,Ek).

2τ = 2τ̂ + 2τ ∗ + r2∥H∥2 −∑
r

k,j=1
g(TEk

Ej,TEk
Ej) + 3∑

n

i,s=1
g(AFi

Fs,AFi
Fs)

−∑
n

i=1
∑

r

k=1
g((∇Fi

T )Ek
Ek,Fi) +∑

n

i=1
∑

r

k=1
(g(TEk

Fi,TEk
Fi)

−g(AFi
Ek,AFi

Ek))

−∑
n

s=1
∑

r

j=1
g((∇Fs

T )Ej
Ej,Fs) +∑

n

s=1
∑

r

j=1
(g(TEj

Fs,TEj
Fs)

−g(AFs
Ej,AFs

Ej)).

2τ = 2τ̂ + 2τ ∗ + 1
2 r

2∥H∥2 − 1
2 (T s

11 −T s
22 − … −T s

rr)
2−2∑

n

s=1
∑

r

j=2
(

s

T
1j

)
2

+2∑
n

s=1
∑

2≤i<j≤r
(T s

iiT
s
jj − (T s

ij )2) + 6∑
r

α=1
∑

n

s=2
(A α

1s)2 + 6∑
r

α=1
∑

2≤i<s≤n
(Ai

+∑
n

i=1
∑

r

k=1
(g(TEk

Fi,TEk
Fi) − g(AFi

Ek,AFi
Ek))−2δ(N)

+∑
n

s=1
∑

r

j=1
(g(TEj

Fs,TEj
Fs) − g(AFs

Ej,AFs
Ej)).



If we take U1 ∈ Γ(D̃), considering (3.47), (3.55), (3.59), and (3.62) in (3.69), we obtain (3.63). In a similar
way, if we take U1 ∈ Γ(D̄), considering (3.49), (3.55), (3.59), and (3.62) in (3.69), we obtain (3.64). This
completes the proof. □

From (3.65) and (3.67), we obtain

(3.70)

From (3.70), we get:

Theorem	3.7 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.71)

(3.72)

Equality	cases	of (3.71) and (3.72) hold	for	allp ∈ M if	and	only	if	horizontal	distributionH is	integrable.

From Theorem 3.7, we have:

Corollary	3.8 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical	and	each
�iber	be	totally	geodesic.	Then	we	have

(3.73)

(3.74)

Equality	cases	of (3.73) and (3.74) hold	for	allp ∈ M if	and	only	if	horizontal	distributionH is	integrable.

Theorem	3.9 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.75)

(c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}]

= 2R̂ic(E1) + 2Ric∗(F1) + 1
2 r

2∥H∥2 − 1
2 (T s

11 −T s
22 − … −T s

rr)
2

−2∑
n

s=1
∑

r

j=2
(T s

1j)
2

+6∑
r

α=1
∑

n

s=2
(A α

1s)2 +∑
n

i=1
∑

r

k=1
{g(TEk

Fi,TEk
Fi) − g(AFi

Ek,AFi
Ek)}

−2δ(N) +∑
n

s=1
∑

r

j=1
{g(TEj

Fs,TEj
Fs) − g(AFs

Ej,AFs
Ej)}

+∑
2≤i<j≤r

2R(Ei,Ej,Ej,Ei) +∑
2≤i<j≤n

2R(Fi,Fj,Fj,Fi).

(c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}]

= 2τ̂ + 2τ ∗ + r2∥H∥2 − ∥T H ∥
2

+ 3∥A V ∥
2
−2δ(N) + 2∥T V ∥

2
−2∥A H ∥

2
.

2τ̂ + 2τ ∗ ≤ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2] − r2∥H∥2 + ∥T H ∥
2

+ 2δ(N)−2∥T V ∥
2

+2∥A H ∥
2
,

2τ̂ + 2τ ∗ ≥ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2] − r2∥H∥2 + ∥T H ∥
2
−3∥A V ∥

2
+ 2δ(N)

−2∥T V ∥
2
.

2τ̂ + 2τ ∗ ≤ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2] + 2∥A H ∥
2
,

2τ̂ + 2τ ∗ ≥ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}]−3∥A V ∥
2
.



(3.76)

Equality	cases	of (3.75) and (3.76) hold	for	allp ∈ M if	and	only	if	the	�iber	through	p	ofψis	a	totally
geodesic	submanifold	of	M.

From Theorem 3.9, we have the following corollary.

Corollary	3.10 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical	andH is
integrable.	Then	we	have

(3.77)

(3.78)

Equality	cases	of (3.77) and (3.78) hold	for	allp ∈ M if	and	only	if	the	�iber	through	p	ofψis	a	totally
geodesic	submanifold	of	M.

Lemma	3.11 Let	p	and	q	be	nonnegative	real	number,	and	then

with	equality	iffp = q.

By virtue of Lemma 3.11 in (3.70), we get:

Theorem	3.12 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.79)

Equality	cases	of (3.79) hold	for	all	p∈M	if	and	only	if∥A H ∥ = ∥T H ∥.

Theorem	3.13 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.80)

Equality	cases	of (3.80) hold	for	allp ∈ M if	and	only	if∥A V ∥ = ∥T V ∥.

Lemma	3.14	([49]) Letp1, p2, … ., pn,be	n-real	number(n > 1),and	then

with	equality	iffp1 = p2 =….= pn.

Theorem	3.15 Letψ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

2τ̂ + 2τ ∗ ≥ (c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] − r2∥H∥2 + 2δ(N)−2∥T V ∥
2

+ 2∥A H ∥
2

−3∥A V ∥
2
,

2τ̂ + 2τ ∗ ≤ (c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] − r2∥H∥2 + ∥T H ∥
2

+ 2δ(N) + 2∥A H ∥
2
−3∥A V ∥

2
.

2τ̂ + 2τ ∗ ≥ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n)

+3{2(d1 + d2 cos2 θ) + 2 ∥ B ∥2 + ∥ C ∥2}] − r2∥H∥2 + 2δ(N)

−2∥T V ∥
2
,

2τ̂ + 2τ ∗ ≤ (c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n)

+3{2(d1 + d2 cos2 θ) + 2 ∥ B ∥2 + ∥ C ∥2}] − r2∥H∥2 + 2δ(N) + ∥T H ∥
2
.

p+q
2 ≥ √pq

(c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] ≤ 2τ̂ + 2τ ∗ + r2∥H∥2 + 2∥T V ∥
2

+ 3∥A V ∥
2
−2δ(N)

−2√2∥A H ∥∥T H ∥.

(c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] ≥ 2τ̂ + 2τ ∗ + r2∥H∥2 − ∥T H ∥
2
−2δ(N)−2∥A H ∥

2

+2√6∥A V ∥∥T V ∥.

1
n
(∑

i=1

n

pi)
2

≤∑
i=1

n

p2
i



(3.81)

Equality case of (3.81) holds for all p ∈ M  if and only if we have the following statements:

(i)
ψ is a Riemannian submersion that has totally umbilical �ibers. 

(ii)
Tij = 0, for i ≠ j ∈ {1, 2, … , r}.  

Proof From (3.70), we have

(3.82)

Considering Lemma 3.11 in (3.82), we get

which is equivalent to (3.81). Equality case of (3.81) holds for all p ∈ M  if and only if

which completes proof of the theorem. □

The same proof way of Theorem 3.15, we have:

Theorem	3.16 Letπ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical.	Then	we
have

(3.84)

Equality	case	of (3.84) holds	for	allp ∈ M if	and	only	ifA11 = A22 = … = AnnandAij = 0,	for
i ≠ j ∈ {1, 2, … ,n} .

From Theorem 3.16, we get:

Corollary	3.17 Letπ : M(c) → M1be	a	semi-slantξ⊥-Riemannian	submersion	such	thatξis	vertical	and	each
�iber	is	totally	geodesic.	Then	we	have

(3.85)

Equality	case	of (3.85) holds	for	allp ∈ M if	and	only	ifA11 = A22 = … = AnnandAij = 0,	for
i ≠ j ∈ {1, 2, … ,n} .

Finally, in this section, we are going to provide some illustrative examples for semi-slant ξ⊥-Riemannian
submersion from a Sasakian manifold. We �irst have the following trivial examples:

(c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] ≤ 2τ̂ + 2τ ∗ + r(r−1)∥H∥2 + 3∥A V ∥
2
−2δ(N) + 2∥T V ∥

2

−2∥A H ∥
2
.

(c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}]

= 2τ̂ + 2τ ∗ + r2∥H∥2 −∑
n

i=1
∑

r

j=1
(

s

T
jj

)
2

−∑
n

i=1
∑

r

j≠k
(

s

T
jk

)
2

+ 3∥A V ∥
2
−2δ(N)

+2∥T V ∥
2
−2∥A H ∥

2
.

(c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] ≤ 2τ̂ + 2τ ∗ + r2∥H∥2 − 1
r
∑

n

s=1
(∑

r

j=1
T s

jj
)

2

−∑
n

s=1
∑

r

j≠k
(

s

T
jk

)
2

+3∥A V ∥
2
−2δ(N) + 2∥T V ∥

2
−2∥A H ∥

2
,

T11 = T22 = … = Trr and ∑
n

s=1
∑

r

j≠k
(T s

jk
)2,

(c+3)
4

(n + r)(n + r−1) + (c−1)
4

[2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}]

≥ 2τ̂ + 2τ ∗ + r2∥H∥2 − ∥T H ∥
2

+ 3
n
tr(A V )

2
−2δ(N) + 2∥T V ∥

2
−2∥A H ∥

2
.

(c+3)
4 (n + r)(n + r−1) + (c−1)

4 [2(1 − r − n) + 3{2(d1 + d2 cos2 θ)

+2 ∥ B ∥2 + ∥ C ∥2}] ≥ 2τ̂ + 2τ ∗ + r2∥H∥2 + 3
n
tr(A V )

2
−2δ(N)−2∥A H ∥

2
.



Every invariant submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant ξ⊥-
Riemannian submersion with D̄ = 0 and θ = 0.
Every anti-invariant submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant ξ⊥-
Riemannian submersion with D̄ = 0 and θ = π

2  [26].
Every slant Riemannian submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant 
ξ⊥-Riemannian submersion with D̃ = 0 [17].

The following example is a nontrivial example for semi-slant ξ⊥-Riemannian submersion from a
Sasakian manifold.

Example	3.18 Let be (R11, g1,ϕ, ξ, η) almost contact metric with Sasakian metric structure manifold and 
(R6, g2) be Riemannian manifold. Here

and

Let ψ be a submersion de�ined by

Then it follows that

and

hence we have ϕ(E1) = −E2. Thus it follows that D̃ = span{E1,E2} and D̄ = span{E3,E4} is a slant
distribution with semi-slant angle θ = π

4 . In this case ψ is a semi-slant ξ⊥ submersion. Also by direct
computations, we obtain gR6(Fi,Fi) = gR11(ϕFi,ϕFi); i = 1, … , 6, which show that ψ is a semi-slant ξ⊥-
Riemannian submersion, where (u1, … ,u10, z) are the Cartesian coordinates.
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Abstract
This chapter concerns with the investigation of k-almost Ricci-Yamabe solitons and
gradient k-almost Ricci-Yamabe solitons in perfect �luid space-times and generalized
Robertson-Walker space-times. First, we deduce the criterion for which the k-almost
Ricci-Yamabe solitons in a perfect �luid space-time is steady, expanding or shrinking.
Then we establish that if perfect �luid space-times admit a gradient k-almost Ricci-
Yamabe soliton with Killing velocity vector, then either it represents phantom era, or the
gradient k-almost Ricci-Yamabe soliton is expanding or shrinking under some condition.
Moreover, we illustrate that a generalized Robertson-Walker space-time represents a
perfect �luid space-time if it admits a k-almost Ricci-Yamabe soliton. Next, we establish
that if a generalized Robertson-Walker space-time allows a k-almost Ricci-Yamabe
soliton of gradient type with constant scalar curvature, then it also represents a perfect
�luid space-time.

Keywords PF space-times – GRW space-times – k-almost Ricci-Yamabe solitons

1	 Introduction
Einstein’s general relativity (GR) theory is usually called the gravitation theory of
geometry. GR, the �inest well-known physics theories of this century, has established the
fundamental relationship between the geometry of space-time and physics. It has been
the areas of greatest interest in both mathematics and physics during the last century.
Today, one of the most signi�icant issue is trying to solve Einstein’s �ield equation (EFE)
in many different approaches.

The most straightforward answer of the above issue is the Minkowski space-time
(four-dimensional Euclidean space R4 with a Lorentzian metric). Further nontrivial
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solutions include the Kerr, de-Sitter, and Schwartzchild solutions. In GR theory,
Lorentzian warped product manifolds were modi�ied to acquire a general solution to
EFEs. Standard static space-time [1] and generalized Robertson-Walker space-time
(GRW) [2, 3] are two prominent instances.

From GR we know that a space-time is a Lorentzian manifold M 4 that allows for a
globally time-oriented vector and has the metric g (Lorentzian) of signature 
(+, +, +, −). The notion of GRW space-times was �irst invented by Alias et al. [4]. If a
Lorentzian n-manifold M with n ≥ 3 can be formed as a warped product 
M = −I × ρ2M ∗, where ρ > 0 indicates a scale factor and M ∗ denotes an (n−1)-
dimensional Riemannian manifold, then it is referred to as a GRW space-time. The GRW
space-time reduces to a Robertson-Walker (RW) space-time if the Riemannian manifold 
M ∗ is a 3-dimensional manifold of constant curvature.

In [5], the authors de�ine pseudo-Einstein space as a Riemannian space whose Ricci
tensor S ful�ills the condition

(1.1)
where a1, b1 ∈ R and A is a nonzero 1-form such that A(X1) = g(X1, ρ), ρ is a unit
vector �ield.

Later, in [6], Duggal and Sharma de�ined pseudo-Einstein space as a semi-Riemannian
space whose Ricci tensor obeys the relation (1.1), where a1 and b1 are scalar functions.

Subsequently, in 1991, Deszcz and Verstraelen [7] studied hypersurfaces of pseudo-
Riemannian conformally �lat spaces and named a semi-Riemannian space that satis�ies
the Eq. (1.1), a quasi-Einstein space.

In [8], Chaki and Maity introduced the notion of a quasi-Einstein manifold whose
Ricci tensor is not identically zero and satis�ies the condition (1.1) in which a1 and b1 are
scalar functions and ρ is a unit vector �ield.

In 2004, the authors [9] studied a 2-quasi umbilical hypersurface of a Euclidean
space, and they obtained the following expression for Ricci tensor S as

(1.2)
in which a1, b1, c1 are certain nonzero scalars and A1,B1 are two nonzero 1-forms. The
unit vector �ields ρ and μ corresponding to the 1-forms A and B, respectively, de�ined by

(1.3)
are orthogonal, that is, A(μ) = B(ρ) = g(ρ,μ) = 0. The vector �ields ρ, μ are called the
generators of the manifold and a1, b1, c1 are the associated scalars. The authors [9]
named such a manifold generalized quasi-Einstein manifold.

The nonvanishing Ricci tensor S in a perfect �luid (PF) space-time is presented by
(1.4)

ϱ is demonstrated by g(X1, ϱ) = η(X1) for any X1, and a1, b1 are scalars. Also, ϱ is a
time-like unit vector �ield of the PF space-time, that is, g(ϱ, ϱ) = −1. Each and every RW
space-time is a PF space-time [10]. In dimension 4, the GRW space-time represents a PF
space-time iff it is a RW space-time. The characteristics of GRW space-times and PF
space-times have been found in [2–14].

For a gravitational constant k, the EFEs with vanishing cosmological constant are
described by

(1.5)

S(X1,Y1) = a1g(X1,Y1) + b1A(X1)A(Y1),

S(X1,Y1) = a1g(X1,Y1) + b1A(X1)A(Y1) + c1B(X1)B(Y1)

A(X1) = g(X1, ρ) and B(X1) = g(X1,μ),

S = a1g + b1η ⊗ η,

S − r
2
g = kT ,



in which r represents the scalar curvature and the energy-momentum tensor (EMT) is
denoted by T.

For a PF space-time, T is described by
(1.6)

p denotes isotropic pressure, and σ indicates the energy density. The Eq. (1.4) can be
obtained from the Eqs. (1.5) and (1.6) [11].

Jointly using the Eqs. (1.4)–(1.6), we provide
(1.7)

Besides, p = p(σ) interconnects p and σ known as equation of state (EOS), and in this
case, the PF space-time is called isentropic. For p = σ, this space-time is named as stiff
matter. As per [15], the radiation era, the dust matter �luid, and the dark energy epoch
are represented by the PF space-time if p =

σ

3
, p = 0, and if p + σ = 0, respectively. It

also covers the phantom era in which p
σ

< −1.
On the contrary, the conformal curvature tensor, also named as the Weyl tensor, is

important in relativity theory and geometry. Weyl tensors have been used by many
researchers to characterize space-times. The conformal curvature tensor C is described
by

R stands for the Riemann curvature tensor, and the Ricci operator Q is presented by 
g(QX1,Y1) = S(X1,Y1).

In addition, we are aware that

(1.8)

“div” denotes the divergence, and if divergence vanishes, then it is called harmonic.
The theory of geometric �lows has given rise to some of the foremost interesting

mathematical methods used in the last few decades to illustrate the geometric structures
in differential geometry. A part of solutions in which the metric transforms through
diffeomorphisms has a substantial impact on the understanding of �low singularities, as
they appear to be realistic models of singularities. They are referred to as soliton
solutions in general.

In [16], Hamilton simultaneously introduced the Ricci and Yamabe �low. The Ricci
solitons (RSs) and Yamabe solitons (Y Ss) are the speci�ic solutions of the Ricci and
Yamabe �low, respectively. Lately, geometric �lows, such the Ricci and Yamabe �lows, have
attracted the theoretical attention of many geometers. In 2019, the Ricci-Yamabe (RY )
map was presented in [17] as a novel geometric �low. This map is just a scalar
combination of Ricci and Yamabe �low. A �low like this improves the metrics on the semi-
Riemannian manifold M, which are given by Guler and Crasmareanu [17]

T = pg + (p + σ)η ⊗ η,

a1 = −
k(p−σ)

n−2
, b1 = κ(p + σ).

C(X1,Y1)Z1 = R(X1,Y1)Z1 −
1

n−2
[g(QY1,Z1)X1

−g(QX1,Z1)Y1 + g(Y1,Z1)QX1 − g(X1,Z1)QY1]

+
r

(n−1)(n−2)
[g(Y1,Z1)X1 − g(X1,Z1)Y1],

(div C)(X1,Y1)Z1 =
n−3

n−2
[{(∇X1

S)(Y1,Z1) − (∇Y1
S)(X1,Z1)}

−
1

2(n−1)
{(X1r)g(Y1,Z1) − (Y1r)g(X1,Z1)}],



(1.9)

Based on the signs of the related scalars, β and β2, anyone can interpret the RS �low as a
Riemannian, semi-Riemannian, or singular Riemannian �low. Certain mathematical or
physical models require this range of choices. The fact that RSs and Y Ss are essentially
distinct in higher dimensions, even if they are equal in two dimensions, is another
compelling reason to start investigating Ricci-Yamabe solitons (RY Ss).

The investigation of space-time symmetries is crucial for �iguring out EFEs. Geometry
is characterized by symmetry, which reveals the physics. Space-time geometry exhibits
numerous symmetries. The equations of metric are advantageous since they simplify
several solutions. They are mostly used in GR to classify solutions to EFEs. The soliton is
a type of symmetry that includes the geometrical �low of space-time geometry.
Consequently, the �lows of RS and Y S are helpful, since they make the theories of energy
and entropy easier to understand.

A k-almost RY S on (M, g) is a data (g,Z1, k,λ1,α1,β1) ful�illing
(1.10)

in which k,λ1,α1,β1 are smooth functions on M, S represents the Ricci tensor, r
indicates the scalar curvature, and the Lie derivative is represented by £.

The previously mentioned concept is known as gradient k-almost RY S if f denotes a
smooth function and Z1 is the gradient of f on M, and then Eq. (1.10) transforms into

(1.11)
in which ∇2f indicates the Hessian of f.

The k-almost RY S (or gradient k-almost RY S) is called expanding for λ1 > 0, steady
for λ1 = 0 and shrinking when λ1 < 0. If β1 = 0, α1 = 1, then k-almost RY S (or gradient
k-almost RY S) reduces to k-almost RS (or gradient k-almost RS). Similarly, it turns into k-
almost Y S (or gradient k-almost Y S) if β1 = 1, α1 = 0. Also, if β1 = −1, α1 = 1, it
reduces to a k-almost Einstein soliton (or gradient k-almost Einstein soliton).

The k-almost RY S (or gradient k-almost RY S) is named proper if α1 ≠ 0, 1.
Venkatesh et al. [18] have investigated ∗-Ricci solitons and gradient almost ∗-Ricci

solitons on Kenmotsu manifolds. In 2022, Blaga and O� zgür [19] have studied almost η-
Ricci and η-Yamabe solitons with the help of torse-forming vector �ield where as in [20]
the Ricci-Yamabe solitons have examined. Also in [21], the authors have investigated ∗-η-
Ricci-Yamabe Solitons on Sasakian manifolds.

Very recently, there is a notable increase of fascination in researching solitons in
numerous geometrical contexts because of their connection to GR. Many geometers have
recently studied many sorts of solitons in PF space-times including RSs and gradient type
RSs [22, 23], η-RSs [24], Y Ss [22, 25], k-almost Y Ss [26], η-Einstein solitons of gradient
type [23], gradient ϱ-Einstein solitons [27], gradient Schouten solitons [23], m-quasi
Einstein solitons of gradient type [22], RY Ss [28], respectively.

The research mentioned above motivates us to explore k-almost RY Ss in PF space-
times and GRW space-times. Speci�ically, we arrive at the following conclusions:

Theorem	1.1 Let	the	PF	space-time	admit	a	k-almost	RY S,	and	then	its	potential	vector
�ieldZ1is	Killing	ifdivZ1 = 0andα1 = 0.	Also,	the	soliton	is	expanding	forr < 6α1a1

β1
or

k£Z1
g = −2α1S − (2λ1 − β1r)g,

k∇2f = −α1S − (λ1 − 1
2 β1r)g,



β1 > − α1

2 ,	steady	ifr = 6α1a1

β1
orβ1 = − α1

2 ,	and	shrinking	forr > 6α1a1

β1
orβ1 < − α1

2 ,
provideddivϱ = 0.

Theorem	1.2 If	the	PF	space-times	of	dimensions	4	allow	a	gradient	k-almost	RY S	with
Killing	velocity	vector	�ieldϱ,	then	either	the	space-time	represents	a	phantom	era,	or	the
gradient	k-almost	RY S	is	expanding,	steady	or	shrinking	ifr >

2α1(a1−b1)
β1

 , r =
2α1(a1−b1)

β1
or

r <
2α1(a1−b1)

β1
,	respectively.

Theorem	1.3 Let	a	GRW	space-time	admit	a	k-almost	RY S,	and	then	the	space-time
becomes	a	PF	space-time.	Also,	the	soliton	is	expanding	forr >

2α1(1−n)μ1

β1
,	steady	if

r =
2α1(1−n)μ1

β1
,	and	shrinking	forr <

2α1(1−n)μ1

β1
.

Corollary	1.4 In	dimension	4,	a	GRW	space-time	admitting	a	k-almost	RY S	is	of	Petrov
type	I,	D,	or	O	and	the	space-time	reduces	to	a	RW	space-time.

Theorem	1.5 If	the	GRW	space-time	admits	a	k-almost	RY S	of	gradient	type	withr =
constant,	then	it	becomes	a	PF	space-time.

As a result of the aforementioned theorem, we establish:

Corollary	1.6 In	dimension	4,	if	a	GRW	space-time	allows	a	gradient	k-almost	RY S	with
r =constant,	then	the	space-time	belongs	to	Petrov	classi�ication	I,	D,	or	O	and	the	space-
time	reduces	to	a	RW	space-time.

2	 PF	Space-Times	and	GRW	Space-Times
From the PF Eq. (1.4), we provide

(2.12)
Q indicates the Ricci operator demonstrated by g(QX1,Y1) = S(X1,Y1), and
contracting the above equation gives

(2.13)

in which at every point of the space-time {ej} represents the orthonormal basis of the
tangent space and ϵj = g(ej, ej) = ±1. The covariant differentiation of Eq. (2.12) yields

(2.14)

Theorem	2.1	([11]) An	n	(n ≥ 3)-dimensional	Lorentzian	manifold	represents	a	GRW
space-time	iff	it	allows	a	time-like	and	unit	torse-forming	vector	�ield:
∇X1v = Ψ[X1 + A(X1)v],	A	denotes	a	one-form	demonstrated	asg(X1, v) = A(X1)for
anyX1,	which	is	also	an	eigenvector	of	the	Ricci	tensor.

Let us assume that the velocity vector �ield ϱ is a torse-forming vector �ield. Therefore, by
using Theorem I, we obtain

QX1 = a1X1 + b1η(X1)ϱ,

r =∑
j
ϵiQej = na1 − b1,

(∇X1Q)(Y1) = (X1a1)Y1 + (X1b1)η(Y1)ϱ + b1(∇X1η)(Y1)ϱ + b1η(Y1)∇X1ϱ.



(2.15)
and

(2.16)
ϕ is a nonzero eigenvalue, and Ψ denotes a scalar.

Lemma	2.2 For	any	GRW	space-time,	we	provide [29]
(2.17)

and
(2.18)

where	we	setμ1 = (ϱΨ + Ψ2).

Lemma	2.3 Any	GRW	space-time	satis�ies	the	following [29]
(2.19)

3	 Proof	of	the	Main	Results
Proof	of	Theorem	1.1 Suppose the PF space-time admits a k-almost RY  soliton 
(g,X, k,λ1,α1,β1). Then from Eq. (1.10), we acquire

(3.20)
Using the Lie differentiation’s explicit form, the foregoing equation yields

(3.21)
Contracting Eq. (3.21) gives

which implies
(3.22)

Using Eq. (3.22) in Eq. (3.20), we obtain
(3.23)

If we take divZ1 = 0 and α1 = 0, then from the last equation Theorem follows.
Again contracting the PF equation (1.4) provides

(3.24)
From the Eqs. (3.22) and (3.24), we acquire

(3.25)
Again comparing Eqs. (1.4) and (3.21), we infer

(3.26)

Putting X1 = Y1 = ϱ in the previous equation gives
(3.27)

Comparing the Eqs. (3.25) and (3.27) and taking divϱ = 0, we achieve
(3.28)

∇X1ϱ = Ψ[X1 + η(X1)ϱ]

S(X1, ϱ) = ϕη(X1),

R(X1,Y1)ϱ = μ1[η(Y1)X1 − η(X1)Y1]

S(X1, ϱ) = (n−1)μ1η(X1),

(X1μ1) + (ϱμ1)η(X1) = 0.

k(£Z1
g)(X1,Y1) + 2α1S(X1,Y1) + (2λ1 − β1r)g(X1,Y1) = 0.

α1S(X1,Y1) = − k
2

[g(∇X1
Z1,Y1) + g(X1, ∇Y1

Z1)] − (λ1 − β1r

2
)g(X1,Y1).

α1r = −kdivZ1−4(λ1 − β1r

2
),

λ1 − β1r
2 = kdivZ1

4 + α1r
4 .

k
2

(£Z1
g)(X1,Y1) + α1S(X1,Y1) + ( kdivZ1

4
+ α1r

4
) = 0.

r = −b1 + 4a1.

(α1 + 2β1)(−b1 + 4a1) = 4λ1 − kdivZ1.

a1g(X1,Y1) + b1η(X1)η(Y1) = − k
2α1

[g(∇X1
ϱ,Y1) + g(X1, ∇Y1

ϱ)]

− 1
α1
(λ1 −

β1r

2 )g(X1,Y1).

a1 − b1 = 1
α1
(λ1 −

β1r

2 ).

λ1 =
(α1+2β1)

(6α1−4β1)
[6α1a1 − β1r].



Therefore, the soliton is expanding for r < 6α1a1

β1
 or β1 > − α1

2 , steady if r = 6α1a1

β1
 or 

β1 = − α1

2 , and shrinking for r > 6α1a1

β1
 or β1 < − α1

2 , provided divϱ = 0. □

Proof	of	the	Theorem	1.2 Choose a PF space-time which admits a k-almost RY  soliton of
gradient type, and therefore from Eq. (1.11), we get

(3.29)
Differentiating the Eq. (3.29), we provide

(3.30)

From the Eq. (3.30), interchanging X1 and Y1, we infer

(3.31)

Again, from Eq. (3.29), we acquire
(3.32)

From Eqs. (3.30), (3.31), and (3.32), we reveal

(3.33)

The covariant differentiation of Eq. (2.12) yields
(3.34)

The Eqs. (3.33) and (3.34) yield

(3.35)

Now contracting the Eq. (3.35), we provide
(3.36)

k∇X1Df + α1QX1 = −(λ1 −
β1r

2 )X1.

k∇Y1
∇X1

Df + (Y1k)∇X1
Df = −α1∇Y1

QX1

−(λ1 −
β1r

2
)∇Y1X1 +

β1

2
(Y1r)X1.

k∇X1
∇Y1

Df + (X1k)∇Y1
Df = −α1∇X1

QY1

−(λ1 −
β1r

2
)∇X1

Y1 +
β1

2
(X1r)Y1.

k∇[X1,Y1]Df = −α1Q([X1,Y1]) − (λ1 − β1r
2 )[X1,Y1].

kR(X1,Y1)Df = −α1[(∇X1
Q)Y1 + (∇Y1

Q)X1]

+
α1

k
[(X1k)QY1 − (Y1k)QX1]

+
1

k
(λ1 −

β1r

2
)[(X1k)Y1 − (Y1k)X1]

+
β1

2
[(X1r)Y1 − (Y1r)X1].

(∇X1Q)(Y1) = (X1a1)Y1 + (X1b1)η(Y1)ϱ + b1(∇X1η)(Y1)ϱ + b1η(Y1)∇X1ϱ.

kR(X1,Y1)Df = α1[(X1a1)Y1 − (Y1a1)X1 + {(X1b1)η(Y1) − (Y1b1)η(X1)

+b1(∇X1
η)(Y1) − b1(∇Y1

η)(X1)}ϱ + b1{η(Y1)∇X1
ϱ

−η(X1)∇Y1
ϱ}]

+
α1

k
[(X1k)QY1 − (Y1k)QX1]

+
1

k
(λ1 −

β1r

2
)[(X1k)Y1 − (Y1k)X1]

+
β1

2
[(X1r)Y1 − (Y1r)X1].



Case	(i):

Case	(ii):

Also the PF equation (1.4) gives
(3.37)

Putting Y1 = ϱ in Eqs. (3.36) and (3.37) and then comparing, we acquire

(3.38)

Let (ϱk) = 0 and ϱ be Killing; therefore, we acquire (see, [30], p. 89) £ϱp = 0 and 
£ϱσ = 0. It is known that a1 =

k(p−σ)
n−2  and b1 = k(p + σ). Thus, we infer

Again, from (2.13), we obtain

Hence, we get (ϱr) = 0. Because the hypothesis ϱ is Killing, then div ϱ = 0. Thus, using
the foregoing result, Eq. (3.38) yields

(3.39)
This re�lects that either a1 = b1 or (ϱf) = 0, since k ≠ 0 on a PF space-time with the
gradient k-almost RY  soliton. Here, we consider the following two cases:

Let a1 = b1 and (ϱf) ≠ 0, and hence the Eq. (1.7) gives

which provides the EOS in a PF space-time equipped with a gradient k-almost RY  soliton.
For n = 4, the EOS is 3p + σ = 0, which entails that the PF space-time represents
phantom era.

Let (ϱf) = 0 and a1 ≠ b1. The covariant differentiation of g(ϱ,Df) = 0
produces

(3.40)
in which we have used Eqs. (2.12) and (3.29). Since here ϱ is Killing, we infer 
g(∇X1

ϱ,Y1) + g(X1, ∇Y1
ϱ) = 0. Now putting Y1 = ϱ in the last relation, we acquire

that g(X1, ∇ϱϱ) = 0, since g(∇X1ϱ, ϱ) = 0. Therefore, we state that ∇ϱϱ = 0. Using the
previous relation, putting X1 = ϱ in Eq. (3.40), we �ind that

(3.41)

kS(Y1,Df) = α1[(1 − n)(Y1a1) + (Y1b1) + (ϱb1)η(Y1)

+b1[(∇ϱη)(Y1) − (∇Y1η)(ϱ) + η(Y1) divϱ]

+
α1

k
[{a1(1 − n) + b1}(Y1k) + b1(ϱk)η(Y1)]

+
1

k
(λ1 −

β1r

2
)(1 − n)(Y1k) +

β1

2
(1 − n)(Y1r).

S(Y1,Df) = a1(Y1f) + b1η(Y1)(ϱf).

k(a1 − b1)(ϱf) = α1[(1 − n)(ϱa1) − b1 divϱ]

+
α1

k
[a1(1 − n) + b1 − b1](ϱk)

+
1

k
(λ1 −

β1r

2
)(1 − n)(ϱk) +

β1

2
(1 − n)(ϱr).

(ϱa1) = (ϱb1) = 0.

r = na1 − b1.

k(a1 − b1)(ϱf) = 0.

p = − n−3
n−1

σ,

g(∇X1
ϱ,Df) = [ α1

k
(a1 − b1) + 1

k
(λ1 − β1r

2
)]η(X1),

λ1 =
β1r

2 + α1(b1 − a1),



which shows that the k-almost RY  soliton of gradient type in a PF space-time is
expanding, steady, or shrinking if r >

2α1(a1−b1)

β1
 , r =

2α1(a1−b1)

β1
 or r <

2α1(a1−b1)

β1
,

respectively. □

Remark	3.1 div ϱ = 0 implies the space-time is expansion free. It may be mentioned
that div ϱ = 0 plays a signi�icant role in Raychaudhuri’s equation.

Proof	of	the	Theorem	1.3 Suppose the GRW space-time admits a k-almost RY  soliton 
(g, ϱ, k,α1,λ1,β1), and hence the Eq. (1.10) provides

(3.42)
which entails

(3.43)

Using the Eq. (2.15) in Eq. (3.43), we provide
(3.44)

which represents PF space-time.
Putting X1 = Y1 = ϱ in the previous equation yields

Therefore, the soliton is shrinking for r <
2α1(1−n)μ1

β1
, steady if r =

2α1(1−n)μ1

β1
, and

expanding for r >
2α1(1−n)μ1

β1
. □

Proof	of	the	Corollary	1.4. In [31], Mantica et al. proved that a GRW space-time becomes
a PF space-time iff (div C)(X1,Y1)Z1 = 0. Also, we know that in a GRW space-time, 
C(X1,Y1)ϱ = 0 iff (div C)(X1,Y1)Z1 = 0. Also, C(X1,Y1)ϱ = 0 tells us that the Weyl
conformal curvature tensor is purely electric[32]. In four dimensions, the space-times
are of Petrov types I, D, or O if C is purely electric ([33], p. 73).

For dimension 4, C(Y1,X1)ϱ = 0 is identical to ([34], p. 128)

(3.45)

in which η(Y1) = g(Y1, ϱ) and C(Y1,X1,W1,Z1) = g(C(Y1,X1)W1,Z1) for any Y1, X1

, W1, Z1, U1.
Now, replacing U1 by ϱ yields

(3.46)
from which we say that the space-time is conformally �lat.

A GRW space-time has been found to be conformally �lat iff it is a RW space-time [35].
Hence, the proof. □

In one speci�ic instance, we get the following:

Corollary	3.2 The	GRW	space-time	allowing	a	k-almost	Ricci	soliton	represents	a	PF
space-time.	Also,	the	soliton	is	steady	ifμ1 = 0,	expanding	forμ1 < 0,	and	shrinking	for
μ1 > 0.

k(£V g)(X1,Y1) + 2α1S(X1,Y1) + (2λ1 − β1r)g(X1,Y1) = 0,

k{g(∇X1
ϱ,Y1) + g(X1, ∇Y1

ϱ)}

+2α1S(X1,Y1) + (2λ1 − β1r)g(X1,Y1) = 0.

S(X1,Y1) = − 1
α1
{(λ1 −

β1r

2 + kΨ}g(X1,Y1) − kΨ
α1

η(X1)η(Y1),

λ1 = −α1(n−1)μ1 + β1r

2
.

η(U1)C(Y1,X1,W1,Z1) + η(Y1)C(X1,U1,W1,Z1)

+η(X1)C(U1,Y1,W1,Z1) = 0,

C(Y1,X1,W1,Z1) = 0,



Proof In particular, if we take β1 = 0 and α1 = 1, then the Eq. (3.44) entails
(3.47)

which means that it is a PF space-time.
Putting X1 = Y1 = ϱ in Eq. (3.47) yields

Thus, the soliton is steady if μ1 = 0, expanding for μ1 < 0, and shrinking for μ1 > 0.
Hence the result follows. □

Proof	of	the	Theorem	1.5 Assume that GRW space-time allows a k-almost RY  soliton of
gradient type. Then, the Eq. (1.11) yields

(3.48)
Then the Eq. (3.33) tells that

(3.49)

From Eq. (2.18), we get
(3.50)

Differentiating (3.50), we reach

(3.51)

Using Eqs. (2.17) and (3.51) in Eq. (3.49), we obtain

(3.52)

Putting Y1 = ϱ in Eq. (3.52), we have

(3.53)

S(X1,Y1) = −{λ1 + kΨ}g(X1,Y1) − kΨη(X1)η(Y1),

λ1 = −(n−1)μ1.

k∇X1
Df + α1QX1 = −(λ1 − β1r

2
)X1.

kg(R(X1,Y1)Df, ϱ) = −α1[g((∇X1Q)Y1, ϱ) + g((∇Y1Q)X1, ϱ)]

+
α1

k
[(X1k)η(QY1) − (Y1k)η(QX1)]

+
1

k
(λ1 −

β1r

2
)[(X1k)η(Y1) − (Y1k)η(X1)]

+
β1

2
[(X1r)η(Y1) − (Y1r)η(X1)].

Qϱ = (n−1)μ1ϱ.

(∇X1Q)ϱ = (n−1)(X1μ1)ϱ

+(n−1)Ψμ1[X1 + η(X1)ϱ]

−ΨQX1 − (n−1)Ψμ1η(X1)ϱ.

kμ1[η(X1)Y1f − η(Y1)X1f] = α1(n−1)[(Y1μ1)η(X1) − (X1μ1)η(Y1)]

+
α1

k
[(X1k)η(QY1) − (Y1k)η(QX1)]

+
1

k
(λ1 −

β1r

2
)[(X1k)η(Y1) − (Y1k)η(X1)]

+
β1

2
[(X1r)η(Y1) − (Y1r)η(X1)].

kμ1[X1f + (ϱf)η(X1)] = α1(n−1)[(X1μ1) + (ϱμ1)η(X1)]

+
α1

k
[(X1k)η(Qϱ) − (ϱk)η(QX1)]

−
1

k
(λ1 −

β1r

2
)[(X1k) + (ϱk)η(X1)]

−
β1

2
[(X1r) + (ϱr)η(X1)].



With the use of Lemma 2.3 and (X1k) = 0, the Eq. (3.53) entails that

(3.54)

Let r be constant, and then from the Eq. (3.54), we obtain
(3.55)

which implies
(3.56)

The above equation reduces to
(3.57)

which re�lects
(3.58)

The Eqs. (3.48) and (3.58) jointly entail

(3.59)

Setting Y1 = ϱ in Eq. (3.59) yields
(3.60)

With the help of the above two equations, we provide

(3.61)

which implies that it is a PF space-time.
This �inishes our proof. □

Proof	of	the	Corollary	1.6. The proof is the same as that of previous Corollary.

Corollary	3.3 Let	a	GRW	space-time	admit	a	k-almost	gradient-type	Ricci	soliton.	Then
the	GRW	space-time	reduces	to	a	PF	space-time.

Proof In particular, if β1 = 0 and α1 = 1, then Eq. (3.54) implies
(3.62)

Using the aforementioned theorem’s analogous calculations, we obtain
(3.63)

which represents PF space-time.
Therefore, the corollary follows. □

4	 Discussions
The current stage of the physical world’s predictive models is space-time. The proper
EMT may be used in GR theory to estimate the Cosmos’s matter content, which is
acknowledged to act like a PF space-time in cosmological models. The simplest kind of
�luid, which is incapable of transferring heat, is called a PF. A perfect �luid cannot resist a

kμ1[X1f + (ϱf)η(X1)] = −
β1

2
[(X1r) + (ϱr)η(X1)].

kμ1[X1f + (ϱf)η(X1)] = 0,

X1f = −(ϱf)η(X1), since μ1 and k ≠ 0.

Df = −(ϱf)ϱ,

∇X1
Df = −{X1(ϱf)}ϱ − Ψ(ϱf){X1 + η(X1)ϱ}.

{X1(ϱf)}η(Y1) + Ψ(ϱf)[g(X1,Y1) + η(X1)η(Y1)]

=
α1

k
S(X1,Y1) +

1

k
(λ1 −

β1r

2
)g(X1,Y1).

{X1(ϱf)} = −{ α1

k
(n−1)μ1 + 1

k
(λ1 −

β1r

2 )}η(X1).

S(X1,Y1) =
1

α1
{kΨ(ϱf) − (λ1 −

β1r

2
)}g(X1,Y1)

+
1

α1
{kΨ(ϱf) − α1(n−1)μ1 − (λ1 −

β1r

2
)}η(X1)η(Y1),

kμ1[X1f + (ϱf)η(X1)] = 0.

S(X1,Y1) = {kΨ(ϱf) − λ1}g(X1,Y1) + {kΨ(ϱf) − (n−1)μ1 − λ1}η(X1)η(Y1),



tangential force since it lacks viscosity. In GR, perfect �luids are used to simulate
distributions of matter (idealized), like an isotropic universe or the inside of a star.

A wave packet known as a soliton or solitary wave keeps its form while moving at a
steady speed. Gradient is commonly used in physics and mathematics to denote the
direction and magnitude of a force acting on a particle or �ield. Gradients are often used
in chemistry and engineering, among other �ields, to characterize how a substance’s or
system’s property varies in response to its location or other factors.

In this chapter, we determine the condition under which the k- almost RY Ss and
gradient k-almost RY Ss are expanding, stable, or shrinking in a PF space-time. Also, we
derive that if a GRW space-time admits a k-almost RY S, then the space-time represents a
PF space-time. Also, if it allows a k-almost RY S of gradient type with r = constant, then it
represents a PF space-time.

In future, we or perhaps other researchers will look at the characteristics of various
solitons in cosmological models and GR theory.
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Abstract
Ricci �lows are used as a powerful tool to address several problems of information technology, engineering,
medical science, and other allied areas. A self-similar solution of the Ricci �low on a Riemannian manifold is
named as the Ricci soliton. The Ricci soliton becomes an almost Ricci soliton if we think of the soliton
constant as a smooth function in the Ricci soliton equation. This chapter explores the properties of almost
Ricci solitons within the framework of Riemannian concircular structure manifolds (brie�ly, (RCS)n-
manifolds). We establish the conditions for which the (RCS)n-manifolds to be quasi-Einstein manifolds,
and the solitons are expanding, shrinking, and steady. We also provide the restrictions for the soliton
function of almost Ricci solitons to be harmonic, strictly super-harmonic, and strictly subharmonic. The
existence of projectively semisymmetric (RCS)n-manifolds is ensured. Some geometrical properties of 
(RCS)n-manifolds satisfying Q ⋅P = 0 are investigated, and the de�inition of extended Ricci recurrent
manifolds is encoded.

Keywords Riemannian manifolds – (RCS)n-manifolds – Curvature tensors – Symmetric spaces – Torse-
forming vector �ield – Concircular vector �ield – Generalized soliton

1	 Introduction
Let (M, g) be a Riemannian manifold of dimension n. Vector �ields play a signi�icant role in understanding
the geometry and topology of Riemannian manifolds, and they are indeed central to various aspects of
differential geometry and theoretical physics. For example:

Torse-forming vector �ields: These vector �ields generate torsion in the manifold, and they are important
in the study of connections and the curvature of the manifold.
Torqued vector �ields: Related to the concept of torque, these vector �ields in�luence how the manifold
might twist or rotate, and they have applications in studying dynamics, �luid �lows, and electromagnetism
on manifolds.
Concircular vector �ields: These �ields preserve the shape of a curve under parallel transport, meaning
they maintain the geometry of paths on the manifold and have applications in understanding symmetries
and geodesics.
Recurrent vector �ields: These �ields are of interest in dynamical systems, where they correspond to vector
�ields whose �low returns to its initial con�iguration after a certain time, and they are essential in studying
periodic or quasiperiodic phenomena.
Parallel vector �ields: These are vector �ields that are “constant” in some sense, meaning that they remain
unchanged under parallel transport along any curve on the manifold. They are related to the concept of
curvature and can help characterize the manifold’s geometry.

https://doi.org/10.1007/978-981-95-5148-4_7
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These vector �ields are used to explore and understand the curvature, topology, and other intrinsic
properties of Riemannian manifolds. They also show up in the study of Einstein’s theory of general relativity,
�luid dynamics, and even string theory, where the geometry of space-time is often modeled as a Riemannian
manifold. The behavior and classi�ication of these vector �ields allow mathematicians and physicists to draw
signi�icant conclusions about the manifold’s global properties.

Riemannian manifolds admitting concircular, special concircular, non-isometric concircular, non-
isometric conformal, and non-af�ine projective vector �ields were classi�ied by Tashiro [68] in 1963. The
features of Riemannian manifolds with exterior concurrent vector �ields and torse-forming were
investigated by Mihai and Mihai [55]. Chen [25] established several results of Ricci solitons and investigated
the properties of concircular vector �ields. In [26] and [27], he examined the characteristics of torqued and
parallel vector �ields in collaboration with his coauthors. Various authors have conducted studies on
Riemannian manifolds featuring distinct vector �ields. For example, we cite [5, 19, 33, 37, 45, 48, 49, 53, 56,
68, 70, 71] along with their respective references. In [17], Chaubey and Suh have started their study by
considering n-dimensional Riemannian manifolds admitting a torse-forming vector �ield and introduced the
notion of Riemannian concircular structure (brie�ly, (RCS)n-manifolds). They have validated the existence
of such structures by proving nontrivial examples. They also proved that the (RCS)n-manifolds are
integrable and established some curvature identities. Several authors have explored the properties of
Riemannian concircular structure manifolds by considering the different values of potential function α (see
Eq. 2.6). For instance, the authors of [4, 10, 11, 14, 15, 29, 44, 47] have assumed α = −1 and investigated
their �indings. This chapter explores the properties of (RCS)n-manifolds if the Riemannian metric is an
almost Ricci soliton.

The exploration of symmetric spaces represents a compelling and signi�icant area within the realm of
differential geometry. Semisymmetric space (R(U ,V ) ⋅ R = 0) [67] is the generalization of locally
symmetric space (∇R = 0), and it has been studied by several geometers. Here R denotes the non-
vanishing curvature tensor of the Riemannian manifold M, ∇ is the Levi-Civita connection of the Riemannian
metric g, and R(U ,V ) acts as a derivation on R for all vector �ields U  and V  on M. A Riemannian manifold M
is referred to as a Ricci semisymmetric if its non-vanishing Ricci tensor S satis�ies the curvature condition 
R(U ,V ) ⋅ S = 0. Note that while the class of Ricci symmetric manifold (∇S = 0) includes the class of Ricci
semisymmetric manifold (R(U ,V ) ⋅ S = 0), the converse is generally not true. It is well known that every
semisymmetric manifold is Ricci semisymmetric, but its converse part is not true (in general). Numerous
authors have examined the characteristics of symmetric spaces in Riemannian and semi-Riemannian
settings, including locally symmetric, semisymmetric, Ricci semisymmetric, and others. For further
information, see [2, 3, 21, 51, 56, 66], and their references.

As a generalization of the Kähler-Einstein metric, Koiso [50] introduced the concept of quasi-Einstein
metric on Fano manifolds in 1987. Numerous scholars have examined the characteristics of quasi-Einstein
metrics. Chaki and Maity [6] investigate the characteristics of the Ricci tensor S of an n-dimensional
Riemannian manifold M that satis�ies the following relation after being inspired by the work by Chave and
Valent [23] on quasi-Einstein metrics.

(1.1)
Here a and b are nonzero smooth functions on M, and η is a nonzero 1-form associated with the vector �ield ξ
, that is, g(⋅, ξ) = η(⋅). M is referred to as a quasi-Einstein manifold (brie�ly, (QE)n-manifold) [6] if the non-
vanishing Ricci tensor S of M satis�ies Eq. (1.1). In the general theory of relativity, the space-times satisfy Eq.
(1.1) and is termed as perfect �luid space-times provided that vector �ield ξ is a unit timelike vector �ield,
that is, g(ξ, ξ) = −1 (see [7, 9, 18, 30, 64, 65]). Speci�ically, M with b = 0 recovers the Einstein manifold,
while a = b = 0 recovers the Ricci-�lat manifold. Chaki and Maity examined the following presumptions in
[6]:

a and b are constants, and the generator of (QE)n-manifold is recurrent
a + b = 0, W = 1

2a grad a, and ∇UW = −U + A(U)W , where A is a dual 1-form of W  and U is an
arbitrary vector �ield of M

for (QE)n-manifolds, and they proved that in both the cases (QE)n-manifolds are conformally
conservative. In [17], the authors have generalized results of Chaki and Maity’s work [6]. They gave a clue to
evaluate the smooth functions a and b on M.

S = bη ⊗ η + ag.



In 1822, Joseph Fourier introduced the concept of a heat �low equation, which is a nonlinear partial
differential equation. In 1964, Eells and Sampson [36] introduced a similar nonlinear variant of the heat
�low equation, known as harmonic map heat �low. This inspired Hamilton to introduce the concept of Ricci
�low in 1982 [39, 40]. A Ricci �low is de�ined by the equation: ∂g

∂t = −2Ric, g(0) = g0. In this nonlinear
partial differential equation, the variables g, t, and Ric represent the Riemannian metric, time, and Ricci
tensor of the Riemannian n-manifold, respectively. In 2002 and 2003, respectively, Perelman used the Ricci
�low to solve the Poincaré Conjecture (one of the millennium problems) and the Geometrization Conjecture
[58–60]. Using the Ricci �low, M. T. Anderson [54] provided the geometrization of 3-manifolds. Note that a
number of long-standing, unresolved issues in mathematics, physics, medicine, engineering, and technology
have been addressed with the help of the Ricci �low. A Ricci soliton is a self-similar solution of the Ricci �low.
In order to address a number of problems in the mathematical sciences and related �ields, the Ricci soliton
has been employed. The equation

(1.2)
represents the Ricci soliton equation on an n-dimensional Riemannian manifold M, where £ is the Lie
derivative operator of the Riemannian metric g. S is the Ricci tensor, V  is a soliton vector, and λ is a soliton
constant. The Ricci soliton is represented by the symbol (g,V ,λ). The Ricci soliton equation (1.2) becomes
an almost Ricci soliton if we select λ as a smooth function on M. If λ is positive, negative, or zero, then an
almost Ricci soliton (g,V ,λ) is expanding, shrinking, or steady. For more detailed information on solitons,
we refer to [1, 13, 22, 34, 35, 41–43, 46, 57, 62].

The following is how we set up our work. We de�ine the Riemannian concircular structure manifold and
list some of its fundamental characteristics in Sect. 2. Section 3 deals with the study of (RCS)n-manifolds
admitting almost Ricci solitons. Section 4 ensures the existence of projectively semisymmetric (RCS)n-
manifolds admitting almost Ricci solitons. Next, Sect. 5 deals with the study of (RCS)n-manifolds admitting
Ricci solitons and satisfying the condition Q ⋅P = 0. Here Q and P denote the Ricci operator and
projective curvature tensor of M.

2	 Riemannian	Manifolds	and	Torse-Forming	Vector	Field
In this section, we consider the Riemannian manifolds endowed with a torse-forming vector �ield and
encode the basic results of Riemannian concircular structure manifolds ((RCS)n-manifolds).

Yano [71] introduced the idea of a torse-forming vector �ield on Riemannian spaces, and numerous
scholars have examined its characteristics in Riemannian and semi-Riemannian settings (see [5, 53, 55, 56]).
In [71], he states that a smooth vector �ield ξ de�ined on M is a torse-forming vector �ield if

(2.3)
where η(⋅) = g(⋅, ξ) is a 1-form associated with ξ and π is a 1-form. Here X(M) is the collection of all
smooth vector �ields of M. If 1-form π is closed on M, then ξ is said to be a concircular vector �ield [37, 70].
The torse-forming vector �ield ξ on M, in particular, reduces to the:

Torqued vector �ield [26] if π(ξ) = 0
Concircular vector �ield (in Fialkow’s sense) [25, 37] if π = 0
Concircular vector �ield (in Yano’s sense) [70] if the 1-form π is closed
Recurrent vector �ield [61] if α = 0
Concurrent vector �ield [27] if π = 0, and α = 1
Parallel vector �ield [27, 37] if π = 0, and α = 0

Researchers are drawn to the study of geometric structures using these vectors because they can address a
number of scienti�ic and technological issues, particularly because they play a unique role in geometry and
physics.

These vectors are capable to address several issues of science and technology, especially they play a
peculiar role in geometry and physics, and therefore the study of geometric structures with these vectors
attracts researchers. We categorize Riemannian manifolds with concircular vector �ields (in Yano’s sense) in
this chapter. The geometrical and physical properties of Lorentzian manifolds endowed with concircular
vector �ields (in Yano’s sense) have been explored by Mantica and Molinari [52] and then proved that the
Lorentzian manifolds are the generalized Robertson-Walker space-times. For instance, we refer to [5, 8, 9,
12, 16, 18, 21, 28, 30–32, 53, 63–65, 69].

1
2

£V g + S + λg = 0

(∇Uη)(V ) = αg(U ,V ) + π(U)η(V ), ∀ U ,V ∈ X(M),



Assume that M admits a unit torse-forming vector �ield ξ, that is, g(ξ, ξ) = 1 ⇒ g(∇Uξ, ξ) = 0. Using
Eq. (2.3) with V = ξ, we discover

(2.4)
since g(ξ, ξ) = η(ξ) = 1 and g(∇Uη)(ξ) = 0. In Eq. (2.3), we apply Eq. (2.4) to get

(2.5)
which implies that

(2.6)
Here α is a nonzero scalar, and for some smooth function μ on M, ∇Uα = g(U ,Dα) = U(α) = μη(U). The
gradient operator of g in this case is D. It is clear from Eq. (2. 1) that the 1-form η is closed. By taking the
covariant derivative of Eq. (6) along V  and applying Eq. (2. 1) and the fact that U(α) = μη(U), we can also
conclude that π is closed. According to Yano, the unit torse-forming vector �ield ξ de�ined in (2.3) is a unit
concircular vector �ield on M. The smooth function α on M is the potential function of the concircular vector
�ield. Equation U(α) = μη(U) gives that ξ(α) = μ ⇒ ξ(ξ(α)) = ξ(μ). Again U(α) = μη(U) infers that 
Dα = μξ. Along U , the covariant derivative of Dα = μξ yields

Examining an orthonormal frame �ield on M, we can then contract the aforementioned equation over U  to
arrive at

where △ represents the Laplace operator of g. A smooth function Ψ on M is regarded as harmonic if and
only if △Ψ = 0. Assuming that ξ = ∂

∂t  on M, the equation above takes the following form:
(2.7)

Thus, we state the following result:

Lemma	2.1	([17]) The	partial	differential	equation (2.7) is	satis�ied	by	the	potential	functionαofξif	a	unit
concircular	vector	�ieldξis	admitted	by	an	n-dimensional	Riemannian	manifold.

Equation (2.7) also allows us to say:

Lemma	2.2	([17]) On	an	n-dimensional	Riemannian	manifold	endowed	with	a	unit	concircular	vector	�ieldξ,
the	potential	functionαofξis	harmonic	if	and	only	if ∂α

∂t + n−1
2 α2 = constant.

Let a (1, 1) tensor �ield ϕ be admitted to the Riemannian manifold M such that

which provides
(2.8)

where (2.6) is applied. Following (2.8) and η(ξ) = 1 and operating ϕ on either side of Eq. (2.8), we get

where I stands for identity transformation and ⊗ denotes the tensor product on M. In view of Eq. (2.8), we
have

Remark that g(ϕU ,ϕV ) = g(ϕU ,V ) = g(U ,ϕV ), ∀ U ,V ∈ X(M). Therefore, we deduce that if M admits a
1-form η, a (1, 1) tensor �ield ϕ, and a unit concircular vector �ield ξ, then we have

(2.9)
The authors of [17] provided the following de�inition after taking into account all of the aforementioned
facts.

De�inition	2.3 Assume that the data (ϕ, ξ, η, g) on an n-dimensional Riemannian manifold M satis�ies
(2.9). A Riemannian concircular structure manifold, or (RCS)n-manifold, is then de�ined as M equipped
with (ϕ, ξ, η, g). On M, the structure (ϕ, ξ, η, g) is de�ined as a Riemannian concircular structure.

A few fundamental (RCS)n-manifold results are encoded as follows:

αη(U) + π(U) = 0,

(∇Uη)(V ) = α{g(U ,V ) − η(U)η(V )},

∇Uξ = α{U − η(U)ξ}.

∇UDα = U(μ)ξ + μα(U − η(U)ξ).

△α = ξ(ξ(α)) + α(n−1)ξ(α),

△α = ∂
∂t (

∂α
∂t + n−1

2 α2).

αϕU = ∇Uξ, α ≠ 0,

ϕU = U − η(U)ξ,

ϕ2 = I − η ⊗ ξ,

g(ϕU ,ϕV ) = g(U ,V ) − η(U)η(V ), η(V ) = g(V , ξ).

ϕ2 = I − η ⊗ ξ, η(ξ) = 1, g(ϕ ⋅,ϕ ⋅) = g(⋅ , ⋅) − η ⊗ η.



Proposition	2.4	([17]) An n-dimensional (RCS)n-manifold satis�ies:

(i)
ϕξ = 0,  

(ii)
η(ϕU) = 0,  

(iii)
rank (ϕ) = n−1,  

(iv)
(∇Uϕ)(V ) = α[2η(U)η(V )ξ − g(U ,V )ξ − η(V )U ], ∀ U ,V ∈ X(M). 

Proposition	2.5	([17]) In an (RCS)n-manifold, we have:

(i)
R(U ,V )ξ = (α2 + μ){η(U)V − η(V )U},  

(ii)
R(ξ,U)V = (α2 + μ){η(V )U − g(U ,V )ξ},  

(iii)
η(R(U ,V )W) = (α2 + μ){η(V )g(U ,W) − η(U)g(V ,W)},  

(iv)
S(U , ξ) = −(n−1)(α2 + μ)η(U) ⇔ Qξ = −(n−1)(α2 + μ)ξ,

for all U ,V ,W ∈ X(M), and (α2 + μ) ≠ 0.
 

Proposition	2.6	([17]) In an (RCS)n-manifold, we have:

(i)
′R(U ,V ,ϕW ,Z) − ′R(U ,V ,W ,ϕZ) = (α2 + μ){η(W)[η(V )g(U ,Z) − η(U)g(V ,Z)] + η(Z)[η(V )g(U

(ii)
′R(U ,V ,ϕW ,ϕZ) = ′R(ϕU ,ϕV ,W ,Z),

(iii)
′R(ϕU ,ϕV ,ϕW ,ϕZ) = ′R(U ,V ,W ,Z) − (α2 + μ){η(Z)[η(U)g(V ,W) − η(V )g(U ,W)] + η(W)[η(V
,

(iv) ′R(ϕU ,V ,W ,ϕZ) − ′R(U ,ϕV ,ϕW ,Z) = (α2 + μ){η(U)η(W)g(V ,Z) − η(V )η(W)g(U ,Z)},

(v)
S(ϕU ,ϕV ) = S(U ,V ) + (n−1)(α2 + μ)η(U)η(V ), for all U ,V ,W ,Z ∈ X(M), here ′R(U ,V ,W ,Z) =

3	 (RCS)n-Manifolds	Admitting	Almost	Ricci	Solitons
Let us consider that (RCS)n-manifolds M admit an almost Ricci soliton (g, ξ,λ). Then by the equation of
almost Ricci soliton (1.2), we have

(3.10)
for arbitrary vector �ields U and V  on M. The de�inition of Lie derivative together with Eq. (2.6) assumes the
following form:

(3.11)
By making use of (3.11) in (3.10), we �ind

(3.12)
which infers with the help of (1.1) that M endowed with (g, ξ,λ) is a quasi-Einstein manifold. The
geometrical and physical properties of quasi-Einstein manifold have been studied by many researchers. In
the general theory of relativity, the space-time possesses a non-vanishing Ricci tensor S that satis�ies Eq.
(3.12) and is termed as a perfect �luid space-time provided g(ξ, ξ) = −1.

Let {e1, e2, ⋯ , en = ξ} be a set of orthonormal vector �ields e1, e2, ⋯ , en = ξ on M. Then the
contraction of Eq. (3.12) over the vector �ields U and V  gives

where r = ∑n
i=1 S(ei, ei) is a scalar curvature of M. Next, taking V = ξ in (3.12), we �ind

(£ξg)(U ,V ) + 2S(U ,V ) + 2λg(U ,V ) = 0

(£ξg)(U ,V ) = g(∇Uξ,V ) + g(U , ∇V ξ) = 2α(g(U ,V ) − η(U)η(V )).

S(U ,V ) = −(λ + α)g(U ,V ) + αη(U)η(V ),

r = −λn + (1 − n)α,



(3.13)
where Q is the Ricci operator of g corresponding to the Ricci tensor S such that S(⋅, ⋅) = g(Q⋅, ⋅). Equation
(3.13) shows that −λ is the eigenvalue of Q corresponding to the eigenvector ξ.

From (3.13) and Proposition (2.5) (iv), we obtain
(3.14)

which reduces to

where ξ = ∂α
∂t  and μ = ξ(α) are used. Hence, we state the following:

Theorem	3.1 Let	M	be	an(RCS)n-manifold	admitting	an	almost	Ricci	soliton(g, ξ,λ).	Then	M	is	a	quasi-
Einstein	manifold,	and	the	soliton	functionλis	given	byλ = (n−1)(α2 + ∂α

∂t ).

It is well known that an almost Ricci soliton (g, ξ,λ) on M is shrinking, expanding, and steady provided that 
λ is negative, positive, and zero, respectively. These facts together with Theorem 3.1 observe the following:

Corollary	3.2 An	almost	Ricci	soliton(g, ξ,λ)on(RCS)n-manifolds	is	shrinking	or	expanding	if ∂α
∂t < −α2or

∂α
∂t > −α2,	respectively.

In consequence of Proposition 2.2 and Theorem 3.1, we have the following corollary:

Corollary	3.3 An	almost	Ricci	soliton(g, ξ,λ)on(RCS)n-manifolds	reduces	to	an	expanding	Ricci	soliton
(g, ξ,λ)if	the	potential	functionαof	the	concircular	vector	�ieldξis	a	nonzero	constant.

Let us suppose that α is a smooth function on M. Then from Eq. (3.14), we have

since μ = ξ(α). The covariant derivative of the above equation along X gives

which, after contraction over X, gives

A smooth function F on a Riemannian manifold M of dimM = n ≥ 3 is, respectively, named as harmonic,
strictly super-harmonic, and strictly subharmonic if △F = 0, △F < 0, and △F > 0.

Let ξ = ∂
∂t . Therefore, the above de�initions together with Eq. (3.15) reveal the following:

Corollary	3.4 Let	an(RCS)n-manifold	admit	the	almost	Ricci	soliton(g, ξ,λ).	Then	the	soliton	functionλof
(g, ξ,λ)is:

(i)
Harmonic	if ∂

∂t
(2αμ + σ) + (n−1)α(2αμ + σ) = 0,  

(ii)
Strictly	super-harmonic	if ∂

∂t
(2αμ + σ) < (1 − n)α(2αμ + σ), 

(iii)
Strictly	subharmonic	if ∂

∂t
(2αμ + σ) > (1 − n)α(2αμ + σ).  

Corollary	3.5 Let	an(RCS)n-manifold	admit	the	almost	Ricci	soliton(g, ξ,λ).	If	the	potential	functionαof
the	concircular	vector	�ieldξis	a	nonzero	constant,	then	the	soliton	functionλis	harmonic.

Let an (RCS)n-manifold M (n > 3) admit an almost Ricci soliton (g, ξ,λ). Then M satis�ies Eq. (3.12).
Taking the covariant derivative of (3.12) along the vector �ield X, we �ind

where Eq. (2. 1) is used.

S(U , ξ) = −λη(U) ⇔ Qξ = −λξ,

λ = (α2 + μ)(n−1),

λ = (n−1)(α2 + ∂α
∂t ),

Dλ = (n−1)(2αμ + σ)ξ,

∇XDλ = (n−1){X(2αμ + σ)ξ + (2αμ + σ)∇Xξ},

△λ = (n−1){ξ(2αμ + σ) + (n−1)α(2αμ + σ)}.

(∇XS)(U ,V ) = −X(λ + α)g(U ,V ) + X(α)η(U)η(V )

+α2{g(X,U)η(V )−2η(U)η(V )η(X) + η(U)g(X,V )},



The last two equations give

(3.15)

Contracting the above equation over U and V , we �ind
(3.16)

Again, contraction of Eq. (3.12) over U and V  gives

which becomes
(3.17)

In consequence of Eqs. (3.16) and (3.17) we have
(3.18)

From Eq. (3.14) we obtain
(3.19)

since X(α) = μη(X) and X(μ) = ση(X).
In view of Eqs. (3.18) and (3.19), we lead to

Thus, we can state the following:

Theorem	3.6 Let	an(RCS)n-manifoldM (n > 3)admit	an	almost	Ricci	soliton(g, ξ,λ).	Then	the	functionsα
, μ,	andσon	M	satisfy	the	relation

4	 Projectively	Semisymmetric	(RCS)n-Manifolds
Let M be an n-dimensional Riemannian concircular structure manifold admitting an almost Ricci soliton 
(g, ξ,λ). Suppose P denotes the projective curvature tensor on M; then it can be expressed as

(4.20)
where dimM = n.

A Riemannian manifold M is said to be projectively semisymmetric if and only if
(4.21)

for arbitrary vector �ields X,Y  on M. Equation (4.21) is equivalent to

which becomes

(4.22)

since X = ξ is used.
Let M be an (RCS)n-manifold. Then in view of Proposition (2.5)(ii), Eq. (4.22) takes the form

(4.23)

where α2 + μ ≠ 0. Taking the inner product of (4.23) with ξ, we have

(4.24)

From (4.20), we �ind
(4.25)

(∇US)(X,V ) = −U(λ + α)g(X,V ) + U(α)η(X)η(V )

+α2{g(X,U)η(V )−2η(X)η(V )η(U) + η(X)g(U ,V )}.

(∇XS)(U ,V ) − (∇US)(X,V ) = −U(λ + α)g(X,V ) − X(λ + α)g(U ,V )

+X(α)η(U)η(V ) − U(α)η(X)η(V ) + α2{g(X,V )η(U) − η(X)g(U ,V )}.

X(r) = −2(n−2)X(α)−2(n−1)X(λ) − ξ(λ)η(X) − (n−1)α2η(X).

r = −λn − (n−1)α,

X(r) = −nX(λ) − (n−1)X(α).

(n−3)X(α) + (n−2)X(λ) = −[ξ(λ) + (n−1)α2]η(X).

X(λ) = (n−1)[2αμ + σ]η(X),

(n−3)μ + (n−1)[(n−1)(2μα + σ) + α2] = 0.

(n−3)μ + (n−1)[(n−1)(2μα + σ) + α2] = 0.

P(U ,V )W = R(U ,V )W − 1
n−1 (S(V ,W)U − S(U ,W)V ),

R(X,Y ) ⋅P = 0,

R(X,Y )P(U ,V )W −P(R(X,Y )U ,V )W

− P(U ,R(X,Y )V )W −P(U ,V )R(X,Y )W = 0,

R(ξ,X)P(U ,V )W −P(R(ξ,X)U ,V )W

− P(U ,R(ξ,X)V )W −P(U ,V )R(ξ,X)W = 0,

(α2 + μ)[η(P(U ,V )W)X − g(X,P(U ,V )W)ξ − η(U)P(X,V )W

+g(X,U)P(ξ,V )W − η(V )P(U ,X)W + g(X,V )P(U , ξ)W

−η(W)P(U ,V )X + g(X,W)P(U ,V )ξ] = 0,

(α2 + μ)[η(P(U ,V )W)η(X) − g(X,P(U ,V )W) − η(U)η(P(X,V )W)

+g(X,U)η(P(ξ,V )W) − η(V )η(P(U ,X)W) + g(X,V )η(P(U , ξ)W)

−η(W)η(P(U ,V )X) + g(X,W)η(P(U ,V )ξ)] = 0.



(4.26)

(4.27)
In view of (4.25)–(4.27), Eq. (4.24) reduces to

(4.28)
where α2 + μ ≠ 0.

In view of (3.12) and (4.20), Eq. (4.28) takes the form

(4.29)

which is equivalent to
(4.30)

where f1 = α2 + μ and f2 = − α
n−1

.
A Riemannian manifold M of dimension n is said to be a manifold of quasi-constant curvature [24] if the

curvature tensor R of M satis�ies

for some smooth functions a and b on M. Motivated from the above de�inition, we say that an n-dimensional
Riemannian manifold M is said to be a semi-quasi-constant curvature if its non-vanishing curvature tensor R
satis�ies Eq. (4.30). From the above de�inition and Eq. (4.30), we notice that if M is projectively
semisymmetric, then it is a manifold of semi-quasi-constant curvature.

Let {ei}, i = 1, 2, 3 …n, be an orthonormal basis of the tangent space at any point of the manifold. If we
put V = W = ei in (4.29) and taking summation with respect to i(1 ≤ i ≤ n), then we get

From Eqs. (3.12) and (4.30), we have

Contracting the above equation over the vector �ields X and Y , we get α = 0, which is inadmissible. Hence,
our hypothesis that M together with an almost Ricci soliton is projectively semisymmetric is not possible.
Thus we can state the following:

Theorem	4.1 Let	M	be	an(RCS)n-manifold	admitting	an	almost	Ricci	soliton(g, ξ,λ).	Then	M	cannot	be	a
projectively	semisymmetric	manifold.

5	 (RCS)n-Manifolds	Admitting	Almost	Ricci	Solitons	Satisfying	
Q ⋅P = 0
Let M be an (RCS)n-manifold admitting almost Ricci solitons. If M satis�ies the relation Q ⋅P = 0, then we
have

(5.31)
for all U ,V ,W ∈ X(M). In view of (4.20), (5.31) turns to

which by taking the inner product with ξ takes the form
(5.32)

η(P(U ,V )W) = (α2 + μ −
λ + α

n−1
)(g(U ,W)η(V ) − g(V ,W)η(U)) ,

η(P(ξ,V )W) = −(α2 + μ −
λ + α

n−1
)(g(V ,W) − η(V )η(W)),

η(P(U ,V )ξ) = 0.

g(X,P(U ,V )W) = (α2 + μ − λ+α
n−1 )(g(U ,W)g(X,V ) − g(X,U)g(V ,W)),

g(R(U ,V )W ,X) = (α2 + μ)[g(U ,W)g(X,V ) − g(X,U)g(V ,W)]

−
α

n−1
(g(X,V )η(U)η(W) − g(X,U)η(V )η(W)),

R(U ,V )W = f1[g(U ,W)V − g(V ,W)U ] + f2(η(U)V − η(V )U)η(W),

R(X,Y )Z = a{g(Y ,Z)X − g(X,Z)Y } + b{g(Y ,Z)η(X)ξ

−g(X,Z)η(Y )ξ + η(Z)η(Y )X − η(Z)η(X)Y },

S(U ,X) = −[(α2 + μ)(n−1) − α
n−1

]g(U ,X) − α
n−1

η(U)η(X).

−[(α2 + μ)(n−1) − α
n−1

]g(X,Y ) − α
n−1

η(Y )η(X) = −(λ + α)g(X,Y )

+αη(X)η(Y ).

Q(P(U ,V )W) −P(QU ,V )W −P(U ,QV )W −P(U ,V )QW = 0

Q(R(U ,V )W) − R(QU ,V )W − R(U ,QV )W

−R(U ,V )QW + 2
n−1

[S(QV ,W)U − S(QU ,W)V ] = 0,

η(Q(R(U ,V )W)) − η(R(QU ,V )W) − η(R(U ,QV )W)

−η(R(U ,V )QW) + 2
n−1 [S(QV ,W)η(U) − S(QU ,W)η(V )] = 0.



Putting V = ξ in (5.32), we have
(5.33)

From Proposition (2.5) (ii) and (iv), we �ind

(5.34)

By the use of (5.34), Eq. (5.33) takes the form
(5.35)

This implies

where S 2(U ,W) = S(QU ,W). In view of (3.12), Eq. (5.35) leads to
(5.36)

provided λ + α − (n−1)(α2 + μ) ≠ 0. Equation (5.36) infers that M under consideration is a special type
of quasi-Einstein manifold. By putting U = W = ξ in (5.36), it follows that

(5.37)
This shows that either α2 + μ = 0 or λ − (n−1)(α2 + μ) = 0. If possible, we suppose that α2 + μ = 0, and
hence Eq. (5.36) re�lects that the (RCS)n-manifolds under consideration are Ricci-�lat.

In [38], Fischer and Wolf have studied the properties of compact Ricci-�lat Riemannian manifolds and
established several interesting results. They proved that a compact connected Ricci-�lat n-manifold M n has
the expression M n = Ψ ∖ T k × M n−k, where k is the �irst Betti number b1(M n),T k is a �lat Riemannian k-
torus, M n−k is a compact connected Ricci-�lat (n − k)-manifold, and Ψ is a �inite group of �ixed-point-free
isometries of T k × M n−k of a certain sort (see Theorem 4.1, [38] and Theorem 1.2, [20]).

Since α2 + μ = 0, the (RCS)n-manifold admitting an almost Ricci soliton (g, ξ,λ) and satisfying the
expression Q ⋅P = 0 can be expressed as

Let α2 + μ ≠ 0. Then from (5.37) we have
(5.38)

Equations (3.14), (5.36), and (5.38) lead to
(5.39)

since α2 + μ ≠ 0. Thus, we can state the following theorem:

Theorem	5.1 Let	a	compact(RCS)n-manifold	M	admit	an	almost	Ricci	soliton(g, ξ,λ).	If	M	satis�ies	the
relationQ ⋅P = 0,	then	eitherM = Ψ ∖ T k × M n−kor	M	is	a	special	type	of	quasi-Einstein	manifold,	and	its
Ricci	tensor	satis�ies (5.39).

Let ρ be the eigenvalue of the endomorphism Q corresponding to the eigenvector U, i.e., QU = ρU . Then
from (5.35), we have

(5.40)
By putting U = W = ξ in (5.40), we have ρ2 + ρ(α2 + μ)(n−1) = 0. This gives that either ρ = 0 or 
ρ = −(n−1)(α2 + μ). Thus, we have the following corollary:

Corollary	5.2 If	an(RCS)n-manifold	admitting	an	almost	Ricci	soliton(g, ξ,λ)satis�iesQ ⋅P = 0,	then	the
eigenvector	of	Q	is	either 0 or−(n−1)(α2 + μ).

Let α2 + μ ≠ 0. The covariant derivative of (5.39) along the vector �ield V  gives

η(Q(R(U , ξ)W)) − η(R(QU , ξ)W) − η(R(U ,Qξ)W)

−η(R(U , ξ)QW) + 2
n−1 [S(Qξ,W)η(U) − S(QU ,W)] = 0.

⎧⎪⎨⎪ η(Q(R(U , ξ)W)) = η(R(U ,Qξ)W)

= (α2 + μ)
2
(n−1)(η(U)η(W) − g(U ,W)),

η(R(QU , ξ)W) = η(R(U , ξ)QW)

= (α2 + μ)(S(U ,W) + (α2 + μ)(n−1)η(U)η(W)),

S(Qξ,W) = (α2 + μ)
2
(n−1)2

η(W).

S(QU ,W) = −(α2 + μ)(n−1)S(U ,W).

S 2(U ,W) = −(α2 + μ)(n−1)S(U ,W),

S(U ,W) = −
α(n−1)(α2+μ)

λ+α−(n−1)(α2+μ)
η(U)η(W),

(n−1)(α2 + μ){λ − (n−1)(α2 + μ)} = 0.

M = Ψ ∖ T k × M n−k.

λ = (n−1)(α2 + μ).

S(U ,W) = (n−1)(α2 + μ)η(U)η(W),

ρ2g(U ,W) = −ρ(α2 + μ)(n−1)g(U ,W).

(∇VS)(U ,W) = 2αη(V )S(U ,W) − α(α2 + μ){g(V ,U)η(W) + g(V ,W)η(U)},



since Eq. (2.6) is used. This equation can be rewritten as
(5.41)

where A(V ) = 2αη(V ) and B(U) = −α(α2 + μ)η(U) are 1-forms.
Inspired from Eq. (5.41) and the de�inition of Ricci recurrent and generalized Ricci recurrent manifolds,

we de�ine the following de�inition:

De�inition	5.3 A complete Riemannian manifold M of dimension n ≥ 3 is said to be an extended Ricci
recurrent manifold if its non-vanishing Ricci tensor satis�ies

for arbitrary vector �ields X,Y , and Z on M, where A and B are 1-forms corresponding to the generators ρ1

and ρ2, that is, A(⋅) = g(⋅, ρ1) and B(⋅) = g(⋅, ρ2).
In particular, if we take A = 0 = B and B = 0 in the above equation, then an extended Ricci recurrent

manifold reduces to the Ricci symmetric manifold ((∇XS)(Y ,Z) = 0) and Ricci recurrent manifold 
((∇XS)(Y ,Z) = A(X)S(Y ,Z)), respectively.

Equation (5.39) and De�inition 5.3 state the following:

Corollary	5.4 Let	a	complete(RCS)n-manifold	M	admit	a	Ricci	soliton(g, ξ,λ).	Then	M	satis�iesQ ⋅P = 0,
andα2 + μ ≠ 0is	an	extended	Ricci	recurrent	manifold.

6	 Data	Availability
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Abstract
This chapter proposes the concept of a statistical map between two statistical manifolds
and presents illustrative examples. Subsequently, we generalize Chen’s �irst inequality for
Riemannian maps to the framework of statistical maps by deriving the corresponding
Gauss equation.
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1	 Introduction
The theory of statistical manifolds, which originated with the seminal work of C.R. Rao in
1945 [18], forms the foundation of what is now known as information geometry. This �ield
primarily investigates the differential-geometric structures associated with statistical
models, particularly those de�ined on manifolds of probability distributions.

In recent years, information geometry has found diverse applications across several
domains, including information theory, stochastic processes, dynamical systems and time
series, statistical physics, quantum mechanics, and the mathematical modeling of neural
networks [4]. Numerous studies have further explored the role of statistical manifolds in
these contexts. For example, in [2], the authors analytically compute the asymptotic
temporal behavior of the information-geometric complexity in �inite-dimensional Gaussian
statistical manifolds under the in�luence of microcorrelations. Similarly, the [9] presents an
extension of the ergodic hierarchy (encompassing ergodic, mixing, and Bernoulli levels) for
statistical models on curved manifolds using tools from information geometry.

https://doi.org/10.1007/978-981-95-5148-4_8
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A signi�icant structural component in information geometry is the concept of dual
connections (or conjugate connections) in af�ine differential geometry, introduced into
statistics by S. Amari in 1985 [3]. A statistical manifold is de�ined as a differentiable
manifold equipped with a Riemannian metric and a pair of dual torsion-free af�ine
connections. For comprehensive treatments of statistical manifolds, one may refer to [7,
10, 16, 17, 22, 24], and [11], among others.

Building on these structures, the notion of statistical submersions was introduced by N.
Abe and K. Hasegawa in 2001 [1], extending foundational results of B. O’Neill [13, 15]
concerning Riemannian submersions and geodesics to the statistical setting. This topic has
been further explored in subsequent works (see, e.g., [12, 21, 23, 25–30]), etc.

On a parallel track, the theory of Riemannian maps (a generalization of both isometric
immersions and Riemannian submersions) has garnered considerable attention in
Riemannian geometry. These maps provide a �lexible framework for comparing geometric
structures between manifolds. Let (M, gM) and (N , gN) be Riemannian manifolds. A
smooth map π : (M, gM) → (N , gN) is called an isometric immersion if the differential π∗

is injective and preserves the metric:
(1.1)

for all vector �ields X,Y  tangent to M. This theory traces back to Gauss’s investigations on
surfaces in Euclidean spaces.

A Riemannian submersion, on the other hand, is a smooth map 
π : (M, gM) → (N , gN) for which π∗ is surjective and satis�ies the above metric condition
(1.1) on the horizontal distribution (kerπ∗)⊥.

In 1992, Fischer introduced the broader notion of Riemannian maps [6]. For a smooth
map π : (M, gM) → (N , gN) with 0 < rankaπ∗ <min {m,n}, where dim M = m and 
dim N = n, the tangent bundle TM decomposes as

where H = (kerπ∗)⊥.
Similarly, the tangent bundle TN decomposes as

A map π is said to be a Riemannian map at p1 ∈ M  if the horizontal restriction 
πh

∗p1
: (kerπ∗p1

)⊥ → rangeπ∗p1
 is a linear isometry with respect to the induced metrics.

Thus, both isometric immersions and Riemannian submersions appear as special cases of
Riemannian maps, corresponding to kerπ∗ = {0} and (rangeπ∗)⊥ = {0} [19, 20].

Furthermore, for a smooth map π : (M, gM) → (N , gN), the second fundamental form
of π is given by

(1.2)
where ∇π is the pullback connection. It is noted that the connection ∇ on the bundle 
Hom(TM,π−1TN) is induced by the Levi-Civita connection ∇M  and the pullback
connection. This form is symmetric in its arguments and plays a crucial role in analyzing
curvature relations via the Gauss and Codazzi equations. Here π−1TN  is the pullback
bundle which has �ibers (π−1TN)p = Tπ(p)N , p ∈ M .

In this chapter, we explore statistical maps by integrating the ideas outlined above. We
begin by revisiting the foundational notions and properties of statistical manifolds and
statistical submersions. We then introduce the de�inition of a statistical map, along with

gN(π∗X,π∗Y ) = gM(X,Y ),

TM = kerπ∗ ⊕H ,

TN = rangeπ∗ ⊕ (rangeπ∗)⊥.

(∇π∗)(X,Y ) = ∇π
X(π∗(Y )) − π∗(∇M

X Y ),



illustrative examples. Finally, we derive the Gauss equation for statistical maps and extend
Chen’s �irst inequality (originally formulated for Riemannian maps) into the statistical
geometric setting.

2	 Statistical	Submersions
Let M be an n-dimensional smooth semi-Riemannian manifold equipped with a metric
tensor gM , where gM  is a symmetric nondegenerate (0, 2)-tensor �ield of constant index.
The common value ν of index of the index of gM  on M is called the index of M with 
0 ≤ ν ≤ n. We denote such a manifold by M n

ν . When ν = 0, M becomes a Riemannian
manifold.

At any point p ∈ M , a tangent vector E to M is called:

1.
Spacelike if gM(E,E) > 0 or E = 0  

2.
Null (or lightlike) if gM(E,E) = 0 or E ≠ 0 

3.
Timelike if gM(E,E) < 0  
Let Rn

ν  be an n-dimensional real vector space endowed with an inner product of
signature (ν,n − ν), de�ined by

where x = (x1, … ,xn) are the standard coordinates. This space is called the semi-
Euclidean space of dimension n and index ν. In particular, Rn

0  corresponds to the standard
Euclidean space and Rn

1  to the Lorentzian space [28].
Following [13, 14], a smooth map π : (M, gM) → (N , gN) is called a semi-Riemannian

submersion if:
1.

dπp is surjective for all p ∈ M .  
2.

Each �iber π−1(b), b ∈ N , is a semi-Riemannian submanifold of M. 
3.

The metric is preserved on the horizontal distribution, that is,

for all vectors X,Y  normal to the �ibers.

 

It is worth noting that (semi-)Riemannian submersions are of considerable importance
not only in differential geometry but also in various scienti�ic and technological domains.
Numerous researchers have contributed to this area of study, for example, see [31].

Assume that π : Mm → N n is such a semi-Riemannian submersion. For each b ∈ N ,
the �iber Mb = π−1(b) inherits an induced metric g and forms an r = (m − n)-
dimensional semi-Riemannian submanifold of M. A vector �ield on M is called vertical if it is
always tangent to the �ibers and horizontal if it is orthogonal to the �ibers.

⟨x,x⟩ = −∑
ν

i=1
x2
i +∑

n

i=ν+1
x2
i ,

gM(X,Y ) = gN(dπX, dπY ),



Let Vp(M) and Hp(M) denote the vertical and horizontal subspaces of TpM , p ∈ M ,
respectively. Then the tangent bundle decomposes as

We denote the corresponding projection operators by V : TM → V (M) and 
H : TM → H (M).

A vector �ield X on M is called projectable if there exists a vector �ield X∗ on N such that 
dπ(Xp) = X∗π(p) for every p ∈ M ; in this case, X and X∗ are said to be π-related. If in
addition X is horizontal, it is called basic.

Lemma	2.1	([13,	14]) Let	X	and	Y 	be	basic	vector	�ields	on	M,π-related	toX∗andY∗on	N.
Then:
1.

gM(X,Y ) = gN(X∗,Y∗) ∘ π.  
2.
H [X,Y ]is	basic	andπ-related	to[X∗,Y∗]. 

Let M be a semi-Riemannian manifold equipped with a torsion-free af�ine connection ∇M .
The triple (M, ∇M , gM) is called a statistical manifold if ∇MgM  is symmetric. For such a
manifold, the conjugate (or dual) connection ∇∗M  is de�ined by

(2.3)
for vector �ields E,F , and G on M. The connection ∇∗M  is torsion-free, and ∇∗M

gM  is
symmetric. Moreover, the duality condition satis�ies (∇∗M

)
∗

= ∇M , implying that 
(M, ∇∗M

, gM) is also a statistical manifold. Let R and R∗ denote the curvature tensors
corresponding to ∇M  and ∇∗M , respectively. Then the following identity holds:

where R(E,F)G = [∇M
E

, ∇M
F

]G − ∇M
[E,F ]

G. Hence R ≡ 0 if and only if so is R∗ ≡ 0. In
this case, the manifold is said to be �lat.

De�ine the difference tensor
(2.4)

where ∇̂M  is the Levi-Civita connection. Then K is symmetric in the sense that 
KEF = KFE and gM(KEF ,G) = gM(F ,KEG) hold [28].

Let (M, ∇M , gM) be a statistical manifold and π : M → N  be a semi-Riemannian
submersion. Denote by ∇ and ∇∗ the af�ine connections induced on each �iber M . For
vertical vector �ields U ,V , these are given by

and both are torsion-free and mutually dual with respect to the induced metric g on the
�iber.

Let π : (M, gM) → (N , gN) be a smooth map between statistical manifolds with 
0 < rankπ∗ <min {m,n}. At each point p ∈ M , let Vp = kerπ∗p and Hp = (kerπ∗p)⊥.
Then we have the orthogonal decomposition:

TpM = Hp(M) ⊕ Vp(M).

EgM(F ,G) = gM(∇M
E F ,G) + gM(F , ∇∗M

E G)

gM(R(E,F)G,H) = −gM(G,R∗(E,F)H),

K = 1
2 (∇M − ∇∗M

) = ∇M − ∇̂M ,

∇UV = V∇M
U V , ∇∗

UV = V∇∗M

U V ,

TpM = kerπ∗p ⊕ (kerπ∗p)⊥ = Vp ⊕Hp.



Similarly, at π(p) ∈ N , we de�ine the range rangeπ∗p ⊂ Tπ(p)N  and its orthogonal
complement (rangeπ∗p)⊥. Since rankπ∗ ≤min {m,n}, this decomposition is nontrivial:

3	 Statistical	Maps
In this section, we �irst de�ine a statistical map.

A smooth map π : (M, gM) → (N , gN) is a statistical map at p1 ∈ M  if the horizontal
restriction

is a linear isometry between the inner product spaces ((kerπ∗p1)
⊥, gM(p1)|(kerπ∗p1)

⊥) and
(rangeπ∗p1 , gN(p2)|(rangeπ∗p1)), p2 = π(p1). Thus π∗  satis�ies the equation

(3.5)
which holds for all horizontal vector �ields X, Y .

Thus, isometric immersions and statistical submersions appear as special cases of
statistical maps, corresponding to kerπ∗ = {0} and (rangeπ∗)⊥ = {0}, respectively.
Moreover, a statistical map must be a submersion, implying that the rank of 
π∗ : TpM → Tπ(p)N  is constant on each connected component of M.

De�inition	3.1 Let (M, ∇M , gM) and (N , ∇N , gN) be statistical manifolds and 
π : M → N  a smooth map between them. If 0 ≤ rankπ∗p1

≤min {m,n}, π∗p1
 maps the

horizontal space Hp1
= (ker(π∗p1

))⊥ isometrically onto range(π∗p1
), i.e.,

and the af�ine connections satisfy the relation 
N

∇π
X
π∗p1(Y ) = π∗p1(∇M

X Y ) + C(X,Y )πp1

for X,Y ∈ Hp1 , then π is called a statistical map, where C(X,Y )πp1
∈ Γ((rangeπ∗)⊥).

If C(X,Y )πp1
= 0, then a statistical map becomes a statistical submersion.

Example	3.2 Let π : (M, gM) → (N , gN) be an isometric immersion between statistical
manifolds. Then π is a statistical map with kerπ∗ = {0}.

Example	3.3 Let π : (M, gM) → (N , gN) be a statistical submersion between statistical
manifolds. Then π is a statistical map with (rangeπ∗)

⊥
= {0}.

Example	3.4 Let us take two statistical manifolds (M = R
2, ∇M , gM) with 

gM = dx2 + dy2 and af�ine connection ∇M  de�ined by

and (N = R2, ∇N , gN) with gN = dz2 + dw2 and af�ine connection ∇N  de�ined as

Tπ(p)N = (rangeπ∗p) ⊕ (rangeπ∗p)⊥.

πh
∗p1

: (kerπ∗p1)
⊥ → (rangeπ∗p1)

gN(π∗ X,π∗ Y ) = gM(X,Y ),

g
N

(π∗p1X,π∗p1Y ) = gM(X,Y ),

∇M
∂x

∂y = 0 = ∇M
∂y

∂x,

∇M
∂x

∂x = ∂y, ∇M
∂y

∂y = 0



De�ine the differentiable map π : (Mm, ∇M , gM) → (N n, ∇N , gN) with Cartesian
coordinates (x, y) by

Hence we get

where 0 ≤ rankπ∗ = 1 ≤min {2, 2}. Then we have

and

where ∂x = ∂ / ∂x.
Thus it is easy to see that

and

i ≠ j, for i = 1, 2.
On the other hand, if the expressions C(X,Y ) are calculated with respect to the bases,

the following cases are obtained:
1.

For X = ∂x and Y = ∂y, using π∗∂x = ∂z, π∗∂y = 0, we get 
C(∂x, ∂y) = ∇N

π∗∂x
π∗∂y − π∗(∇M

∂x
∂y) = 0.

 
2.

For X = ∂x and Y = ∂x, using π∗∂x = ∂z, we have 
C(∂x, ∂x) = ∇N

π∗∂x
π∗∂x − π∗(∇M

∂x
∂x) = ∂w.

 
3.

For X = ∂y and Y = ∂x, using π∗∂y = 0, π∗∂x = ∂z, we get 
C(∂y, ∂x) = ∇N

π∗∂y
π∗∂x − π∗(∇M

∂y
∂x) = 0.

 
4.

For X = ∂y and Y = ∂y, using π∗∂y = 0, we put 
C(∂y, ∂y) = ∇N

π∗∂y
π∗∂y − π∗(∇M

∂y
∂y) = 0.

 

Then π is a statistical map with 
rangeπ∗ = Span{e′

1 = ∂z}, (rangeπ∗)⊥ = Span{e′
2 = ∂w}.

Let π be a statistical map from a statistical manifold (M, ∇M , gM) to a statistical manifold 
(N , ∇N , gN). Then we de�ine T and A as

∇N
∂z

∂w = 0 = ∇N
∂w

∂z,

∇N
∂z

∂z = ∂w, ∇N
∂w

∂w = 0.

π(x, y) = (x, 0).

π∗ = ( ),
1 0

0 0

kerπ∗ = Span{e2 = ∂y}

(kerπ∗)⊥ = Span{e1 = ∂x},

gN(π∗(ei),π∗(ei)) = gM(ei, ei) = 1,

gN(π∗(ei),π∗(ej)) = gM(ei, ej) = 0,

TEF = H ∇M
V E
V F + V∇M

V E
H F , AEF = H ∇M

H E
V F + V∇M

H E
H F ,



where ∇M  is the linear connection of gM . We can easily obtain the tensors T ∗ and A∗

corresponding to the conjugate connection by simply replacing ∇M  by ∇∗M  in the above
equations. We note that (T ∗)∗ = T  and (A∗)∗ = A. For vertical vector �ields, T and T ∗ are
symmetric. Also for X,Y ∈ H (M) and U ,V ∈ V (M), we have

(3.6)
Thus, TUV ≡ 0 (resp. TUX ≡ 0) if and only if T ∗

UX ≡ 0 (resp. T ∗
UV ≡ 0).

On the other hand, from (3.6) we have

for X,Y ∈ H (M) and U ,V ∈ V (M).
Furthermore, if X is basic, then H ∇M

U X = AXU , H ∇∗M

U X = A∗
XU , and 

AXY = −A∗
YX for horizontal vector �ields X and Y . The tensor A ≡ 0 if and only if 

A∗ ≡ 0. Since A characterizes the integrability of the horizontal distribution H (M), it is
identically zero if and only if H (M) is integrable with respect to ∇M .

Proposition	3.5 Letπ : (Mm, ∇M , gM) → (N n, ∇N , gN)be	a	statistical	map.	Then	we
have

forX,Y ,Z ∈ Γ((kerπ∗)⊥).

Proof The proof is clear from Eqs. (1.1) and (2.4). □

Then we can give the following corollary:

Corollary	3.6 Letπ : (Mm, ∇M , gM) → (N n, ∇N , gN)be	a	statistical	map.	Then,	for	all
X,Y ,Z ∈ Γ((kerπ∗)⊥), (∇π∗)(X,Y ) ∈ Γ((rangeπ∗)⊥)if	and	only	if
(∇∗π∗)(X,Y ) ∈ Γ((rangeπ∗)⊥).

Proposition	3.7 Letπ : (Mm, ∇M , gM) → (N n, ∇N , gN)be	a	statistical	map.	Then	we
have

forX,Y ,Z ∈ Γ((kerπ∗)⊥).

Considering these results, we can give the following lemma.

Lemma	3.8 Letπ : (Mm, ∇M , gM) → (N n, ∇N , gN)be	a	statistical	map.	If
K(X,π∗Y ) = π∗(K(X,Y )),we	have

(3.7)
forX,Y ,Z ∈ Γ((kerπ∗)⊥).

gM(TUV ,X) = −gM(V ,T ∗
UX) and gM(AXY ,U) = −gM(Y ,A∗

XU).

∇M
U V = TUV + ∇UV ∇∗M

U V = T ∗
UV + ∇∗

UV ,

∇M
U X = H ∇M

U X + TUX ∇∗M

U X = H ∇∗M

U X + T ∗
UX,

∇M
X U = AXU + V∇M

X U ∇∗M

X U = A∗
XU + V∇∗M

X U ,

∇M
X Y = H ∇M

X Y + AXY ∇∗M

X Y = H ∇∗M

X Y + A∗
XY ,

g
N

((∇π∗)(X,Y ),π∗(Z)) = −g
N

((∇∗π∗)(X,Y ),π∗(Z)),

g
N

((∇∗π∗)(X,Y ),π∗(Z)) = g
N

(π∗(Y ), (∇∗π∗)(X,Z)),

g
N

((∇π∗)(X,Y ),π∗(Z)) = 0,



Proof Since π is a statistical map, from (1.1), we get
(3.8)

where ∇̂ is the Levi-Civita connection. Using (2.4), we have

So, considering the hypothesis, we obtain

We know that g
N

((∇̂π∗)(X,Y ),π∗(Z)) = 0. In this case, Eq. (3.7) is obtained, where 
C(X,Y ) = (∇π∗)(X,Y ). □

Similarly, we can also say that g
N

((∇∗π∗)(X,Y ),π∗(Z)) = 0 under the same condition.
We recall that the second fundamental form of π is the map 

∇π∗ : Γ(TM) × Γ(TM) → Γ(TN) de�ined by

(3.9)

where ∇ is a linear connection on M and 
N

∇π
Xπ∗Y ∘ π =

N

∇π
π∗X

π∗Y . Considering Lemma
3.8, we have

for all X,Y ∈ Γ((kerπ∗)⊥). Hence, we say that at p ∈ M

(3.10)

where 
N

∇π
Xπ∗(Y ) ∈ Tπ(p)N , π∗(∇M

X Y )(p) ∈ π∗p(TpM) and 
(∇π∗)(X,Y )(p) ∈ (π∗p(TpM))⊥.

Also, we get the second fundamental form of π according to the dual connection ∇∗

de�ined by
(3.11)

then we have (∇∗π∗)(X,Y ) ∈ Γ((rangeπ∗)⊥).

Example	3.9 From Example 3.4, let M = R
2 with coordinates (x, y) and the Euclidean

metric gM = dx2 + dy2 equipped with the Levi-Civita connection ∇̂M  and a statistical
connection ∇M = ∇̂M + KM , where KM  is a symmetric difference tensor de�ined by

Let N = R
2 with coordinates (z,w) and the Euclidean metric gN = dz2 + dw2

equipped with the Levi-Civita connection ∇̂N  and a statistical connection 
∇N = ∇̂N + KN , where KN  is de�ined as

De�ine the differentiable map π : (M 2, ∇M , gM) → (N 2, ∇N , gN) by π(x, y) = (x, 0)
with differential

g
N

((∇̂π∗)(X,Y ),π∗(Z)) = g
N

(∇̂π
Xπ∗Y ,π∗(Z)) − gM(∇̂M

X Y ,Z),

g
N

((∇̂π∗)(X,Y ),π∗(Z)) = g
N

(∇π
Xπ∗Y ,π∗(Z)) − gN(K(X,π∗(Y )),π∗(Z))

−gN(π∗(∇M
X Y ),π∗(Z)) + gN(π∗(K(X,Y )),π∗(Z)).

g
N

((∇̂π∗)(X,Y ),π∗(Z)) = g
N

(C(X,Y ),π∗(Z)).

(∇π∗)(X,Y ) =
N

∇π
Xπ∗Y − π∗(∇M

X Y ),

(∇π∗)(X,Y ) ∈ Γ((rangeπ∗)⊥),

N

∇π
Xπ∗(Y )(p) = π∗(∇M

X Y )(p) + (∇π∗)(X,Y )(p),

(∇∗π∗)(X,Y ) =
N

∇∗π
X
π∗Y − π∗(∇∗M

X
Y );

KM(∂x, ∂x) = λ∂x, KM(∂x, ∂y) = 0 = KM(∂y, ∂x) ,  KM(∂y, ∂y) = 0.

KN(∂z, ∂z) = λ∂z, KN(∂z, ∂w) = 0 = KN(∂w, ∂z) ,  KN(∂w, ∂w) = 0.



so that

Thus, the kernel of π∗ is π∗ = Span{∂y}, and its orthogonal complement is 
(kerπ∗)⊥ = Span{∂x}.

For all X,Y ∈ Γ((kerπ∗)⊥) = Span{∂x}, the condition holds. Specially:

1.
For X = Y = ∂x, we have

and

Hence, the condition holds.

 

2.
For X = ∂x and Y = ∂y, we get

and

Thus, the condition holds.

 

3.
For X = ∂y and Y = ∂x, we �ind

and

 

Thus, we conclude that for all X,Y ∈ Γ((kerπ∗)⊥), the condition 
K(X,π∗Y ) = π∗(K(X,Y )) is satis�ied.

From now on, for simplicity, we denote by ∇N  both the linear connection of (N , ∇N , gN)
and its pullback along π.

We now suppose that π is a statistical map; then SV π and S ∗
V π are de�ined as

(3.12)
(3.13)

for any X ∈ Γ((kerπ∗)
⊥

) and V ∈ Γ((rangeπ∗)
⊥

). So, from (2.3), (3.9), and (3.12), we
have

(3.14)
Similarly, we �ind that

(3.15)
Using the concept of doubly totally geodesic submanifold from [8], we are able to de�ine

the following:

π∗ = ( ),
1 0

0 0

π∗∂x = ∂z, π∗∂y = 0.

KN(∂x,π∗∂x) = KN(∂x, ∂z) = λ∂z

π∗(KM(∂x, ∂x)) = π∗(λ∂z) = λ∂z.

KN(∂x,π∗∂y) = KN(∂x, 0) = 0

π∗(KM(∂x, ∂y)) = π∗(0) = 0.

KN(∂y,π∗∂x) = KN(∂y, ∂z) = 0

π∗(KM(∂y, ∂x)) = π∗(0) = 0.

∇N
π∗X

V = −SV π∗X + ∇π⊥

X V ,

∇∗N

π∗X
V = −S ∗

V π∗X + ∇∗π⊥

X V

gN(SV π∗X,π∗Y ) = gN(V , (∇∗π∗)(X,Y )).

gN(S ∗
V π∗X,π∗Y ) = gN(V , (∇π∗)(X,Y )).



De�inition	3.10 Let (M, ∇M , gM) and (N , ∇N , gN) be two statistical manifolds and 
π : M → N  be a statistical map from these manifolds. If 
(∇π∗)(X,Y ) = (∇∗π∗)(X,Y ) = 0, for X,Y ∈ Γ(TM), then the map π is called doubly
totally geodesic map.

Theorem	3.11 Letπ : (Mm, ∇M , gM) → (N n, ∇N , gN)be	a	statistical	map	which
satis�ies	the	conditionK(X,π∗Y ) = π∗(K(X,Y ));	thenπis	doubly	totally	geodesic	if	and
only	if:
1.

A∗
XY = 0.  

2.
S ∗
V π∗X = 0.  

3.
TUV = 0forX,Y ∈ Γ((kerπ∗)⊥)andU ,V ∈ Γ((rangeπ∗)⊥). 

Proof For V ∈ Γ((rangeπ∗)⊥), we have (∇π∗)(X,V ) ∈ Γ(rangeπ∗). Then we get

In this case, we have

Also, we get

Finally, for U ,V ∈ Γ((rangeπ∗)⊥),

□

If π : (Mm, ∇M , gM) → (N n, ∇N , gN) is a statistical map, then considering πh
∗  at each 

p1 ∈ M  as a linear transformation

we state the adjoint of πh
∗  as ∗πh

∗p1
. Let us assume that the adjoint of 

π∗p1 : (Tp1M, gMp1) → (Tp2N , gNp2) is ∗π∗p1 . Therefore the linear transformation 
(∗π∗p1)

h
: rangeπ∗(p2) → (kerπ∗)

⊥
(p1) de�ined as (∗π∗p1)

h
w =∗ π∗p1w, where 

w ∈ Γ(rangeπ∗p1), p2 = π(p1), is an isomorphism and (πh
∗p1

)
−1

= (∗π∗p1)
h =∗ (πh

∗p1
).

Using (3.10), (3.12), and (3.13), we have

(3.16)

and
(3.17)

gN((∇π∗)(X,V ),π∗Y ) = 0.

0 = −gM(∇M
X
V ,Y ) = −gM(AXV ,Y ) = gM(A∗

XY ,V ).

0 = gN((∇π∗)(X,Y ),π∗V ) = gN(S ∗
V π∗X,π∗Y ).

0 = gN((∇π∗)(U ,V ),π∗X) = −gM(∇M
U
V ,X) = −gM(TUV ,X).

πh
∗p1

: ((kerπ∗)⊥(p1), g
Mp1((kerπ∗)⊥(p1))) → (rangeπ∗(p2), gNp2(rangeπ∗)(p2))),

RN(π∗X,π∗Y )π∗Z = π∗(RM(X,Y )Z) + (∇M
X (∇π∗))(Y ,Z)

−(∇M
Y (∇π∗))(X,Z)

+S(∇π∗)(X,Z)π∗Y − S(∇π∗)(Y ,Z)π∗X



for X,Y ,Z ∈ Γ((kerπ)⊥), where RM  (respectively, R∗M

) and RN  (respectively, R∗N

)

denote the curvature tensors of ∇M  (respectively, ∇∗M

) on M and ∇N  (respectively, ∇∗N

)

on N . Moreover, (∇M
X

(∇π∗))(Y ,Z) and (∇∗M

X
(∇∗π∗))(Y ,Z) are de�ined by

and

This leads us to formulate Chen’s �irst inequality for the statistical map π in the next
section.

4	 Chen’s	First	Inequality
In this section, we establish Chen’s �irst inequality for a statistical map π into a statistical
manifold of constant curvature c, under the assumption that rankπ = r ≥ 3.

Let π : (Mm, ∇M , gM) → (N n, ∇N , gN) be a statistical map. Suppose that 
K(X,π∗Y ) = π∗K(X,Y ). Then, using Eqs. (3.16) and (3.17), the Gauss equation for π is

(4.18)

and its dual can be written as

(4.19)

for all X,Y ,Z,W ∈ Γ((kerπ)⊥).

Given an orthonormal basis {ei|i = 1, 2, 3, ⋯ , r−1, r} of (kerπ∗)⊥, the scalar
curvature de�ined on (kerπ∗)⊥ is expressed as

and for an orthonormal basis {vα|α = r + 1, r + 2, ⋯ ,n}, we put

R∗N

(π∗X,π∗Y )π∗Z = π∗(R∗M

(X,Y )Z)(∇∗M

X
(∇∗π∗))(Y ,Z)

−(∇∗M

Y
(∇∗π∗))(X,Z)

+S ∗
(∇∗π∗)(X,Z)π∗Y − S ∗

(∇∗π∗)(Y ,Z)π∗X

(∇M
X (∇π∗))(Y ,Z) = ∇π⊥

X
(∇Mπ∗)(Y ,Z) − (∇π∗)(∇M

X Y ,Z) − (∇π∗)(Y , ∇M
X Z)

(∇∗M

X (∇∗π∗))(Y ,Z) = ∇∗π⊥
X (∇∗M

π∗)(Y ,Z) − (∇∗π∗)(∇∗M

X Y ,Z)

−(∇∗π∗)(Y , ∇∗M

X Z).

gN(RN(π∗X,π∗Y )π∗Z,π∗W) = gM(RM(X,Y )Z,W)

+gN((∇π∗)(X,Z), (∇∗π∗)(Y ,W))

−gN((∇π∗)(Y ,Z), (∇∗π∗)(X,W)),

gN(R∗N

(π∗X,π∗Y )π∗Z,π∗W) = gM(R∗M

(X,Y )Z,W)

+gN((∇∗π∗)(X,Z), (∇π∗)(Y ,W))

−gN((∇∗π∗)(Y ,Z), (∇π∗)(X,W)),

τ =∑
1≤i<j≤r

gM(RM(ei, ej)ej, ei),



For a point p ∈ M , consider a plane section L ⊂ TpM  spanned by {E = e1,F = e2}.
The sectional curvature K (L ) is then given by

Substituting X = T = e1 and Y = Z = e2 into Eq. (4.18), we obtain

(4.20)

By reformulating Eq. (4.20), we get

(4.21)

where K 0(L ) represents the sectional curvature of the Levi-Civita connection
corresponding to the plane section L .

Alternatively, by setting X = T = ei and Y = Z = ej in Eq. (4.18), we arrive at

But we know that 2h0α
ij = hα

ij + h∗α
ij , where h0α

ij = gN((∇̂π∗)(ei, ej), vα). Then we can
write

hα
ij = gN((∇π∗)(ei, ej), vα),

h∗α
ij = gN((∇∗π∗)(ei, ej), vα),

||h||2 =∑
r

i,j=1
gN((∇π∗)(ei, ej), (∇π∗)(ei, ej)),

||h∗||2 =∑
r

i,j=1
gN((∇∗π∗)(ei, ej), (∇∗π∗)(ei, ej)),

trace(h) =∑
r

i=1
(∇π∗)(ei, ei), trace(h∗) =∑

r

i=1
(∇π∗)(ei, ei),

||trace(h)||2 = gN(trace(h), trace(h)),

||trace(h∗)||2 = gN(trace(h∗), trace(h∗)).

K (L ) = gM(RM(e1, e2)e2, e1).

K (L ) = c −∑
n

α=r+1
(2(h0α

12 )
2

− 1
2 ((hα

12)2 + (h∗α
12 )2))

+∑
n

α=r+1
(2h0α

11h
0α
22 − 1

2 (hα
11h

α
22 + h∗α

11h
∗α
22 ))

= c + 2∑
n

α=r+1
(h0α

11h
0α
22 − (h0α

12 )
2)

+ 1
2 ∑

n

α=r+1
((hα

12)2 + (h∗α
12 )2 − hα

11h
α
22 − h∗α

11h
∗α
22).

K (L ) = −c + 2K 0(L )

+ 1
2 ∑

n

α=r+1
((hα

12)2 + (h∗α
12 )2 − hα

11h
α
22 − h∗α

11h
∗α
22),

r(r−1) c
2 = τ +∑

1≤i<j≤r
(gN((∇π∗)(ei, ej), (∇∗π∗)(ei, ej))

−gN((∇π∗)(ej, ej), (∇∗π∗)(ei, ei))).



which can be reduced to

(4.22)

Upon recalling the Gauss equation associated with the Levi-Civita connection, Eq. (4.22)
becomes

(4.23)

where τ 0 represents the scalar curvature of Levi-Civita connection de�ined on (kerπ∗)⊥.
From the combination of Eqs. (4.21) and (4.23), it follows that

The terms in the above equation resemble those in the following algebraic lemma from
[5]:

Lemma	4.1 Lets ≥ 3be	an	integer	andai, i = 1, 2, 3, ⋯ , s,	be	s	real	numbers.	Then,	we
have

r(r−1) c
2 = τ + 2∑

1≤i<j≤r
gN((∇̂π∗)(ei, ej), (∇̂π∗)(ei, ej))

− 1
2 ∑1≤i<j≤r

(gN((∇π∗)(ei, ej), (∇π∗)(ei, ej))

+gN((∇∗π∗)(ei, ej), (∇∗π∗)(ei, ej)))
−2∑

1≤i<j≤r
gN((∇̂π∗)(ej, ej), (∇̂π∗)(ei, ei))

+ 1
2 ∑1≤i<j≤r

(gN((∇π∗)(ej, ej), (∇π∗)(ei, ei))

+gN((∇∗π∗)(ej, ej), (∇∗π∗)(ei, ei))),

r(r−1) c
2 = τ + 2∑

n

α=r+1
∑

1≤i<j≤r
(h0α

ij )
2

− 1
2 ∑

n

α=r+1
∑

1≤i<j≤r
((hα

ij)
2

+ (h∗α
ij )

2)

−2∑
n

α=r+1
∑

1≤i<j≤r
h0α
ii h

0α
jj

+ 1
2 ∑

n

α=r+1
∑

1≤i<j≤r
(hα

iih
α
jj + h∗α

ii h
∗α
jj ).

r(r−1) c
2 = τ + r(r−1)c−2τ 0 − 1

2 ∑
n

α=r+1
∑

1≤i<j≤r
((hα

ij)
2

+ (h∗α
ij )

2)

+ 1
2 (hα

iih
α
jj + h∗α

ii h
∗α
jj ),

τ −K (L ) = 2(τ 0 −K
0(L )) − (r−2)(r + 1) c

2

+ 1
2 ∑

n

α=r+1
∑

1≤i<j≤r
((hα

ij)
2 + (h∗α

ij )2)

− 1
2
(hα

ii
hα
jj

+ h∗α
ii
h∗α
jj
)

− 1
2 ∑

n

α=r+1
((hα

12)2 + (h∗α
12 )2 − hα

11h
α
22 − h∗α

11h
∗α
22).



Moreover,	equality	in	the	above	inequality	holds	if	and	only	ifa1 + a2 = a3 = ⋯ = as.

Consequently, we have

As a result, we derive the following theorem:

Theorem	4.2 Letπ : M → Nbe	a	statistical	map	from	a	statistical	manifold
(Mm, ∇M , gM)to	a	statistical	manifold(N n(c), ∇N , gN)of	constant	curvaturec ∈ Rwith
r ≥ 3.	Then

Moreover,	the	equality	holds	if	and	only	if

i ≠ j, (i, j) ≠ (1, 2), (2, 1),	and	for	anyα ∈ {r + 1, ⋯ ,n}.
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Abstract
We introduced and discussed the idea of hyperbolic Ricci-Yamabe solitons associated
with perfect �luid spacetime in this research note. Additionally, we examine a perfect
�luid spacetime, which accommodates the hyperbolic Ricci-Yamabe solitons and the
rate of change of the hyperbolic Ricci-Yamabe solitons coupled with a conformal
vector �ield, φ(Q)-vector �ield with Ricci collineation condition. We also analyze the
rate of change of the hyperbolic Ricci soliton and investigate the gradient hyperbolic
Ricci-Yamabe soliton on perfect �luid spacetime with scalar concircular �ield.
Furthermore, we investigate the energy conditions for perfect �luid spacetime in
terms of gradient hyperbolic Ricci-Yamabe solitons with a scalar concircular �ield. In
the end, we introduced a more generic notion of η-hyperbolic Ricci-Yamabe solitons
and proved that a spacetime admitting the η-hyperbolic Ricci-Yamabe solitons with a
conformal vector �ield is a perfect �luid spacetime.

Keywords Hyperbolic Ricci-Yamabe solitons – Gradient hyperbolic Ricci-Yamabe
soliton – η-hyperbolic Ricci-Yamabe solitons – Conformal vector �ield – Scalar
concircular �ield – Energy condition

1	 Introduction
The General Theory of Relativity (GTR) is the name given to Einstein’s theory of
gravity. This theory states that the energy-momentum tensor mathcalT is the source
of the gravitational �ield and gravitational waves, which are represented by the
spacetime curvature. GTR is the foundation of all theoretical disciplines. All current
particle physics equations used in astrophysics, plasma physics, nuclear physics, etc.
are based on the Einstein equations, which describe the evolution of spacetime
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curvature. The best way to understand general relativity is through the mathematical
development of differential geometry and relativistic �luid models. Spacetime is best
represented as a curved manifold, according to GTR’s central notion [1].

The spacetime of GTR and cosmology can be simulated using a time-oriented
connected four-dimensional Lorentzian manifold, a special subclass of pseudo-
Riemannian manifolds with Lorentzian metric g and signature (−, +, +, +). For GTR,
this manifold has signi�icant consequences. The �irst step in establishing the
geometry of the Lorentzian manifold M 4 is to study vector nature on it. Therefore,
the ideal choice for addressing GTR [1] is the Lorentzian manifold (M 4, g).

One of the main elements of the matter of spacetime is the energy-momentum
tensor T . In addition to density, pressure, and other dynamical and kinematical
characteristics including shear, expansion, acceleration, and velocity, matter is
believed to be a �luid [46]. The universe’s matter component is thought to behave like
a perfect �luid in conventional cosmological models. The absence of viscosity and heat
conduction characterizes a perfect �luid, which is also known as an isotropic or star-
shaped �luid at rest. The dust matter �luid (p = 0) [29, 33] is the most basic
illustration of the perfect �luid. In GTR, perfect �luids are frequently used to simulate
idealized distributions. Moreover, In GTR, “stiff matter �luid” is described by the
relation p = σ [29].

De�inition	1.1	([29,	46]) A quasi-Einstein Lorentzian manifold is referred to as
perfect �luid spacetime (PFS) if the Ricci tensor has the composition

(1.1)
wherein g is the Lorentzian metric, a and b are scalars, and 1-form η is metrically
equivalent to a unit time-like vector �ield.

Furthermore, the Lorentzian manifold is a manifold that permits a time-like vector
�ield [27, 28].

The investigation of exact solutions to the Einstein �ield equations gave rise to
quasi-Einstein manifolds. For instance, the quasi-Einstein manifolds [27, 28] are the
Robertson-Walker	spacetime. In GTR, they can also be viewed as a model of the perfect
�luid spacetime [32].

De�inition	1.2	([29]) The energy-momentum tensor T  in conjunction with a
perfect �luid has the following shape:

(1.2)
for any vector �ield F1,F2 ∈ χ(M 4), and the isotropic pressure is denoted by p, the
energy density by σ, and the Lorentzian metric by g. This means that 
g(F1, ζ) = η(F1), where η is 1-form, which corresponds to the �luid’s time-like
velocity vector ζ, and g(ζ, ζ) = −1 [32].

If σ = 3p [29], then matter in spacetime originates from a radiation �luid.
Furthermore, there are important uses for Eq. (1.2) in star structure and cosmology.

SRic = ag + bη ⊗ η,

T (F1,F2) = ρg(F1,F2) + (σ + p)η(F1)η(F2),



The scalar �ield theory and electromagnetic energy-momentum tensors are two more
instances of energy-momentum tensors.

The �ield equation governing perfect �luid motion is Einstein’s gravitational
equation (in short EGFE) [29].

(1.3)
where the scalar curvature of g is Rscal, the cosmological constant is Λ, the
gravitational constant is κ (which may be expressed as 8πG, with G being the
universal gravitational constant), and the Ricci tensor is SRic.

Over the past 20 years, a number of scholars have used a range of geometric tools,
such as curvature tensors [2] and, most signi�icantly, geometric �lows [26, 45], to
thoroughly examine the properties of symmetries in the perfect �luid spacetime (PFS).
There are many symmetries in the geometry of matter and spacetime [34, 42].

Metric symmetries are essential because they facilitate the resolution of
numerous problems. They are mostly employed in GTR to classify solutions to
Einstein �ield equations. Among these symmetries are Ricci solitons associated with
the Ricci �low of spacetime. Ricci �low is important because it helps understand the
concepts of entropy and energy in GTR [21]. Ricci solitons are areas where the
curvatures obey a self-likeness [22].

First, spacetime symmetries were studied in connection with the Ricci soliton by
Ahsan and Ali [4]. Blaga used Einstein, Ricci, and their extensions, that is, η-Einstein
solitons [7] and η-Ricci solitons [15] in a PFS, respectively, to explain the geometrical
axioms of a PFS in [8]. Furthermore, Venkatesha and Kumara [48] used Ricci solitons
to investigate the characterization of PFS using the torse-forming vector �ield and
Jacobi. In [38], Danish and Shah-Alam talked about the conformal Ricci solitons on
PFS. Recently, Danish and Fatemah in [36, 37] looked at various properties of PFS
with hyperbolic Ricci solitons. Additionally, perfect �luid spacetime, magneto-�luid
spacetime [35, 44], and static spacetime [41] were studied by Siddiqi et al. utilizing
Ricci-Yamabe solutions. Recent research on Ricci-Yamabe solitons on imperfect �luid-
generalized Robertson-Walker spacetime [3, 40] was conducted by Alkhaldi et al. [5].

In 2010, Dai and colleagues introduced the notion of hyperbolic geometric �low.
Later, Faraji, and colleagues [6, 18] introduced the concepts of gradient hyperbolic
Ricci soliton and hyperbolic Ricci solitons. Recently, Blaga and O� zgür have
investigated the idea of hyperbolic Yamabe solitons and hyperbolic Ricci solitons in
different methods (for more details, see [9, 11, 25]).

In the present study, we introduced the notion of the hyperbolic Ricci-Yamabe
soliton (HRYS) and gradient hyperbolic Ricci-Yamabe soliton (GHRYS). The
hyperbolic Ricci-Yamabe soliton is a generalization of the hyperbolic Ricci solitons
and hyperbolic Yamabe solitons and their gradient version. We analyze the relativistic
PFS in terms of a gradient hyperbolic Ricci-Yamabe soliton (GHRYS) and a
hyperbolic Ricci-Yamabe soliton (HRYS) with different vector �ields, drawing
inspiration from previous research.

SRic = κT − (Λ − Rscal

2
)g,



2	 The	Einstein	Field	Equation	Is	Satis�ied	by	Perfect
Fluid	Spacetime	with	the	Cosmic	Constant	Λ > 0
From Einstein’s �ield equations by adding a cosmological constant, which creates a
static universe, in accordance with his theory, in modern cosmology, it is thought to
be a potential dark energy contender that could account for the Universe’s faster
expansion.

We �ind from Eqs. (1.2) and (1.3)
(2.4)

The values of pressure and density for PFS (M 4, g) are determined by comparing
(10.2) and (2.4).

(2.5)
In addition, we gain

(2.6)
In light of (4.7) one can articulate the following

Theorem	2.1 If	aPFS (M 4, g)ful�ills	the	EGFE	with	the	cosmological	constantΛ,
then	densityσand	the	pressure	p	are	governed	by (2.5).

Let (M 4, g) be a PFS ful�illing (2.4). Contracting (2.4) and assumed that g(ζ, ζ) = −1,
we turn up

(2.7)

Theorem	2.2 If	aPFS (M 4, g)with	pressure	p	and	densityσful�ils	the	EGFE	with	the
cosmological	constantΛ,	then	the	scalar	curvatureRscalis4Λ + κ(σ−3p).

Remark	2.3 In case, Λ > 0, the cosmological constant Λ is essential to interpreting
the observed accelerating expansion of the cosmos and supernova [30]. Moreover, for
positive cosmological constant Λ, a spacetime is a de-Sitter	spacetime.

Remark	2.4	([30]) The Universe contains dark sector for the negative cosmological
constant Λ < 0, that is, ΛCDM. Therefore, model cannot accelerate, and the late time
expansion of Universe occurs.

If the source of matter is radiation type and stiff matter type, then from (2.7), we get
(2.8)

Given (2.8) and Remark 2.3, we may now state the following �indings:

Theorem	2.5 If	the	source	of	matter	is	radiation	type	in	a	spacetime(M 4, g)with
pressure	p	and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then
the	spacetime	is	an	accelerating	Universe.

SRic(F1,F2) = −(Λ − Rscal

2
+ κp)g(F1,F2) + κ(σ + p)η(F1)η(F2).

p = 1
κ
( Rscal

2 − Λ − a), σ = 1
κ
(a + b + Λ − Rscal

2 ).

a = Rscal

2 − κp − Λ, b = κ(σ + p).

Rscal = κ(σ−3p) + 4Λ.

Λ = R

4 , Λ = R

4 +
κp

2 .



Theorem	2.6 If	the	stiff	matter	is	the	source	of	spacetime(M 4, g)with	pressure	p	and
densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then	the	spacetime
is	an	accelerating	Universe.

Corollary	2.7 If	the	source	of	matter	is	radiation	type	in	a	spacetime(M 4, g)with
pressure	p	and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then
the	spacetime	is	a	de-Sitter	spacetime.

Corollary	2.8 If	the	stiff	matter	is	the	source	in	spacetime(M 4, g)with	pressure	p
and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then	the
spacetime	is	a	de-Sitter	spacetime.

Corollary	2.9 If	the	source	of	matter	is	radiation	type	in	a	spacetime(M 4, g)with
pressure	p	and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then
the	spacetime	is	a	Supernova.

Corollary	2.10 If	the	stiff	matter	is	the	source	in	spacetime(M 4, g)with	pressure	p
and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ > 0,	then	the
spacetime	is	a	Supernova.

3	 Dust	Matter	Fluid	Spacetime	Satisfying	Einstein	Field
Equation	with	the	Cosmological	Constant	Λ < 0
For dust �luid [33], from (2.7), we turn up

(3.9)
Equation (3.9) implies that if R > κσ, then we can obtain similar results to
mentioned above for dust matter �luid with positive Λ. However, now we are
interested in the situation if Λ < 0, that is, R < κσ.

Thus, using the aforementioned facts and Remark 2.8, we obtain the following
outcomes.

Theorem	3.1 If	the	dust	matter	is	the	source	of	spacetime(M 4, g)with	pressure	p
and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ < 0,	then	the
spacetime	is	a	non-accelerating	Universe	with	a	late	time	expansion	rate	of	the
Universe.

Corollary	3.2 If	the	dust	matter	is	the	source	of	spacetime(M 4, g)with	pressure	p
and	densityσand	ful�ils	the	EGFE	with	the	cosmological	constantΛ < 0,	then	the	non-
accelerating	Universe	contains	dark	sector.

Theorem	3.3 If	a	dust	�luid	spacetime(M 4, g)with	pressure	p	and	densityσful�ils	the
EGFE	with	the	cosmological	constantΛ < 0,	then	the	dust	matter	is	theΛCDM.

Λ = R−κσ
4 .



4	 Development	of	Hyperbolic	Ricci-Yamabe	Solitons
The principles of Ricci �low were �irst presented by Hamilton [21] in 1988. It
demonstrates that the limit of the Ricci �low’s solutions is the soliton of Ricci. In
addition, geometric �low theory, and the Ricci �low in particular, has attracted the
attention of many mathematicians throughout the last 20 years.

The Ricci �low [21] occurs when the family of metrics g(t) on a Riemannian
manifold M evolves, if

(4.1)

De�inition	4.1	([21]) A Ricci soliton on the Riemannian manifold (M , g) is a data 
(g, ζ,λ) that obeys

(4.2)
wherein SRic is the Ricci tensor, and for the vector �ield ζ, the Lie-derivative is Lζg. A
Ricci soliton is shrinking, expanding or stable soliton is the manifold (M, g, ζ,λ),
depending on the constant λ, regardless of whether λ < 0, λ > 0, or λ = 0.

Kong and Liu, however, explored the hyperbolic Ricci �low [16]. A system of second-
order nonlinear evolution partial differential equations makes up this �low.
Hyperbolic Ricci �low illustrates the wave properties of metrics and manifold
curvatures. The evolution equation that follows explains the hyperbolic Ricci �low,
which is consequently driven by Ricci �low.

(4.3)
where hij is a symmetric 2-tensor �ield. Thus, a self-similar solution of hyperbolic
Ricci �low is called a hyperbolic Ricci soliton (HRS) and has the following properties:

De�inition	4.2	([18]) A Riemannian manifold (M n, g) is a HRS if and only if M has
a vector �ield ζ and real scalars μ and λ such that

(4.4)

The types of solitons and the rate of the underlying type are indicated by λ and μ in
(4.4), respectively. Additionally, μ has geometric meaning and denotes the rate of
change in the solutions. Regardless of whether μ < 0, μ > 0, or μ = 0, the rate of
change of the HRS can be expanding, contracting, or roughly stable, depending on the
constant μ.

Example	4.3 Let H3 denote the three-dimensional Heisenberg group. Since, any
simply connected nilpotent Lie group is diffeomorphic to Rn. So give R3 its standard
coordinates (x, y, z). We consider a left-invariant Lorentzian metric g on H3 which is
de�ined by

De�ine a vector �ield X = (2z + xy)F1 + yF2 + xF3, where

∂
∂t
g(t) = −2SRic(t)g(t), g0 = g(0).

1
2
Lζg + λg +SRic = 0,

1
2

∂ 2

∂t2 g(t) = −SRic(t)g(t), g0 = g(0), ∂
∂t gij = hij,

1

2
LζLζg + λLζg +SRic = μg.

g = −dx2 + dy2 + (xdy + dz)2.



are frame �ields. Then, one can easily check that

Hence, (H3, g,X, −
5

2
, −

5

2
) is a hyperbolic Ricci structure.

Since ∇1X2 − ∇2X1 = x ≠ 0, the hyperbolic Ricci soliton is not of gradient type.

Hyperbolic Yamabe �low and hyperbolic Yamabe solitons were proposed by Blaga and
O� zgür in [10] as an evolution equation

(4.5)
where Rscal indicates the scalar curvature, and an equation-satisfying stationary
solution of it

(4.6)
with two scalars λ and μ and a smooth vector �ield zeta, and the derivative of the
metric g in the direction of ζ is Lζg.

Guler and Crasmareanu [20] have presented the research of a novel geometric
�low known as the Ricci-Yamabe map, which is a scalar combination of the Ricci and
Yamabe �lows. The Ricci-Yamabe �low of type (α,β) is another name for this.
According to [20], the Ricci-Yamabe �low is the development of metrics at the
Riemannian or semi-Riemannian manifold.

(4.7)
The sign of the associated scalars α and β determines whether the Ricci-Yamabe �low
is Riemannian, semi-Riemannian, or singular Riemannian. Some geometrical or
physical models, such as relativistic theories, can bene�it from this type of multiple
choices. Consequently, the Ricci-Yamabe soliton for the Ricci-Yamabe �low naturally
appears as the soliton limit.

5	 Hyperbolic	Ricci-Yamabe	Flow
The author was greatly inspired by this to present the idea of the hyperbolic	Ricci-
Yamabe	solitons, which are described as the subsequent development of the
hyperbolic Ricci-Yamabe �low equation in such a way that

(5.1)
where h is a symmetric 2-tensor �ield and g(t) is the solution of the hyperbolic Ricci-
Yamabe �low on a Riemannian manifold (M n, g) if there exist a function f(t) and 1-
parametric �low ψ(t) : M → M  such that the solution of (5.1) is

(5.2)

De�inition	5.1 A stationary solution g(t) (or self-similar solution) of (5.1) on a
hyperbolic Ricci-Yamabe soliton (HRYS) is a Riemannian manifold (M n, g) if a

F1 =
∂

∂z
, F2 =

∂

∂y
− x

∂

∂z
, F3 =

∂

∂x

Ric(g) −
5

2
LXg +LX(LXg) = −

5

2
g.

∂ 2

∂t2 g(t) = −Rscal(t)g(t),

LζLζg + λLζg = (μ −Rscal)g

∂
∂t g(t) = −2αSRic(t) + βRscal(t)g(t), g0 = g(0), t ∈ (a, b).

∂ 2

∂t2 g(t) = −2αSRic(t) + βRscal(t)g(t), g0 = g(0), ∂
∂t
g(t) = h(t),

g(t) = f(t)ψ(t)∗
g(0).



vector �ield ζ on M  and real scalars μ and λ exist such that

(5.3)

A hyperbolic Ricci-Yamabe soliton is shrinker, expander, or stable soliton if the
constant λ, regardless of whether λ < 0, λ > 0, or λ = 0. In addition the rate of
change of hyperbolic Ricci-Yamabe soliton is shrinking, expanding, or stable soliton
depending on the constant μ, whether μ < 0, μ > 0, or μ = 0 [18].

Remark	5.2 A hyperbolic Ricci-Yamabe �low of type (α,β), which is precisely:

Hyperbolic Ricci �low [16] if α = 1, β = 0 (hyperbolic Ricci solitons [18])
Hyperbolic Yamabe �low [10] if α = 0, β = 1 (hyperbolic Yamabe solitons [10])
Hyperbolic Einstein �low [13] if α = 1, β = −1 (hyperbolic Einstein solitons [13])

A gradient hyperbolic Ricci-Yamabe soliton (GHRYS) is called a HRYS (g,λ, ζ,μ)
[18] if there is a potential function f such that ζ = ∇f . Because of this, (5.3) can be
translated as (4.41).

(5.4)

6	 Results
De�inition	6.1	([17]) A vector �ield zeta on a Riemannian manifold (M , g) is
referred to as a conformal vector �ield if it meets the following relation:

(6.5)
where ω is the arbitrary nonzero smooth functions on M . The smooth function σ is
also known as a conformal coef�icient. In particular, the conformal vector �ield with a
vanishing conformal coef�icient (ω = 0) reduces to the Killing vector �ield, and with
constant conformal coef�icient (ω = cont.) it becomes homothetic vector �ield.

De�inition	6.2	([12]) A Riemannian manifold (M , g) is considered to be admitted
to Ricci collineation (RC) if

(6.6)
wherein SRic is the Ricci tensor.

7	 Main	Results
Now, by the de�inition of hyperbolic Ricci-Yamabe solitons,

(7.7)

Now, let ζ be a conformal vector �ield, and from (7.7) and (6.5) we turn up

(7.8)

(7.9)

1

2
LζLζg + λLζg + αSRic = (μ − βRscal)g.

L∇f(Hessf) + 2λHessf + αSRic = (μ − βRscal)g.

Lζg = 2ωg,

LζSRic = 0,

(LζLζg)(F1,F2) + 2λLζg(F1,F2) + 2αSRic(F1,F2)

= 2(μ − βRscal)g(F1,F2).

Lζ(Lζg)(F1,F2) + 2λ(Lζg)(F1,F2) + 2αSRic(F1,F2)

= 2(μ − βRscal)g(F1,F2).



Once more using the conformal vector �ield formulation in (refdx5), we get
(7.10)

Consequently, we can draw the following conclusions:

Theorem	7.1 If	aPFS (M 4, g)admits	the	HRY S(g,λ, ζ,μ,α,β)with	a	conformal
vector	�ieldζ,	then	thePFS (M 4, g)is	Einstein,	and	the	Einstein	factor	is
μ−(βRscal+2λω+2ω2)

α
.

In light of (7.10) and (2.4) we gain

(7.11)

Putting F1 = F2 = ζ in (7.11), we obtain
(7.12)

Furthermore, we discover the following corollary in the context of De�inition 4.1.

Theorem	7.2 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a	conformal
vectorζ�ield,	then	the	HRY S	is	shrinking,	steady,	or	expanding	referring	to	as:

1.
μ

2αω < { κ(σ+2p)
2ω + (1 − β

α
) Rscal

2ω + Λ
2ω + ω}  

2.
μ

2αω = { κ(σ+2p)
2ω + (1 − β

α
) Rscal

2ω + Λ
2ω + ω}  

3.
μ

2αω > { κ(σ+2p)
2ω + (1 − β

α
) Rscal

2ω + Λ
2ω + ω}, respectively,	provided	 

α,μ ≠ 0

 

Depending on the constant μ, the rate of HRY S is expanding, shrinking, or remaining
steady, regardless of whether μ < 0, μ > 0, or μ = 0. The hyperbolic Ricci-Yamabe
�low’s rate in a PFS (M 4, g) with a conformal vector �ield zeta is thus determined
from (7.12).

(7.13)
Thus, we can articulate the following result:

Theorem	7.3 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	aCVF ζ,
then	the	rate	of	change	of	the	HRY S	is	expanding.

Now, in view of Remark 5.2 and using α = 0, β = 1 in (7.13), we can state the next
corollary:

Lζ(2ωg(F1,F2)) + 2λ(2ωg(F1,F2) + 2αSRic(F1,F2)

= 2(μ − βRscal)g(F1,F2).

SRic(F1,F2) =
μ−(βRscal+2λω+2ω2)

α
g(F1,F2).

−{Λ − Rscal

2
+ κp +

μ−(βRscal+2λω+2ω2)

α
}g(F1,F2)

+κ(σ + p)η(F1)η(F2) = 0.

λ =
μ

2αω − { κ(σ+2p)

2ω + (1 −
β

α
) Rscal

2ω + Λ
2ω + ω}.

μ = 2αλω + κ(σ + 2p) + (α − β)Rscal + α(Λ + 2ω2).



Corollary	7.4 If	aPFS (M 4, g)admits	the	hyperbolic	Yamabe	soliton
(g,λ, ζ,μ,α = 0,β = 1)with	a	CKV Fζ,	then	the	rate	of	change	of	the	hyperbolic
Yamabe	soliton	is	expanding,	steady,	or	shrinking	referring	to	as,	respectively:
1.

(σ + 2p) > Rscal

κ
 

2.
(σ + 2p) = Rscal

κ
 

3.
(σ + 2p) < Rscal

κ
  

In addition, inserting α = 1 and β = −1 in (10) and using Remark 5.2, we turn up
(7.14)

(7.15)
Thus, Eqs. (7.14) and (7.15) entail the following results for hyperbolic Einstein

soliton and rate of change of the hyperbolic Einstein soliton:

Corollary	7.5 If	aPFS (M 4, g)admits	the	hyperbolic	Einstein	soliton
(g,λ, ζ,μ, 1, −1)with	aCVF ζ,	then	the	hyperbolic	Einstein	is	shrinking,	steady,	or
expanding	referring	to	as,	respectively:
1.

μ

ω
< { κ(σ+2p)

2ω
+ 2Rscal

2ω
+ Λ

2ω
+ ω}  

2.
μ

ω
= { κ(σ+2p)

2ω
+ 2Rscal

2ω
+ Λ

2ω
+ ω}  

3.
μ

ω
> { κ(σ+2p)

2ω
+ 2Rscal

2ω
+ Λ

2ω
+ ω}  

In light of (7.15), we gain the following:

Corollary	7.6 If	aPFS (M 4, g)admits	a	hyperbolic	Einstein	soliton
(g,λ, ζ,μ, 1, −1)with	aCVF ζ,	then	the	rate	of	change	of	the	hyperbolic	Einstein
soliton	is	expanding.

Now, in view of (7.12) and Remark 2.3, we get
(7.16)

Theorem	7.7 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	aCVF ζ,
then	thePFS (M 4, g,λ, ζ,μ,α,β)is	an	accelerating	Universe	if

λ =
μ

ω
− { κ(σ+2p)

2ω + 2Rscal

2ω + Λ
2ω + ω}.

μ = 2λω + { κ(σ+2p)
2ω + 4Rscal + Λ + 2ω2}.

Λ =
μ

2 − {κ(σ + 2p) + (1 − β
α
)Rscal + 2ω(λ + 1)}.

μ

2 > {κ(σ + 2p) + (1 −
β

α
)Rscal + 2ω(λ + 1)}.



Theorem	7.8 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	aCVF ζ,
then	thePFS (M 4, g,λ, ζ,μ,α,β)is	de-Sitter	spacetime	if

Theorem	7.9 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a	CV Fζ,	then
the	PFS(M 4, g,λ, ζ,μ,α,β)is	a	non-accelerating	Universe	with	a	late	time	expansion
rate	of	the	Universe	if

Corollary	7.10 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a	CV Fζ,
then	the	PFS(M 4, g,λ, ζ,μ,α,β)contains	dark	sector	if

8	 Hyperbolic	Ricci-Yamabe	Soliton	with	a	φ(Q)-Vector
Field	on	PFS
De�inition	8.1	([24]) A vector �ield φ on a Riemannian manifold M, if M obeys, is
considered a φ(Q)-vector �ield

(8.17)
where Q, Ω, and ∇ represent the Ricci operator, a constant, and the Levi-Civita
connection, respectively, g(Qm,n) = SRic(m,n). φ(Q) is considered to be
covariantly constant if Ω = 0 in (8.17), and φ is a valid φ(Q)-vector �ield if Ω ≠ 0.

Using (8.17) and the Lie-derivative formulation, we arrive to
(8.18)

for any F1,F2 ∈ χ(M 4).
Taking into consideration (7.7) and (8.18), we discover

(8.19)
Again using that ζ also holds the Ricci collineation condition, then (8.19) entails that

(8.20)
We can therefore state the following outcome.

Theorem	8.2 If	aPFS (M 4, g)admits	the	HRY S(g,λ, ζ,μ,α,β)with	a	properφ(Q)-
vector	�ieldζand	ifζholds	RC	in	the	PFS,	then	the	PFS	is	Einstein,	and	Einstein’s	factor	is
(μ−βRscal)

(2λΩ+α)
.

Corollary	8.3 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a
covariantly	constantφ(Q)-vector	�ield(Ω = 0)ζand	ifζholds	RC	in	the	PFS,	then	the	PFS

μ

2 > {κ(σ + 2p) + (1 − β
α
)Rscal + 2ω(λ + 1)}.

μ

2
< {κ(σ + 2p) + (1 − β

α
)Rscal + 2ω(λ + 1)}.

μ

2 < {κ(σ + 2p) + (1 − β
α
)Rscal + 2ω(λ + 1)}.

∇ζφ = ΩQζ,

(Lφg)(F1,F2) = 2ΩSRic(F1,F2)

(2λΩ + α)SRic(F1,F2) + ΩLXSRic(F1,F2) = (μ − βRscal)g(F1,F2).

SRic(F1,F2) =
(μ−βRscal)

(2λΩ+α)
g(F1,F2).



is	an	Einstein.

Moreover, in the light of Remark 5.2 and Theorem 8.2, we obtain the following
corollary:

Corollary	8.4 If	aPFS (M 4, g)admits	the	hyperbolic	Yamabe	soliton
(g,λ, ζ,μ,α = 0,β = 1)with	a	properφ(Q)-vector	�ieldζand	ifζholds	RC	in	the	PFS,
then	the	PFS	is	Einstein,	and	Einstein’s	factor	is (μ−Rscal)

2λΩ .

Putting m = n = ζ in (8.20), we obtain
(8.21)

Using Eqs. (8.21) and (2.4), we turn up
(8.22)

In case of hyperbolic Yamabe soliton α = 0 and β = 1. Thus from (8.22), we also get
(8.23)

Now, Theorem 8.2 and Eqs. (8.22) and (8.23) entail the following results:

Theorem	8.5 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a	proper
φ(Q)-vector	�ieldζand	ifζholds	RC	in	the	PFS,	then	the	HRY S	is	expanding,	steady,	or
shrinking	referring	to	as,	respectively:
1.

(βRscal−μ)
2Ω(2Λ−Rscal+κp) > α

2Ω
 

2.
(βRscal−μ)

2Ω(2Λ−Rscal+κp) = α
2Ω

 
3.

(βRscal−μ)
2Ω(2Λ−Rscal+κp) < α

2Ω   
Corollary	8.6 If	aPFS (M 4, g)admits	the	hyperbolic	Yamabe	soliton
(g,λ, ζ,μ,α = 0,β = 1)with	a	properφ(Q)-vector	�ieldζand	ifζholds	RC	in	the	PFS,
then	the	hyperbolic	Yamabe	soliton	is	expanding.

Once again with the help of Eqs. (8.22) and (8.23), we gain
(8.24)

and
(8.25)

Thus we can state the following outcomes:

Theorem	8.7 If	aPFS (M 4, g)admits	theHRYS (g,λ, ζ,μ,α,β)with	a	proper
φ(Q)-vector	�ieldζand	ifζholds	RC	in	the	PFS,	then	the	rate	of	change	of	the	HRY S	is
expanding,	steady,	or	shrinking	according	as:
1.

SRic(ζ, ζ) =
(βRscal−μ)

(2λΩ+α)
.

λ =
(βRscal−μ)

2Ω(2Λ−Rscal+κp)
− α

2Ω .

λ =
(Rscal−μ)

2Ω(2Λ−Rscal+κp)
.

μ = βRscal − [2λΩ(2Λ −Rscal + κp) + α
2Ω ],

μ = −2λΩ(2Λ −Rscal + κp),



βRscal > [2λΩ(2Λ −Rscal + κp) + α
2Ω ]  

2.
βRscal = [2λΩ(2Λ −Rscal + κp) + α

2Ω
]  

3.
βRscal < [2λΩ(2Λ −Rscal + κp) + α

2Ω
], respectively 

Corollary	8.8 If	aPFS (M 4, g)admits	the	hyperbolic	Yamabe	soliton(g,λ, ζ,μ, 0, 1)
with	a	properφ(Q)-vector	�ieldζand	ifζholds	RC	in	the	PFS,	then	the	rate	of	change	of
the	hyperbolic	Yamabe	soliton	is	shrinking.

9	 Gradient	Hyperbolic	Ricci-Yamabe	Solitons
In this portion, we use a scalar concircular �ield to determine gradient hyperbolic
Ricci-Yamabe solitons in PFS. Therefore, we offer the de�inition that follows.

De�inition	9.1	([19]) Scalar �ields are de�ined as scalar concircular �ields (SCFs) if
they satisfy the equation f ∈ C∞(M ).

(9.26)
where π is a scalar �ield and g is the Riemannian metric. Additionally, the equation
transforms into an ordinary differential equation for an arc-length c geodesic given as

(9.27)

Now, using Eq. (5.4) with (9.26), we �ind

(9.28)

(9.29)
(9.30)

(9.31)
Therefore, we can state the following result.

Theorem	9.2 If	aPFS (M 4, g)admits	theGHRYS (g,λ, ζ = ∇f,μ,α,β)with	an
SCF f ,	then	the	PFS	is	Einstein.

Putting m = n = ζ in (9.31) and using (2.4), we obtain
(9.32)

(9.33)
Hence, we articulate the next theorems and corollaries:

Theorem	9.3 If	aPFS (M 4, g)admits	theGHRYS (g,λ, ζ = ∇f,μ,α,β)with	an
SCF f ,	then	the	GHRY S	is	expanding,	steady,	or	shrinking	according	as:

Hessf = πg,

d2f

dc2 = π.

L∇f(Hessf(F1,F2)) + 2λHessf(F1,F2) + αSRic(F1,F2)

= (μ − βRscal)g(F1,F2).
L∇f(πg(F1,F2)) + 2λπg(F1,F2) + αSRic(F1,F2) = (μ − βRscal)g(F1,F2).

π(Hessf(F1,F2)) + 2λπg(F1,F2) + αSRic(F1,F2) = (μ − βRscal)g(F1,F2).

SRic(F1,F2) =
[μ−(π2+2λπ+βRscal)]

α
g(F1,F2).

λ = [ μ

2π + αRscal

2π +
ακ(σ+2p)

2π ] − [ βRscal

π
+ Λ

π
].

μ = [π2 + 2λπ + βRscal + Λ] − [ αRscal

2 + ακ(σ + 2p)].



1. [ μ

2π
+ αRscal

2π
+

ακ(σ+2p)

2π
] > [ βRscal

π
+ Λ

π
]  

2.
[ μ

2π
+ αRscal

2π
+

ακ(σ+2p)

2π
] = [ βRscal

π
+ Λ

π
]  

3.
[ μ

2π
+ αRscal

2π
+

ακ(σ+2p)

2π
] < [ βRscal

π
+ Λ

π
], respectively 

Theorem	9.4 If	aPFS (M 4, g)admits	theGHRYS (g,λ, ζ = ∇f,μ,α,β)with	an
SCF f ,	then	the	rate	of	change	of	GHRY S	is	expanding,	steady,	or	shrinking	according
as:
1.

[π2 + 2λπ + βRscal + Λ] > [ αRscal

2 + ακ(σ + 2p)]  
2.

[π2 + 2λπ + βRscal + Λ] = [ αRscal

2 + ακ(σ + 2p)]  
3.

[π2 + 2λπ + βRscal + Λ] < [ αRscal

2 + ακ(σ + 2p)], respectively 
Corollary	9.5 If	aPFS (M 4, g)admits	the	gradient	hyperbolic	Yamabe	soliton
(g,λ, ζ = ∇f,μ, 0, 1)with	anSCF f ,	then	the	gradient	hyperbolic	Yamabe	soliton	is
expanding,	steady,	or	shrinking	according	as:
1.

μ

2π > Rscal

π
+ Λ

π
 

2.
μ

2π = Rscal

π
+ Λ

π
 

3.
μ

2π < Rscal

π
+ Λ

π
, respectively 

Corollary	9.6 If	aPFS (M 4, g)admits	the	gradient	hyperbolic	Yamabe	soliton
(g,λ, ζ = ∇f,μ,α,β)with	anSCF f ,	then	the	rate	of	change	of	gradient	hyperbolic
Yamabe	soliton	is	expanding.

10	 Energy	Constraints	with	Gradient	Hyperbolic	Ricci-
Yamabe	Soliton	in	Perfect	Fluid	Spacetime
In this section, we know whether the Ricci tensor SRic in the spacetime satis�ies the
condition, referring to [31].

(10.34)
the time-like	convergence	condition	(TCC) is Eq. (10.34) for any time-like vector �ields 
ζ ∈ χ(M 4).

From (2.4) and (9.31), it gives

SRic(ζ, ζ) > 0;



If the PFS in question satis�ies the TCC, that is, then SRic(ζ, ζ) > 0.
(10.35)

(10.36)
The spacetime obeys the cosmological strong energy constraint (SEC) [47]. In light
of the above information given and from (10.35), we can state the following:

Theorem	10.1 If	aPFS (M 4, g)admits	a	GHRY S(g,λ, ζ = ∇f,μ,α,β)with	an
SCF f ,	then	thePFS (M 4, g)satis�ies	SEC,	provided	the	rate	of	change	of	GHRY S	is
expanding.

We now have an intriguing observation.

Remark	10.2 1. Hawking and Ellis [23] demonstrate in 1973 that the condition of
null energy is SEC ⇒ NEC.

The following theorem is obtained by combining Remark 10.2 with Theorem 10.1:

Theorem	10.3 If	aPFS (M 4, g)admits	a	GHRY S(g,λ, ζ = ∇f,μ,α,β)with	an
SCF f ,	then	thePFS (M 4, g)satis�ies	NEC,	if (10.35) holds,	provided	the	rate	of
change	of	GHRY S	is	expanding.

In the light of (10.36), we turn up the following corollaries:

Corollary	10.4 If	aPFS (M 4, g)admits	a	gradient	hyperbolic	Yamabe	soliton
(g,λ, ζ = ∇f,μ, 0, 1)with	anSCF f ,	then	thePFS (M 4, g)satis�ies	SEC,	provided	the
rate	of	change	of	the	gradient	hyperbolic	Yamabe	soliton	is	expanding.

Corollary	10.5 If	aPFS (M 4, g)admits	a	gradient	hyperbolic	Yamabe	soliton
(g,λ, ζ = ∇f,μ, 0, 1)with	anSCF f ,	then	thePFS (M 4, g)satis�ies	NEC,	if (10.35)
holds,	provided	that	the	rate	of	change	of	gradient	hyperbolic	Yamabe	soliton	is
expanding.

11	 η-Hyperbolic	Ricci-Yamabe	Solitons
Finally, in this section, we presented a more general concept of η-hyperbolic Ricci-
Yamabe solitons and demonstrated that a spacetime with a conformal vector �ield
that admits the η-hyperbolic Ricci-Yamabe solitons is a perfect �luid spacetime.

As a generalization of Ricci soliton, the η-Ricci soliton was introduced by Cho and
Kimura [15] in the following form:

(11.37)
where λ and τ  are real constants.

SRic(ζ, ζ) = [π2 + 2λπ + βRscal + Λ] − [ αRscal

2
+ ακ(σ + 2p) + μ].

[π2 + 2λπ + βRscal + Λ] > [ αRscal

2 + ακ(σ + 2p) + μ].

[π2 + 2λπ +Rscal + Λ] > μ.

1
2 Lζg +SRic + λg + τη ⊗ η = 0,



In [43] Siddiqi et al. introduced the notion of the η-Ricci-Yamabe solitons.
Speci�ically, an η-Ricci-Yamabe soliton on the Riemannian manifold (M , g) is a data 
(g,λ, τ,α,β) satisfying

(11.38)
where τ  is a constant.

Now, in light of (5.3) and (11.38), one can introduce the new concept similarly by
amending the expression (5.3) that explains the type of soliton by a multiple of a
speci�ic (0, 2)-tensor �ield η ⊗ η. These �indings result in a signi�icantly more
comprehensive concept, termed an η-hyperbolic Ricci-Yamabe soliton (brie�ly an η-
HRY soliton) of type (α,β) de�ined as

(11.39)

Next, adopting (11.39) and (6.5), we gain
(11.40)

where A =
μ−(βRscal+2λω+2ω2)

α
 and B = τ.

Theorem	11.1 If	a	spacetime(M 4, g)admits	theη-hyperbolic	Ricci-Yamabe	solitons
(g,λ, ζ,μ, τ,α,β)with	a	conformal	vector	�ieldζ,	then	the	spacetime(M 4, g)is	a	PFS.

12	 Open	Problems
This kind of research can be expanded to include other solitons, such as the
hyperbolic conformal Ricci soliton and the hyperbolic Ricci-Bourguignon soliton from
conformal Ricci soliton and Ricci-Bourguignon soliton [14, 39], respectively. In reality,
the author already explored certain results of hyperbolic Ricci-Bourguignon soliton in
his next publication, which is under print.
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Abstract
The well-known Hitchin–Thorpe inequality is an important geometric inequality
which states that if a closed, oriented 4-manifold M admits an Einstein metric,
then the Euler characteristic χ(M) and the signature τ(M) of M satisfy

χ(M) ≥
3

2
|τ(M)|.

In 1974, N. Hitchin further established a thorough explanation of the equality
case. In addition, Hitchin proved that if (M, g) is an Einstein manifold for which
equality of this inequality is attained, consequently, either M is �lat or its universal
cover is a K3 surface, and (M, g) is Ricci-�lat.

After this important work of Thorpe and Hitchin, there exist many important
works related closely to the Hitchin–Thorpe inequality done by many
mathematicians.

The purpose of this chapter is to delve into recent advancements of the
Hitchin–Thorpe inequality and its extensions, showcasing how contemporary
studies have extended their applicability.

Keywords Hitchin-Thorpe inequality  – Euler characteristic – Signature – Ricci
soliton – Myers’ theorem
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The study of 4-manifolds is a central theme in both differential topology and
differential geometry, revealing intricate relationships between the geometric
structures of manifolds and their topological invariants. On the other hand,
Einstein manifolds are essential Riemannian manifolds in physics and geometry,
and they produce the vacuum solutions to the Einstein �ield equations in general
relativity and are suitable options for canonical metrics on manifolds.

An important result on Einstein manifolds is the well-known Hitchin–Thorpe
inequality which asserts that in the event of a closed, oriented, smooth 4-manifold
M admits an Einstein metric, and then χ(M) and τ(M) of M satisfy

(1.1)
The Hitchin–Thorpe inequality will be referred to as the H–T inequality, χ

represents the Euler characteristic, and τ  represents the signature throughout this
chapter.

The H–T inequality was initially mentioned by J. Thorpe in a footnote of his
1969 paper [31], which concentrated on manifolds in higher dimensions. Later in
1974, N. Hitchin [14] rediscovered this inequality and gave an in-depth review of
the equality case. Moreover, it was demonstrated by Hitchin that if (M, g)
represents an Einstein manifold for which equality holds, then (M, g) is Ricci-�lat,
and either M is �lat or its universal cover is a K3 surface. In the same paper [14],
Hitchin also laid the groundwork for these inequalities by exploring the properties
of spinors and Dirac operators on manifolds, leading to a deeper understanding of
how curvature conditions constrain topological properties. Independently,
Thorpe’s research, in his 1969 paper [31], also highlighted signi�icant links
between scalar curvature and the topology of manifolds, particularly through the
Gauss–Bonnet integral. Together, their contributions have provided important
developments in the �ield of 4-manifolds. However, C. LeBrun [20] demonstrated
in 1995 that there are an unlimited number of non-homeomorphic compact,
smooth, oriented 4-manifolds M that are orientated, compact, and smooth that do
not contain Einstein metrics but yet satisfy the strict inequality case of (1.1).
Therefore, the H–T inequality (1.1) is not a suf�icient condition for a closed,
oriented, 4-manifold to admit an Einstein metric. Note that M. Berger [2] observed
in 1965 that every compact Einstein 4-manifold has a nonnegative Euler number.

After the works of Thorpe and Hitchin, there exist many nice works closely
related with the H–T inequality obtained by many mathematicians. The aim of this
chapter is to delve into recent advancements of the H–T inequality and its
extensions, showcasing how contemporary studies have extended their
applicability. By synthesizing classical and modern perspectives, this chapter aims
to provide a detailed and accessible resource for researchers and students,
fostering a deeper appreciation of the pivotal role these inequalities play in
differential geometry and topology.

χ(M) ≥ 3
2 |τ(M)|.



2	 Preliminaries
The H–T inequality can be formally stated as follows: Consider a compact, smooth,
oriented 4-manifold M that admits a Riemannian metric with nonnegative scalar
curvature, and the inequality is given by

The signature, which captures the difference among the number of positive
and negative eigenvalues of the intersection form on the middle dimensional
cohomology, is related to the Euler characteristic, a measure of the manifold’s
shape or structure, by this inequality. Such a relationship underscores the
constraints imposed by geometric properties (e.g., scalar curvature) on the
topological invariants of the manifold.

2.1	 De�initions	and	Background
1.

Euler	Characteristic (χ) A topological invariant that characterizes a
topological space’s structure or form is called the Euler characteristic. For a 4-
manifold, it can be computed using the formula:

where bi are the Betti numbers, which represent the rank of the i-th
homology group of the manifold.

 

2.
Signature (τ) The signature of a 4-manifold is a topological invariant de�ined
as the difference between the count of positive and negative eigenvalues of
the intersection form on the middle cohomology. Formally, for a 4-manifold M:

in the second cohomology group H 2(M), the maximal positive-de�inite
and negative-de�inite subspaces have dimensions b+

2  and b−
2 .

 

3. Ricci	Soliton The Ricci soliton, as de�ined by Hamilton [13], is a complete
Riemannian manifold (M, g) that allows for the admission of a smooth vector
�ield X ∈ X(M), such that

(2.2)
where λ is a real number. The Lie derivative in the direction of X is LX .

Depending on whether λ > 0, λ = 0, or λ < 0, the soliton (M, g) is
categorized as shrinking, steady, or expanding accordingly. In Einstein
manifolds, where X is a Killing vector �ield, Ricci solitons are frequently seen
applications. We refer to the soliton as trivial in this particular instance. As
self-similar solutions and common models for singularities, Ricci solitons are
essential in the study of Ricci �low [5]. (M, g) is called a gradient Ricci soliton

h h �i ld X b i h di ∇f f diff i bl

 

2χ(M) ≥ 3|τ(M)|.

χ(M) =∑
4

i=0
(−1)ibi,

τ(M) = b+
2 − b−

2 ,

Ricg + 1
2
LXg = λg,



when the vector �ield X can be written as the gradient ∇f of a differentiable

function f : M → R, which is called a potential function. Equation (2.2) in
this instance becomes

(2.3)
where Hf  is the Hessian of the function f.

4.
Myers’	Theorem A complete Riemannian manifold M  is compact and has a
diameter of at most π / √k if its Ricci curvature is bounded below by a
positive constant k, that is, Ric(X,X) ≥ (n−1)k for all tangent vectors X
(Myers, 1941). This result implies that positive Ricci curvature places strong
restrictions on the global geometry of the manifold, particularly ensuring
�initeness in extent.

 

2.2	 Historical	Context	and	Development
The inequality was �irst suggested by Nigel Hitchin in [14] and later formalized
through independent work by John A. Thorpe. The inequality connects differential
geometry and topology by linking the curvature of a manifold with its topological
invariants.
1.

Nigel	Hitchin’s	Contribution Hitchin’s work focused on the properties of
spinors and Dirac operators on manifolds, which led to insights into the
curvature and topology of 4-manifolds. His results are pivotal in
understanding the relationship between curvature conditions and topological
constraints [14].

 

2.
John	A.	Thorpe’s	Contribution Thorpe’s research also dealt with
connections between curvature and topology. His work emphasized the
signi�icance of scalar curvature in imposing constraints on the topology of
manifolds [31].

 

2.3	 Derivation	and	Proof
The H–T inequality can be derived using several techniques in differential
geometry and topology. One common approach involves the study of the scalar
curvature and the Atiyah–Singer index theorem. Here is an outline of the proof:
1. Scalar	Curvature	and	Gauss–Bonnet	Formula	[19] The integral of the

scalar curvature R over the 4-manifold M is associated with the Euler
characteristic via the Gauss–Bonnet formula:

where W − and W + are the anti-self-dual and self-dual parts of the Weyl
curvature tensor, respectively.

 

Ricg + Hf = λg,

∫
M
R dvol = 8π2χ(M) −∫

M
(|W +|2 + |W −|2)dvol,



2.
Signature	and	Hirzebruch	Signature	Theorem	[8] The signature τ(M) can
be computed using the Hirzebruch signature theorem, which relates the
signature to the Pontryagin classes of the manifold:

where p+
1  and p−

1  are the Pontryagin classes associated with the positive
and negative parts of the curvature.

 

3.
Combining	Results By combining these results, one can derive the H–T
inequality, showing that the scalar curvature constraints imply a relationship
between χ and τ .

 

2.4	 Applications	of	H–T	Inequality
The H–T inequality has far-reaching implications in the study of 4-manifolds,
providing critical constraints and insights into their geometric and topological
properties. Below, we discuss several key applications of these inequalities,
illustrating their utility with speci�ic examples.
1.

Classi�ication	of	4-Manifolds One of the primary applications of the H–T
inequality is in the classi�ication of 4-manifolds. By examining the relationship
between τ  and χ, mathematicians can identify whether certain manifolds can
admit speci�ic geometric structures.

Example:K3 Surface	[8] A surface of K3 is a smooth, compact, simply
connected 4-manifold with trivial canonical bundle. For a K3 surface, χ = 24
and τ = −16 . Plugging these values into the H–T inequality,

We see that 2χ = 3|τ|, which satis�ies the inequality. This con�irms that K3
surfaces are among the special 4-manifolds that meet the strict criteria set by
the H–T inequality.

 

2. Existence	of	Metrics	with	Positive	Scalar	Curvature The H–T inequality is
particularly useful in determining the existence of Riemannian metrics with
positive scalar curvature on 4-manifolds. A manifold satisfying 2χ < 3|τ|
cannot support a metric of positive scalar curvature.

Example:	Complex	Projective	PlaneCP2[19] Consider the complex
projective plane CP2 where χ = 3 and τ = 1. For CP2, we have

 

τ(M) = 1
3 (p

+
1 (M) − p−

1 (M)),

2χ = 2 × 24 = 48

3|τ| = 3 × 16 = 48.

2χ = 2 × 3 = 6

3|τ| = 3 × 1 = 3.



Since 2χ > 3|τ|, CP2 can admit a metric with nonnegative scalar
curvature. Indeed, CP2 can be endowed with the Fubini–Study metric, which
has nonnegative scalar curvature.

3.
Constraints	on	Topology	of	4-Manifolds The H–T inequality imposes
constraints on the topological structure of 4-manifolds, limiting the possible
combinations of χ and τ  for manifolds that can support certain curvature
conditions.

Example:S 2 × S 2[12] Consider the product of two 2-spheres, S 2 × S 2

where χ = 4 and τ = 0. For S 2 × S 2,

Clearly, 2χ > 3|τ|, which satis�ies the H–T inequality. Hence, S 2 × S 2 can
potentially allow a metric of nonnegative scalar curvature. This manifold
indeed admits metrics of both positive and zero scalar curvatures, such as the
product of standard round metrics on S 2.

 

4.
Generalizations	to	Higher	Dimensions While the original H–T inequality
applies to 4-manifolds, similar ideas have been explored in higher
dimensions, although they often involve more complex conditions and
invariants.

Example:	6-Manifolds	[3] In higher dimensions, the relationship
between curvature and topology becomes more intricate. For instance, the
study of 6-manifolds often involves additional invariants like Pontryagin
classes and more re�ined curvature conditions. While no direct analog to the
H–T inequality exists in six dimensions, researchers have developed related
inequalities that provide analogous constraints on the topology and geometry
of higher dimensional manifolds.

 

3	 H–T	Inequality:	Recent	Progress	on	Compact	Ricci
Solitons
3.1	 A	Diameter	Upper	Bound	for	Compact	Ricci	Solitons	with
Applications	to	the	H–T	Inequality
First we mention the following.

Theorem	3.1	([11]) Consider(M, g)as	a	4-dim	compact,	connected	shrinking
Ricci	soliton	that	satis�ies	equation (2.3).	If

2χ = 2 × 4 = 8

3|τ| = 3 × 0 = 0.



in	this	case,	the	soliton	satis�ies	the	H–T	inequality  (1.1).

In 2018, Tadano [26] established several suf�icient conditions under which 4-dim
compact Ricci solitons comply with the H–T inequality and proved the following
results.

Corollary	3.2	([26]) Consider(M, g),	a	4-dim	connected,	compact	shrinking	Ricci
soliton	that	satis�ies (2.3).	If

then	the	soliton	satis�ies	the	H–T	inequality  (1.1).

Corollary	3.3	([26]) Consider(M, g),	a	4-dim	compact,	connected	shrinking	Ricci
soliton	that	satis�ies (2.3).	If

then	the	soliton	satis�ies	the	H–T	inequality  (1.1).

3.2	 Enhanced	Estimates	for	Oscillations	and	the	H–T	Inequality	on
Compact	Ricci	Solitons
In 2023, Tadano [30] introduced multiple new suf�icient conditions under which
compact 4-dim normalized shrinking Ricci solitons satisfy the H–T inequality. The
following are few results from his work.

Theorem	3.4	([30]) Let(M, g)be	a	connected	compact	4-dim	normalized
shrinking	Ricci	soliton	withλ = 1

2
that	satis�ies (2.3).	If	the	diameter	of(M, g)

satis�ies

consequently	the	H–T	inequality  (1.1) must	be	satis�ied	by	the	soliton.

Corollary	3.5	([30]) ReplacingRmax, Rminwithfmax, fmin,	respectively,	in
Theorem3.4,

consequently	the	H–T	inequality  (1.1) must	be	satis�ied	by	the	soliton.

Theorem	3.6	([30]) Let(M, g)be	a	compact	connected	4-dim	nontrivial
normalized	shrinking	Ricci	soliton	satisfying (2.3) withλ = 1

2 .	If	the	diameter	of

diam(M, g) ⩽max {2√ 2
C−c

,√ 2
C−λ

,√ 2
λ−c

},

√ Rmax−Rmin

λ2 (16 + 6π2) ⩽ diam(M, g),

Rmax

6λ ⋅ 1
λ
(√4(Rmax − Rmin) + 3λπ2 + 2√Rmax − Rmin) ⩽ diam(M, g),

diam(M, g) ⩾ ( √6π
√ln5

+ 4)√Rmax − Rmin,

diam(M, g) ⩾ ( √6π
√ln5

+ 4)√fmax − fmin,



(M, g)satis�ies

then	the	soliton	must	satisfy	the	H–T	inequality  (1.1).

Corollary	3.7	([30]) ReplacingRmax, Rminwithfmax, fmin,	respectively,	in
Theorem3.6,

consequently	the	H–T	inequality  (1.1) must	be	satis�ied	by	the	soliton.

3.3	 Kähler	Metrics	and	H–T	Inequality	for	Compact	Almost	Ricci
Soliton
In 2014, A. Brasil et al. [4] demonstrated the H–T inequality for a 4-dim compact
almost Ricci soliton. They also demonstrated that a compact 4-dim almost Ricci
soliton is isometric to the standard sphere under appropriate integral conditions.
Moreover, they proved that a compact 4-dim Ricci soliton with a harmonic self-
dual component of the Weyl tensor is Kähler–Einstein or isometric to the standard
sphere S 4 under a minimal set of conditions. The following �indings were proven:

Theorem	3.8	([4]) Consider	a	compact	4-dim	almost	Ricci	soliton(M 4, g, ∇f,λ)
whose	scalar	curvature	R	is	positive.
1.

If

thenχ ≥ 3
2 τ .	Speci�ically,	assumingλis	constant	and∫

M
R2 dμ ≤ 24λ2V ,

thenχ ≥ 3
2 |τ|.

 

2.
If(M 4, g)is	Kählerian,	then  

Theorem	3.9	([4]) Assume	thatM 4is	a	4-dim	compact	manifold	whose	scalar
curvature	R	is	positive	and	Ricci	curvature	Ric.
1.

If	Ric≥ ρ > 0andR ≤ 6ρor	Ric≤ −ρ < 0andR ≥ −6ρ,	thenχ ≥ 3|τ|
2

.  
2. Assume	thatM 4Kählerian	is	naturally	oriented.	If	Ric≥ ρ > 0andR ≤

(2√3 + 6)ρor	Ric≤ −ρ < 0andR ≥ −(2√3 + 6)ρ,	thenχ ≥ − 3τ
2 .  

diam(M, g) ⩽
2π√2ln5(√2−1)

√Rmax−Rmin
,

diam(M, g) ⩽
2π√2ln5(√2−1)

√fmax−fmin

,

∫
M
R2 dμ ≤ 6∫

M
λR dμ,

3τ + 2χ = 1
2π2 ∫

M
λR dμ.



3.4	 Remarks	on	Compact	Shrinking	Ricci	Solitons
In 2013, L. Ma [21] gave a generalization of H–T inequality

Corollary	3.10	([21]) Suppose(M, g)is	a	4-dim	shrinking	gradient	Ricci	soliton,
whereρ > 0is	the	shrinking	constant	as	above.	If	we	also	suppose	that

(3.4)

then

He essentially demonstrated that the condition (3.4) is equivalent to the following:

The second fundamental symmetric function of the eigenvalues of the matrix 
A := Rc − s

6
g is denoted by σ2(A) in this instance.

3.5	 H–T	Inequality	and	Euler	Characteristic	for	Compact	Ricci
Solitons
Cheng et al. [6] investigated the geometry of Ricci solitons with compact gradients
in four dimensions in 2023. They demonstrated that if there is an upper bound on
the potential function’s range, a 4-dim compact gradient Ricci soliton must meet
the traditional H–T inequality.

They suppose that the gradient shrinking Ricci solitons obey the following
equation, without losing generality:

(3.5)
The metric may be scaled to accomplish this normalization. They �irst proved the
subsequent outcome:

Theorem	3.11	([6]) Consider	a	compact	4-dim	shrinking	gradient	Ricci	soliton
(M 4, g, f)that	satis�ies (3.5).	Next,	it	asserts	that

where	the	Weyl	tensor	is	W,	the	volume	ofM 4isVol(M),	and	the	minimum	and
maximum	of	the	potential	function	f	onM 4arefminandfmax,	respectively.
Furthermore,	the	equality	is	true	only	in	the	situation	that	g	is	an	Einstein	metric,	in
which	instance	f	is	constant.

∫
M
s2 ⩽ ρ224vol(M),

2χ(M) ± 3τ(M) ⩾ 1
2π2 ∫

M
|W±|2

⩾ 0.

∫
M
σ2 (Rc − s

6
g) ⩾ 0.

Hessf + Ric = 1
2 g.

8π2χ(M) ≥∫
M

|W |2dVg + 1
24 Vol(M)(5 − efmax−fmin),



As a result of Theorem 3.11, we derive the following corollary.

Corollary	3.12	([6]) A	compact	4-dim	shrinking	gradient	Ricci	soliton	satisfying
(3.5) is	denoted	by(M 4, g, f).	In	the	event	thatfmax − fmin ≤log 5,	the	H–T
inequality (1.1) holds	on	M.

3.6	 Topological	Barriers	to	the	Existence	of	Ricci	Solitons	That	Are
Compact	and	Shrinking
In 2024, the dif�iculty of applying the H–T inequality to shrinking gradient Ricci
soliton metrics was put out by Cameron [22], who also looked at the shortcomings
of previous �indings in this �ield. He displayed the following outcomes:

Theorem	3.13	([22]) Assume	that	the	compact	oriented	4-dim	Einstein	manifold
is(M 4, g).	In	that	case,	the	H–T	inequality	is	satis�ied	byM 4.

Theorem	3.14	([22]) Let(M 4, g)be	a	compact	gradient	shrinking	Ricci	soliton.
Then	the	H–T	inequality	holds	given	the	following	suf�icient	condition:

In order to prove this theorem, he used this lemma

Lemma	3.15	([22]) For	a	compact	shrinking	gradient	Ricci	soliton(M 4, g, f),
the	following	is	true:

4	 H–T	Inequality:	Recent	Progress	on	Einstein
Manifolds
4.1	 H–T	Inequality	for	Noncompact	Einstein	Manifolds
An H–T inequality was established in 2007 by Dai and Wei [7] for Einstein
noncompact 4-manifolds with certain asymptotic geometries at in�inity. These
asymptotic geometries can be described as a cusp bundle over a compact space
(�ibered cusps) or as a �iber bundle over a cone with a compact �iber. At in�inity,
these geometries are frequently found in numerous noncompact Einstein
manifolds. The following are some of the outcomes of their work:

Theorem	4.1	([7]) Consider	a	noncompact	complete	Einstein	manifold(M 4, g)
that	asymptotically	approaches	a	�ibered	boundary	or	cusp	at	in�inity.	They

∫
M 4

R2dVg ≤ 6Vol(M 4, g).

∫
M

1
2 R

2 − |Rc|2dVg = Vol(M, g).



additionally	requiredim F > 0in	the	�ibered	border	case.	Then

Here,a− lim ηrepresents	the	adiabatic	limit	of	theη-invariant	of∂M̄(associated
with	the	signature	operator).	Furthermore,	equality	is	achieved	if	and	only	if(M, g)
is	a	complete	Calabi–Yau	manifold.

Corollary	4.2	([7]) Let(M 4, g)be	a	complete	noncompact	Einstein	manifold,
whose	�ibration	is	given	by	a	circle	bundle	over	a	surface,	and	which	asymptotically
approaches	a	�ibered	cusp/boundary	at	in�inity.	Then

where	e	is	the	circular	bundle’s	Euler	number.	Furthermore,	if(M, g)is	a
complete	Calabi–Yau	manifold,	then	the	equality	holds.

Theorem	4.3	([7]) A	coneover(∂M̄, g∂M̄)is	asymptotically	connected	to	a

complete	Einstein	4-manifold(M 4, g).	Then

where	theη-invariant	of(∂M̄, g∂M̄)isη(∂M̄)and	the	geometric	invariant

α(∂M̄),	which	is	de�ined	by

In	this	case,Ωb
cindicates	the	2-form	components	of	the	curvature	of∂M̄with

regard	to	this	orthonormal	basis,	andωadenotes	the	dual	1-forms	of	an	orthonormal
basis	for∂M̄ .	Furthermore,	the	equality	holds	if	and	only	if	M	is	a	Calabi–Yau
manifold	that	is	asymptotically	conical.

4.2	 Compact	Spin	Gradient	m-Quasi-Einstein	Manifolds	Satisfy	H–T
Inequality
In 2020, Klatt [18] demonstrated that a compact, oriented, and connected 4-dim
gradient m-quasi-Einstein manifold, where m ∈ [1, ∞), must satisfy the H–T
inequality if it is also a spin manifold. Speci�ically, he claimed the following
theorems:

Theorem	4.4	([18]) Ifm ∈ [1, ∞]and(M 4, g)is	a	compact,	oriented,	spin	4-dim
gradient	m-quasi-Einstein	manifold.	After	that,	if(M 4, g)is	a	nontrivial	gradient	m-

χ(M) ⩾ 3
2
τ(M) − lim η + 1

2
a .∣ ∣χ(M) ⩾ 3

2
τ(M) − 1

3
e + signe ,∣ ∣χ(M) ⩾ α(∂M̄) + 1

2π2 vol(∂M̄) + 3
2
τ(M) + 1

2
η(∂M̄) ,∣ ∣α(∂M̄) = 1

8π2 ∫
∂M̄

ϵabcω
a ∧ [Ωb

c − ωb ∧ ωc]

= 1
8π2 ∫

∂M̄
ϵabcω

a ∧ Ωb
c − 3

4π2 vol(∂M̄).



quasi-Einstein	manifold,	we	obtain	the	rigorous	condition2χ ± 3τ > 0.

He characterizes the topology more thoroughly when the hypothesis is true by
only marginally expanding.

Theorem	4.5	([18]) If(M 4, g)is	a	connected,	compact,	oriented,	spin	4-dim
nontrivial	gradient	m-quasi-Einstein	manifold	withm ∈ [1, ∞],	then	the	universal
coverM̃ 4satis�iesM̃ 4 ≈ S 4#k (S 2 × S 2)for	some	k.

4.3	 Einstein	Structure	of	Squashed	4-Spheres
In 2023, Ho et al. [15] claimed a stronger version of H–T inequality by rede�ining
topological invariants which can be expressed in terms of SU(2)±connections
using the decompositions. They give the following results:

(4.6)

(4.7)

where

Then they arrived at the following inequality:
(4.8)

The inequality (4.6) and (4.7) are crucial in identifying an unlimited number of
compact simply connected differentiable four-manifolds that meet the strict H–T
inequality χ > 3

2 |τ|, even though they do not admit Einstein metrics (see [20]).

5	 H–T	Inequality:	Recent	Progress	on	Riemannian
Manifolds
5.1	 Note	on	a	Diameter	Bound	for	Complete	Riemannian	Manifolds
with	Positive	Bakry–Émery	Ricci	Curvature
In 2015, Tadano [25] introduced new suf�icient conditions under which 4-dim
compact Ricci solitons admit the H–T inequality. The following are some of the
results:

Corollary	5.1	([25]) Let(M, g)be	a	compact	connected	shrinking	Ricci	soliton	in
four	dimensions	that	satis�ies (2.3).	Assume	that	the	normalization	of	the	soliton
equals

χ(M) = 1
2π2 ∫

M
((f̃ ij

(++)
)

2
+ (f̃ ij

(− −)
)

2
+ R2

96
)dμ

τ(M) = 1
3π2 ∫

M
((f̃ ij

(++)
)

2
− (f̃ ij

(− −)
)

2
)dμ,

f
ij

(±±) = diag(a1
±, a2

±, a3
±).

χ(M) − λ2

12π2 vol(M) ≥ 3
2 |τ(M)|.

|∇f|2 + R = 2λf.



If

then (1.1),	the	H–T	inequality,	is	satis�ied	by	the	soliton.

Corollary	5.2	([25]) Let(M, g)be	a	compact	connected	shrinking	Ricci	soliton	in
four	dimensions	that	satis�ies (2.3).	Assume	that	the	normalcy	of	the	soliton	equals

If

then (1.1),	the	H–T	inequality,	is	satis�ied	by	the	soliton.

5.2	 H–T-Type	Inequalities	for	Pseudo-Riemannian	Manifolds	of
Neutral	Metric
In 2001, Matsushita et al. [23] gave the following assertion:

Let M  be a compact pseudo-Riemannian 4-manifold with neutral metric of
signature (+ + − −) and structure group SOo(2, 2). Then, M  can be regarded as
a double almost pseudo-Hermitian 4-manifold. Provided the curvature is of the
appropriate type, the H–T type inequality holds under a less restrictive condition
known as the diagonal Einstein condition, rather than the standard Einstein
condition. To support this, they proved the following theorem and corollary.

Theorem	5.3	([23]) For	a	double	almost	pseudo-Hermitian	4-manifold(M, g,J,
J′),	suppose	that	M	satis�ies	the	diagonal	Einstein	conditionrA = rD = 0.

(A)
IfW +is	not	of	TypeIb,	then	we	haveχ ⩽

3
2 τ .  

(B)
IfW −is	not	of	TypeIb,	then	we	have−χ ⩾

3
2 τ . 

Corollary	5.4 LetM = (M, g,J,J′)be	the	same	4-manifold	as	considered	in	the
above	theorem.	That	is,	it	satis�ies	the	diagonal	Einstein	conditionrA = rD = 0.	If
the	pair(W +,W −)of	self-dual	and	anti-self-dual	Weyl	curvatures	is	neither	of	Type
(Ib, ∗)nor	of	Type(∗, Ib),	then	M	satis�ies	theH − T type	inequality.

6	 H–T	Inequality:	Recent	Progress	on	Ricci	Flow
6.1	 Harmonic	Spinors	in	Ricci	Flow

√ Rmax

λ2 ( π2

2 + 4π) ⩽ diam(M, g),

|∇f|2 + R = 2λf.

π

√λ
⋅ Rmax

6λ
√ 4Rmax

πλ
+ 3 ⩽ diam(M, g),



A strong parabolic H–T inequality for simply connected spin 4-manifolds was
found in 2024 by Baldauf [1]. In this parabolic H–T inequality, the conditions for
equality are characterized by the following theorem:

Theorem	6.1	([1]) If	a	non-singular	solutiong(t)to	the	normalized	Ricci	�low	is
admitted	on	a	closed,	spin	4-manifold	M	satisfying2χ = 3|σ| > 0,	theng(t)in	this
instance	converges	to	a	hyper-Kähler	metric	on	a	�inite	quotient	of	K3 in	the	smooth
Cheeger–Gromov	sense.

Corollary	6.2	([1]) (Parabolic	H–T	inequality)	If	the	normalized	Ricci	�low	has	a
non-singular	solutiong(t)on	a	closed,	simply	connected	spin	4-manifold	M,	then

with	equality	iffg(t)converges	to	a	hyper-Kähler	metric	in	a	smooth	Cheeger–
Gromov	manner	once	M	is	diffeomorphic	toK3.

6.2	 Normalized	Ricci	Flow	Equation	Non-singular	Solutions
In 2008, Fang and colleagues [9] investigated non-singular solutions of the Ricci
�low on a closed manifold with at least four dimensions. The normalized Ricci �low
equation was explored on a closed smooth n-dimensional manifold M .

(6.9)
where r represents the average scalar curvature ∫M Rdv

∫
M
dv

.

The well-known H–T inequality for non-singular solutions to the Ricci �low on
closed 4-manifolds is generalized as follows.

Theorem	6.3	([9]) Assume	that	M	is	a	closed	oriented	4-manifold	and	that	the
non-singular	solution	to (6.9) is{g(t)}, t ∈ [ 0, ∞).	Then,	M	satis�ies	one	of	the
following	conditions
1.

M	allows	for	a	shrinking	Ricci	soliton.  
2.

M	accepts	an	F-structure	of	positive	rank. 
3.

The	H–T	type	inequality  (1.1) holds.  
Conjecture	6.4	([9]) Condition 3 of Theorem 6.3 is replaced by the following H–
T–Gromov–Kotschick type inequality

where ∥ M ∥ is a simplicial volume of M.

2χ ≥ 3|σ|,

∂
∂t g = −2 Ric + 2r

n
gg(0) = g0,

2χ(M)−3|τ(M)| ≥ 1
1,296π2 ∥ M ∥,



6.3	 H–T	Inequality	and	Ricci	Flow	in	4-Manifolds
For closed 4-manifolds with a non-positive Yamabe invariant that allows long-
time solutions to the normalized Ricci �low equation with a restricted scalar
curvature, Y. Zhang and Z. Zhang [34] developed an H–T type inequality in 2012.
They considered the normalized Ricci �low is

(6.10)

where Rt is the scalar curvature of g(t) and r(t) =
∫
M
Rtdvg(t)

V ogg(t)(M)
 is its mean scalar

curvature.

Theorem	6.5	([34]) Consider	a	4-dim	closed	oriented	manifoldMwithλ̄M ≤ 0.
SupposeMadmits	a	long-time	solutiong(t)to	Eq.(6.10),	where	for	everytin	the
interval[0, ∞),	the	scalar	curvature	satis�ies|Rt| < Cfor	some	constantCthat	is
independent	oft.	Then

For many circumstances, the λ̄M ≤ 0 hypothesis is true.

6.4	 A	Note	on	the	H–T	Inequality	and	Ricci	Flows
In 2009, Y. Zhang and Z. Zhang discovered an H–T type inequality for closed
oriented 4-manifolds with a zero Yamabe invariant. This inequality allows for
long-time solutions to the normalized Ricci �low equation with bounded scalar
curvature. They established the following results:

Theorem	6.6	([33]) Givenλ̄M = 0,	let	M	be	an	oriented	closed	4-manifold.	For	a
constant	C	independent	of	t,	if	M	allows	a	long-time	solutiong(t), t ∈ [0, ∞),	of
(6.10) with	scalar	curvature|Rt| < C,	then	H–T	inequality  (1.1) holds.

Theorem	6.7	([33]) Let	M	be	an	oriented	closed	4-manifold	withλ̄M ≤ 0,	and

Assume	that	there	is	a	long-time	solutiong(t), t ∈ [0, ∞),	of (6.10) with	bounded
Ricci	curvature∣Rict ∣< Cfor	a	constant	C	independent	of	t,	which	is	non-collapsing,
i.e.,	for	anyt > 0andr ≤ 1,	there	is	anxt ∈ Msuch	that

for	a	constantκ > 0that	is	independent	of	t.	Then,	there	exists	a	sequence	of
timestk → ∞satisfying	that(M, g(tk))converges	to(N , g∞)in	the	Gromov–
Hausdorff	sense,	where	N	is	a	compact	4-orbifold	with	�inite	singular	points
S = {pi},	andg∞is	a	Ricci-�lat	anti-self-dual	orbifold	metric,	i.e.,Ric(g∞) ≡ 0and

∂
∂t g(t) = −2Rict +

2r(t)
n

g(t),

2χ(M)−3|τ(M)| ≥ 1
96π2 λ̄

2
M .

2χ(M) + 3τ(M) = 0.

κr4 ≤ Volg(t)(Bg(t)(xt, r)),



W +(g∞) ≡ 0.	Furthermore,	ifχ(M) = 0,	then	a	�inite	covering	of	M	is	a	torus,	and
g∞is	�lat.

6.5	 Normalized	Ricci	Flow	Non-singular	Solutions	on	Noncompact
Manifolds	with	Finite	Volume
It was shown in 2010 by Fang et al. [10] that the Euler characteristic χ(M) must
be nonnegative if g(t) is a complete, non-singular solution to the normalized Ricci
�low on a noncompact 4-manifold M  with �inite volume.

Theorem	6.8	([10]) The	Euler	characteristic	number	ful�ills	ifg(t)is	a	full	non-
singular	solution	of (6.10) of	�inite	volume	on	a	4-manifold	M.

Theorem	6.9	([10]) LetMbe	as	described	in	Theorem6.8.	When(M, g(0))
approaches	a	�ibered	cusp	asymptotically,	the	strict	H–T	inequality	is	established.

where	theη-invariant	of	the	boundary	is	the	adiabatic	limit	ofa lim η(∂M̄).

6.6	 The	Normalized	Ricci	Flow	on	4-Manifolds	and	Exotic	Smooth
Structures
In 2008, Ishida [16] explored the connection between smooth structures on
closed 4-manifolds and the presence or absence of non-singular solutions to the
normalized Ricci �low. In this context, non-singular solutions refer to those with
uniformly bounded sectional curvature that persist for all time t ∈ [0, ∞). The
study also highlighted that several compact topological 4-manifolds possess
unique or exotic smooth structures.

De�inition	6.10	([16]) If T = ∞ and the scalar curvature sg(t) of g(t) satisfy the
following condition, then for any t ∈ [0,T ), the maximal solution {g(t)} to the
normalized Ricci �low on X is called quasi-non-singular, supX×[0,T ) sg(t) < ∞.

The authors of [9] observed, among other things, that any closed, oriented,
smooth 4-manifold X must adhere to the topological constraint (1.1), which
involves the Euler characteristic χ(X) and the signature τ(X) of X:

if there exists a quasi-non-singular solution to the normalized Ricci �low exists on
X and if this solution also satis�ies the condition:

(6.11)

2χ(M) ≥ 1
16π2 ∫

M
( W +

0
2

− W −
0

2)dvg(0) ≥ 0.∣ ∣ ∣ ∣ ∣ ∣3 τ(M) + 1
2 a lim η(∂M̄) < 2χ(M),∣ ∣ ∣ ∣2X (X) ≥ 3|τ(X)|,



hence, for a given Riemannian metric g, the constant c is de�ined as 
ŝg :=minx∈X sg(x) and is independent on t.

The author included the following proof for completeness: Let X be a
Riemannian 4-manifold that is closed and orientated. According to the Hirzebruch
signature formula and the Chern–Gauss–Bonnet formula, the following equations
hold true for any Riemannian metric g on X:

Here, W +
g  and W −

g  refer to the self-dual and anti-self-dual components of the
Weyl curvature associated with the metric g, while ∘rg denotes the trace-free
portion of the Ricci curvature of g. Furthermore, sg represents the scalar
curvature of g, and dμg is the volume form corresponding to g. Using these
expressions, we can establish the following signi�icant equality:

If X possesses an Einstein metric g, then ∘rg ≡ 0. As a result, the formula
mentioned above indicates that any 4-dim Einstein manifold must satisfy (1.1),
which is simply the H–T inequality.

Theorem	6.11	([16]) Consider	a	closed,	oriented,	4-dim	Riemannian	manifold	X,
and	suppose	that	the	normalized	Ricci	�low	admits	a	quasi-non-singular	solution	as
de�ined	in	De�inition6.10.	Additionally,	assume	that	this	solution	satis�ies	the
uniform	bound	given	by (6.11),	meaning	that

The	inequality	is	valid,	where	the	constantcis	independent	oftand	is	de�ined	by
ŝg :=minx∈X sg(x)for	a	given	Riemannian	metricg.	As	a	result,Xmust	satisfy	the
condition (1.1).

7	 H–T	Inequality:	More	Recent	Progress
7.1	 Myers	Type	Theorems	and	H–T	Inequality
In 2019, Tadano [28] enhanced his previous results [29] on Myers type theorems
and the validity of the H–T inequality for shrinking Ricci solitons. He established
the following results related to the H–T inequality.

ŝg(t) ≤ −c < 0,

τ(X) = 1
12π2 ∫X( W +

g

2
− W −

g

2)dμg,

χ(X) = 1
8π2 ∫X(

s2
g

24
+ W +

g

2
+ W −

g

2
−

r
rg

2

2
)dμg.∣ ∣ ∣ ∣∣ ∣ ∣ ∣ ∣ ∣2χ(X) ± 3τ(X) = 1

4π2 ∫
X
(2 W ±

g

2
+

s2
g

24 −
∘
rg

2

2 )dμg.∣ ∣ ∣ ∣ŝg(t) ≤ −c < 0.



Theorem	7.1	([21]) Let(M, g)be	a	compact,	shrinking	Ricci	soliton	in	four
dimension	that	satis�ies (2.3).	If	the	scalar	curvature	meets

thus (1.1),	the	H–T	inequality,	must	be	satis�ied	by	the	soliton.

Theorem	7.2	([27]) Assume	that(M, g)is	a	compact	4-dim	nontrivial	Ricci
soliton	that	satis�ies (2.3).	If	the	upper	bound	on	the	diameter	of(M, g)is

thus (1.1),	the	H–T	inequality,	must	be	satis�ied	by	the	soliton.

7.2	 Topology	of	Toric	Gravitational	Instantons
In 2023, Gustav [24] utilized H–T type inequalities on Ricci-�lat ALE/ALF
manifolds and derived essential conditions that the rod structures of toric
ALE/ALF instantons must satisfy, with the goal of furthering the classi�ication of
these spaces. Below are some of the �indings from his research.

Theorem	7.3	(H–T	Inequality	for	Ricci-Flat	ALE	Manifolds	[24]) Suppose
(M, g)is	an	oriented	Ricci-�lat	asymptotically	locally	Euclidean	(ALE)	manifold
associated	with	the	groupΓ.	Then,

An	equality	holds	if	and	only	if	the	universal	cover	of	M	is	hyper-Kähler.

The term ηS(S 3 / Γ) appearing in (7.3) refers to the η-invariant of the signature
operator for the space form S 3 / Γ. This is a spectral invariant associated with the
space form.

Theorem	7.4	(H–T	Inequality	for	Ricci-Flat	ALF-	Ak	Manifolds	[24]) Suppose
(M, g)is	an	oriented	Ricci-�lat	manifold	that	is	ALF-Akfor	some	integer	k.	Then,

in	which	e	is	the	Euler	number	of	the	asymptotic	circle	bundle.	If	M	has	a	hyper-
Kähler	universal	cover,	then	equality	is	preserved.

7.3	 H–T	Inequality	for	Manifolds	with	Foliated	Boundaries
In 2017, Zeroual [32] developed an H–T inequality for noncompact 4-manifolds
with foliated geometry at in�inity, extending the earlier work of Dai and Wei. The
principal outcome of his efforts is as follows.

24λ2vol(M, g) ⩾∫
M
R2dv,

diam(M, g) ⩽
2π√2(√2−1)

√Rmax−Rmin
,

3 τ(M) + ηS(S 3 / Γ) ≤ 2(χ(M) − 1
|Γ| ).∣ ∣3 τ(M) − e

3 + sgn(e) ≤ 2χ(M),∣ ∣



Theorem	7.5 Assuming	the	conditions	given	in	[32],	suppose	M	is	a	4-manifold
with	foliated	geometry	at	in�inity.	When	M	permits	an	accurateF -	orFc-metric
proposed	by	Einstein,	then

The	universal	cover	of	M	is	a	complete	Ricci-�lat	(anti-)self-dual	manifold	if	equality
holds.

7.4	 Stable	Cohomotopy	Seiberg–Witten	Invariants
In 2015, Ishida and Sasahira [17] applied the Gromov–H–T inequality to uncover
new results concerning the presence of exotic differentiable structures. They
presented the following conclusions.

Theorem	7.6 LetXmbe	as	in	Theorem	A	stated	and	proved	in	[17],	and	assume
moreover	thatXmis	a	minimal	Kähler	surface.	Assume	that	N	is	a	4-manifold	that	is
closed	and	orientated.	Its	Riemannian	metric	has	nonnegative	scalar	curvature,	and
b+(N) = 0.	Then,	the	invariant	of	a	connected	sumM := (#n

m=1Xm)#N for	any

real	numberk ≥
2

3
, λ̄kforn = 2, 3,	is	given	by

Here notice that minimality of Xm forces that

Theorem	7.7	([17]) Assume	thatb+(N) = 0and	that	N	is	a	closed	oriented
smooth	4-manifold.	LetXmbe	a	closed	oriented	almost	complex	4-manifold	for
m = 1, 2, 3such	thatb+(Xm) > 1and	such	that

Assume	thatSWXm
(ΓXm

) ≡ 1( mod 2).	LetΓXm
be	aspincstructure	onXmthat

is	induced	by	the	almost	complex	structure.	Furthermore,	under	De�inition	3	of	[17],
suppose	that	for	any	m,	the	following	is	true:

Then	a	connected	sumM := (#n
m=1Xm)#N ,	wheren = 2, 3,	cannot	admit	any

Einstein	metric	if	the	following	holds:

χ(M) ≥ 3
2

1
|Γ|
{∑

a≠Id
∑

z∈Fix(a)
def(a,g B̃)|z + χ(E)

3 }+ τ(M) − ϵ(E) .∣ ∣λ̄k(M) = −4kπ√2∑
n

m=1
c2

1(Xm).

c2
1(Xm) = 2χ(Xm) + 3τ(Xm) ≥ 0.

b+(Xm) − b1(Xm) ≡ 3( mod 4).

Sij(ΓXm
) ≡ 0 mod 2 for all i, j.

4n − (2χ(N) + 3τ(N)) ≥ 1
3 ∑

n

m=1
(2χ(Xm) + 3τ(Xm)).



Theorem	7.8	([17]) The	following	three	properties	can	be	satis�ied	by	an	in�inite
number	of	closed	topological	spin	4-manifolds:

∥ M ∥≠ 0,	that	is,	any	four	manifold	M	has	a	nontrivial	simplicial	volume.
The	strict	Gromov–H–T	inequality	is	satis�ied	by	every	four	manifold	M.	That	is	to
say,

Each	4-manifold	M	admits	in�initely	many	distinct	differentiable	structures	for
which	no	compatible	Einstein	metric	exists.

References
1. Baldauf, J.: Harmonic spinors in the Ricci �low. J. Geom. Anal. 34(8), 235 (2024)

[MathSciNet][Crossref]

2. Berger, M.: Sur quelques variétés riemanniennes compactes d’Einstein. Comptes Rendus de l’Académie des
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Abstract
In this chapter, we �irst provide evolution formulas for the eigenvalue of some cooperative (p, q)-
biharmonic system on Riemannian manifolds under the (unnormalized) Ricci �low and
normalized Ricci �low. Then, we provide some monotonic quantities under this �low. Moreover, as
an application of the evolution equation, we give an example.

Keywords Laplace Operator – Reimannian manifolds

1	 Introduction
We investigate the evolution for the principal eigenvalue of a (p, q)-biharmonic system on
manifold (M, g) along the Ricci �low (brie�ly RF). Let g be a Riemannian metric on a manifold M.
In coordinate {xi}, the Laplace-Beltrami operator Δ is given as follows:

(1.1)

where Γ k
ij are Christoffel symbols of g. Also, for any function h ∈ W

2,p
0 (M), the p-biharmonic

operator is de�ined by
(1.2)

The p-biharmonic operator is an elliptic operator. For p = 2, (1.2) describes the clamped plate
problem.

The family g(t) of Riemannian metrics on M with Ricci tensor S is said to be an unnormalized
RF (or URF) if

(1.3)
RF was introduced by Hamilton in 1982. Let us denote by r =

∫
M
Rdμ

∫
M
dμ

 the scalar curvature, and

one often considers the normalized RF (or NRF)
(1.4)

Δ = gij( ∂ 2

∂xi∂xj − Γ k
ij

∂
∂xk ),

Δ2
ph = Δ(|Δh|p−2Δh).

d
dt
g(t) = −2S(g(t)), g(0) = g0.

d
dt
g(t) = −2S(g(t)) + 2r

n
g, g(0) = g0.
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The volume of manifolds remains constant under the NRF. Short time existence and uniqueness
for solutions to the RF on [0,T ) have been shown by Hamilton in [8] and by DeTurk in [9].

Recently, the study of geometric operators and their eigenvalues has been an important tool
for determine topology and geometry of manifolds. In [13], Perelman introduced the functional 
F(g(t), f(t)) = ∫

M
(R + |∇f|2)e−fdμ and showed that it is nondecreasing under the RF with

backward heat-type equation and by it concluded that the �irst eigenvalue of the operator 
−4Δ + R is nondecreasing along the RF. This was a new beginning for the study of eigenvalues,
and then mathematicians, especially individuals who worked on geometric analysis, studied the
eigenvalues of the geometrical operators under different geometric �lows. For instance, in [6],
Cao showed the �irst eigenvalue of −Δ + cR for c ≥ 1

4  is nondecreasing under the RF. Also, in
[1] and [14] the authors have studied the monotonic of the eigenvalue of p-Laplacian under the
Ricci-harmonic �low and RF, respectively. The �irst author [3, 4] studied the monotonicity of the
�irst eigenvalue of the clamped plate problem under the RF and the eigenvalues of a (p, q)-
Laplacian system along the mean curvature �low. Also, Abolarinwa [2] studied the eigenvalues of
p-bi-Laplacian along the RF.

In the present chapter, we consider the following eigenvalue problem:

(1.5)

on a closed Riemannian manifold (or CRM) (M, g) whose metric satis�ies the RF, and investigate
the monotonicity of principal eigenvalue of the (p, q)-biharmonic system (1.5) under the Ricci
�low. In [11] and [12] the authors have investigated the principal eigenvalue of (1.5). We will
prove the following theorems:

Theorem	1.1 Suppose	that(M n, g(t)), t ∈ [0,T ),	is	a	solution	of	the	RF (1.3) on	a	CRM
(M n, g0)with	the	positive	Ricci	curvature.	Forp, q ≥ 2,	the	�irst	eigenvalueλ(t)of (1.5) satis�ies

,	whereSij − γRgij > 0onM × [0,T )for	some	positive	constantγ.

Theorem	1.2 Suppose	that(M n, g(t))is	a	solution	of	the	URF	on	the	smooth	CRM(M n, g0)
satisfyingRij ≥ ϵRgijwithϵ >max { 1

p
, 1
q

}fort ∈ [0,T ).	Suppose	thatλ(t)is	the	�irst	nonzero
eigenvalue	along	the	URF.
1.

IfRmin(g0)is	a	constant,	thenλ(t)e−2Rmin(g)tis	monotonically	nondecreasing	along	RF.  
2.

IfR ≥ Rmin(g0) ≥ 0,	thenλ(t0) ≥ λ(t1)e2 ∫ t0
t1

Rmin(t)dtfor[t1, t0] ⊆ [0,Tmax).  
3.

IfR ≥ Rmin(g0) > 0,	thenλ(t)(R−1
min(0) − 2

n
t)

nis	monotonically	nondecreasing	along	Ricci
�low	andλ(t)is	nondecreasing	along	RF.

 

Theorem	1.3 If	closed	surface(M 2, g0)has	nonnegative	scalar	curvature,	then	forp ≥ 2and
q ≥ 2,	the	eigenvalues	of (1.5) are	increasing	along	the	URF.

1.1	 Eigenvalues	of	(p, q)-Biharmonic	System
Let (M n, g) be a CRM. We consider a cooperative (p, q)-biharmonic system (1.5) where α,β and 
p, q are real constants and

(1.6)

Δ2
pu = λ|u|p−2u + λ|u|α−1|v|β+1u in M,

Δ2
qv = λ|v|q−2v + λ|u|α+1|v|β−1v in M,

u = Δu = v = Δv = 0 on ∂M,

p > 1, q > 1,α > 0, β > 0, α+1
p

+
β+1
q

= 1.



λ is called an eigenvalue of (1.5), if for some functions f and h,

(1.7)

(1.8)

where dμ is the volume element of g. The pair (f,h) is said to be eigenfunctions of (1.5). The
�irst positive eigenvalue for (1.5) is de�ined by

(1.9)
where

Suppose that (M n, g(t)) is a solution of the RF on the smooth CRM (M n, g0) in the interval 
[0,T ); then

(1.10)

provides the evolution for eigenvalues of (1.5), along g(t) where the eigenfunctions
corresponding to λ(t) are normalized, that is, B(f,h) = 1. We prove some results on λ(t) under
the RF.

We do not know whether the principal eigenvalue of (1.5) or its corresponding
eigenfunctions are C 1-differentiable or not under the RF; then we apply methods the same as in
[5, 15] and de�ine general smooth functions with respect to t under the RF in what follows. We
�irst assume that at time t0 ∈ [0,T ), (f0,h0) = (f(t0),h(t0)) is the eigenfunctions for λ(t0) of 
(p, q)-biharmonic system (1.5). We de�ine smooth functions h(t) and f(t) along the Ricci �low, as
follows:

(1.11)

Let
(1.12)

where

Then f(t), h(t) are smooth functions along the RF and

(1.13)

Also at time t0, (f(t0),h(t0)) are the eigenfunctions for λ(t0) of (1.5); that is, 
λ(t0) = G(g(t0), f(t0),h(t0)) provide a new smooth eigenvalue function. Let M n be a CRM and 

∫
M

fΔ2
pf dμ = λ∫

M

|∇f|p + λ∫
M

|f|α+1|h|β+1dμ,

∫
M

hΔ2
qh dμ = λ∫

M

|∇h|q + λ∫
M

|f|α+1|h|β+1dμ,

inf{A(f,h) : B(f,h) = 1},

A(f,h) =
α + 1

p
∫

M

|Δf|pdμ +
β + 1

q
∫

M

|Δh|qdμ,

B(f,h) = ∫
M

|f|α+1|h|β+1dμ +
α + 1

p
∫

M

|f|pdμ +
β + 1

q
∫

M

|h|qdμ.

G(g, f,h) = α+1
p
∫

M
|∇f|pdμt + β+1

q
∫

M
|∇h|qdμt

u(t) = u0[
det[gij(t)]

det[gij(t0)] ]
1
p

, v(t) = v0[
det[gij(t)]

det[gij(t0)] ]
1
q

.

f(t) =
u(t)

K
1
p

, h(t) =
v(t)

K
1
q

,

K =∫
M

|u(t)|α+1|v(t)|β+1dμ + α+1
p
∫

M
|u(t)|pdμ + β+1

q
∫

M
|v(t)|qdμ.

∫
M

|f|α+1|h|β+1dμ + α+1
p
∫

M
|f|pdμ + β+1

q
∫

M
|h|qdμ = 1.



g(t) be a smooth solution of RF. Set

(1.14)

where f,h are smooth functions such that

(1.15)

If (f,h) are the eigenfunctions for λ(t) at t0, then λ(f,h, t0) = λ(t0).

2	 Variation	of	the	Eigenvalue	λ(t)
In the following, we will prove some evolution formulas for λ(t) along the RF. From [8] we have
the following lemma:

Lemma	2.1 Under	the	RF,	we	get:
1.

∂
∂t g

ij = 2S ij  
2.

∂
∂t (dμ) = −Rdμ  

3.
∂
∂t (Γ k

ij) = −∇jS
k
i − ∇iS

k
j + ∇kSij 

4.
∂
∂t R = ΔR + 2|S|2  

5.
∂
∂t (Δu) = 2S ij∇i∇ju + Δut  
and	along	the	UNF (1.4),	we	have

1.
∂
∂t g

ij = 2S ij − 2
n
rgij  

2.
∂
∂t (dμ) = (r − R)dμ  

3.
∂
∂t (Γ k

ij) = −∇jS
k
i − ∇iS

k
j + ∇kSij  

4.
∂
∂t (Δu) = 2S ij∇i∇ju − 2

n
rΔu + Δut 

where	R	denotes	the	scalar	curvature.

Proposition	2.2 Suppose	that(M n, g(t))is	a	solution	to	the	URF	on	the	smooth	CRM(M n, g0).
The	�irst	eigenvalue	of (1.5) along	the	URF	satis�ies

(2.16)

λ(f,h, t) := α+1
p
∫

M
|Δf|pdμ + β+1

q
∫

M
|Δh|qdμ,

∫
M

|f|α+1|h|β+1dμ + α+1
p
∫

M
|f|pdμ +

β+1
q
∫

M
|h|qdμ = 1.



Proof λ(f,h, t) is a smooth function along the RF, and by derivative of (1.14) with respect to t,
we get

(2.17)

On the manifold (M, g(t)) along the RF, we arrive at
(2.18)

and
(2.19)

Therefore we obtain
(2.20)

d

dt
λ(f,h, t)|t=t0 = 2(α + 1)∫

M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

−
α + 1

p
∫

M

|Δf|pRdμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ

−
β + 1

q
∫

M

|Δh|qRdμ

+λ(t0)∫
M

R|f|α+1|h|β+1dμ + λ(t0)
α + 1

p
∫

M

|f|pRdμ

+λ(t0)
β + 1

q
∫

M

|h|qRdμ.

d

dt
λ(f,h, t)|t=t0 =

α + 1

p
∫

M

∂

∂t
(|Δf|p)dμt +∫

M

|Δf|p
∂

∂t
(dμt)

+
β + 1

q
∫

M

∂

∂t
(|Δh|q)dμt +∫

M

|Δh|q
∂

∂t
(dμt) .

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠∂
∂t (dμt) = −Rdμ,

∂
∂t |Δf|p = p(Δf)(2S ij∇i∇jf + Δft)|Δf|p−2.



Differentiating both sides of B(f,h) = 1 gives

(2.21)

Also, integrating by parts shows

(2.22)

The last equality is obtained of (2.21). Replacing (2.22) in (2.20) completes the proof of the
proposition.

We state the variation of λ(t) along the NRF.

d
dt
λ(f,h, t)|t=t0 = (α + 1)∫

M
{(Δf)(2S ij∇i∇jf + Δft)|Δf|p−2}dμ

+(β + 1)∫
M
{(Δh)(2S ij∇i∇jh + Δht)|Δh|q−2}dμ

− α+1
p
∫

M
|Δf|pRdμ − β+1

q
∫

M
|Δh|qRdμ.

(α + 1)∫
M

|f|α−1|h|β+1ftudμ + (β + 1)∫
M

|f|α+1|h|β−1vvtdμ

+(α + 1)∫
M

|f|p−2uutdμ + (β + 1)∫
M

|h|q−2vvtdμ

=∫
M

R|f|α+1|h|β+1dμ +
α + 1

p
∫

M

|f|pRdμ +
β + 1

q
∫

M

|h|qRdμ.

(α + 1)∫
M

(Δf)(Δft)|Δf|p−2dμ + (β + 1)∫
M

(Δh)(Δht)|Δh|q−2dμ

= (α + 1)∫
M

ftΔ
2
pf dμ + (β + 1)∫

M

htΔ
2
qh dμ

= λ(α + 1)∫
M

|f|p−2uutdμ + λ(α + 1)∫
M

|f|α−1|h|β+1ftudμ

+λ(β + 1)∫
M

|h|q−2vvtdμ + λ(β + 1)∫
M

|f|α+1|h|β−1vvtdμ

= λ∫
M

R|f|α+1|h|β+1dμ + λ
α + 1

p
∫

M

|f|pRdμ + λ
β + 1

q
∫

M

|h|qRdμ.



Proposition	2.3 Suppose	that(M n, g(t))is	a	solution	to	the	NRF	on	the	smooth	CRM(M n, g0).
The	�irst	eigenvalue	of (1.5) along	the	NRF	satis�ies

(2.23)

Proof Along the NRF, we have
(2.24)

and
(2.25)

Equality B(f,h) = 1 implies that
(2.26)

d

dt
λ(f,h, t)|t=t0

= 2(α + 1)∫
M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

−
α + 1

p
∫

M

|Δf|pRdμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ

−
β + 1

q
∫

M

|Δh|qRdμ

+λ(t0)∫
M

R|f|α+1|h|β+1dμ

+λ(t0)
α + 1

p
∫

M

|f|pRdμ

+λ(t0)
β + 1

q
∫

M

|h|qRdμ −
2r

n
(α + 1)∫

M

|Δf|pdμ

−
2r

n
(β + 1)∫

M

|Δh|qdμ.

∂
∂t

(dμt) = (r − R)dμ,

∂
∂t

|Δf|p = p(Δf)(2S ij∇i∇jf − 2
n
rΔf + Δft)|Δf|p−2.



We can then write

(2.27)

Therefore the proposition is obtained by replacing (2.26) in (2.27).

Proof	(Proof	of	Theorem	1.1) For any u ∈ C∞(M n), the Bochner formula is
(2.28)

Now, by the Cauchy-Schwartz inequality |∇∇u|2 ≥ 1
n

|Δu|2, we �ind
(2.29)

Taking integration on (2.29) on CRM M, we get

(2.30)

The inequalities Sij − γRgij > 0 and R ≥ Rmin(t) along the RF imply that

(2.31)

For s ≥ 2, applying the Hölder inequality to above relation gives

(α + 1)∫
M

(Δf)(Δft)|Δf|p−2dμ + (β + 1)∫
M

(Δh)(Δht)|Δh|q−2dμ

= λ∫
M

R|f|α+1|h|β+1dμ + λ
α + 1

p
∫

M

|f|pRdμ + λ
β + 1

q
∫

M

|h|qRdμ − rλ.

d

dt
λ(f,h, t)|t=t0

=
α + 1

p
∫

M

∂

∂t
(|Δf|p)dμt +∫

M

|Δf|p
∂

∂t
(dμt)

+
β + 1

q
∫

M

∂

∂t
(|Δh|q)dμt +∫

M

|Δh|q
∂

∂t
(dμt)

= (α + 1)∫
M

{(Δf)(2Rij∇i∇jf −
2

n
rΔf + Δft)|Δf|p−2}dμ

+(β + 1)∫
M

{(Δh)(2Rij∇i∇jh −
2

n
rΔh + Δht)|Δh|q−2}dμ

−
α + 1

p
∫

M

|Δf|pRdμ −
β + 1

q
∫

M

|Δh|qRdμ + rλ(t0).

⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠1
2
Δ|∇u|2 = |∇∇u|2 + ⟨∇u, ∇Δu⟩ + S(∇u, ∇u).

1
2
Δ|∇u|2 ≥ 1

n
|Δu|2 + ⟨∇u, ∇Δu⟩ + S(∇u, ∇u).

n−1
n
∫

M
(Δu)2

dμ ≥∫
M
S(∇u, ∇u)dμ.

∫
M

(Δu)2
dμ ≥

nγ

n−1 Rmin(t)∫
M

|∇u|2dμ.



which yields

(2.32)

Therefore, for p, q ∈ [2, +∞) we have

From [7, 10] we have ; then .

Proof	(Proof	of	Theorem	1.2) From (2.16) and Sij ≥ ϵRgij, we can write

(2.33)

1. The positivity of scalar curvature remains unchanged under the URF, and we have
(2.34) 

nγ

n−1
Rmin(t)∫

M

|∇u|2dμ ≤ ∫
M

|Δu|sdμ

2
s

∫
M

dμ

s−2
s

= (vol(M))
s−2
s ∫

M

|Δu|sdμ

2
s

,

⎛⎜⎝ ⎞⎟⎠ ⎛⎜⎝ ⎞⎟⎠⎛⎜⎝ ⎞⎟⎠∫
M

|Δu|sdμ ≥ (vol(M))
− s−2

2 ( nγ

n−1 Rmin(t))
s
2 (∫

M
|∇u|2dμ)

s
2

.

λ(t) ≥
α + 1

p
(vol(M))

− p−2
2 ( nγ

n−1
Rmin(t))

p
2 ∫

M

|∇f|2dμ

p

2

+
β + 1

q
(vol(M))

− q−2
2 ( nγ

n−1
Rmin(t))

q
2 ∫

M

|∇h|2dμ

q

2

.

⎡⎢⎣ ⎛⎜⎝ ⎞⎟⎠ ⎤⎥⎦⎡⎢⎣ ⎛⎜⎝ ⎞⎟⎠ ⎤⎥⎦d
dt
λ(f,h, t)|t=t0 ≥ (α + 1)(2ϵ − 1

p
)∫

M
R|Δf|pdμ

+(β + 1)(2ϵ − 1
q
)∫

M
R|Δh|qdμ

+λ(t0)∫
M
R|f|α+1|h|β+1dμ + λ(t0) α+1

p
∫

M
|f|pRdμ

+λ(t0) β+1
q
∫

M
|h|qRdμ.



Using the condition B(f,h) = 1, we deduce
(2.35)

Function λ(f,h, t) is smooth with respect to t, and then on arbitrary suf�iciently small
neighborhood of t0 as I, we get d

dt
λ(f,h, t) ≥ 2Rmin(g0)λ(f, g, t). Taking integration on [t1, t0)

with respect to time t for t1 suf�iciently close to t0 yields
(2.36)

Notice λ(f(t0),h(t0), t0) = λ(t0) and λ(f(t1),h(t1), t1) ≥ λ(t1). These imply 
ln

λ(t0)

λ(t1)
≥ 2Rmin(g0)(t0 − t1), and then λ(t0)e−2Rmin(g0)t0 ≥ λ(t1)e−2Rmin(g1)t1 . Since 

t0 ∈ [0,Tmax) is arbitrary, thus λ(t)e−2Rmin(g)t is monotonically nondecreasing under the RF.

2.
Suppose R ≥ Rmin(t) ≥ 0. From (1.3), we conclude

(2.37)
which implies λ(t0) ≥ λ(t1)e2 ∫ t0

t1
Rmin(t)dt on [t1, t0] ⊆ [0,Tmax).

 

3.
Suppose R ≥ Rmin(0) ≠ 0. Using (4) of Lemma (2.1) and |S|2 ≥ 2

n
R2, we obtain

(2.38)
 

The maximum principle leads to R(t) ≥ 1
R−1

min(0)− 2
n
t

. By (1.3) for any [t1, t0] ⊆ [0,Tmax), we have

(2.39)

then we get λ(t0)(R−1
min(0) − 2

n
t0)

n
≥ λ(t1)(R−1

min(0) − 2
n
t1)

n which yields 
λ(t)(R−1

min(0) − 2
n
t)

n increasing under the RF. Since (R−1
min(0) − 2

n
t)

n is decreasing, then λ(t) is
nondecreasing under the RF.

d

dt
λ(f,h, t)|t=t0 ≥ Rmin(g0)(α + 1)(2ϵ −

1

p
)∫

M

|Δf|pdμ

+Rmin(g0)(β + 1)(2ϵ −
1

q
)∫

M

|Δh|qdμ

+Rmin(g0)λ(t0)∫
M

|f|α+1|h|β+1dμ

+Rmin(g0)λ(t0)
α + 1

p
∫

M

|f|pdμ

+Rmin(g0)λ(t0)
β + 1

q
∫

M

|h|qdμ.

d
dt
λ(f,h, t)|t=t0

≥ 2Rmin(g0)λ(t0).

ln
λ(f(t0),h(t0),t0)

λ(f(t1),h(t1),t1)
≥ 2Rmin(g0)(t0 − t1).

d
dt
λ(f,h, t)|t=t0 ≥ 2Rmin(t)λ(t0),

∂R
∂t

≥ ΔR + 2
n
R2.

λ(t0) ≥ λ(t1)e
2 ∫ t0

t1

dt

R
−1
min(0)− 2

n t = λ(t1)( R−1
min(0)− 2

n
t1

R−1
min(0)− 2

n
t0
)
n

;



2.1	 Variation	of	λ(t)	on	Surfaces
Now, we write Propositions 2.2 and 2.3 in a particular case.

Corollary	2.4 Suppose	that(M 2, g(t))is	a	solution	of	the	URF	on	a	closed	surface(M 2, g0).	The
�irst	nonzero	eigenvalueλ(t)of (1.5) under	URF	satis�ies

(2.40)

Proof For n = 2, we get S = 1
2 Rg; then (2.16) leads to (2.40).

Corollary	2.5 Suppose	that(M 2, g(t))is	a	solution	of	the	NRF	on	a	closed	surface(M 2, g0).	The
�irst	nonzero	eigenvalueλ(t)of (1.5) under	NRF	satis�ies

(2.41)

Proof For n = 2, we have S = 1
2 Rg; then (2.23) yields (2.41).

d

dt
λ(f,h, t)|t=t0 = (α + 1)

p−1

p
∫

M

|Δf|pRdμ + (β + 1)
q−1

q
∫

M

|Δh|qRdμ

+λ(t0)∫
M

R|u|α+1|h|β+1dμ + λ(t0)
α + 1

p
∫

M

|f|pRdμ

+λ(t0)
β + 1

q
∫

M

|h|qRdμ.

d

dt
λ(f,h, t)|t=t0

= (α + 1)
p−1

p
∫

M

|Δf|pRdμ

+(β + 1)
q−1

q
∫

M

|Δh|qRdμ

+λ(t0)∫
M

R|f|α+1|h|β+1dμ + λ(t0)
α + 1

p
∫

M

|f|pRdμ

+λ(t0)
β + 1

q
∫

M

|h|qRdμ − r(α + 1)∫
M

|Δf|pdμ

−r(β + 1)∫
M

|Δh|qdμ.



Remark	2.6 Suppose that (M 2, g(t)) is a solution of the NRF on a compact surface. From [8],
for a constant k depending only on g0, we get:

(i)
If r < 0, then

(2.42)
Therefore, from (2.41) in every small enough neighborhood of t0, for p ≥ q we obtain

(2.43)
For every t1 suf�iciently close to t0, on [t1, t0], we get

(2.44)
equivalently

(2.45)
Thus, ln λ(t) + qc

r
ert is increasing under the NRF. Also, for any t2 close enough to t0,

on [t0, t2], it follows
(2.46)

hence ln λ(t) − pk

r
ert is decreasing along the NRF.

 

(ii)
If r = 0, then

(2.47)
Similar to the above, in this case, quantities λ(t)(1 + kt)q and λ(t)e−pkt are increasing

and decreasing along the NRF, respectively.

 

(iii)
If r > 0, then

(2.48)
By use of this inequality, quantities ln λ(t) + qkert + rpt and 

ln λ(t) − pkert − (p − q)rt are increasing and decreasing along the NRF, respectively.

 

Proof	(Proof	of	Theorem	1.3) From [8], under the URF on a surface, we infer

Applying the scalar maximum principle, the nonnegativity of the scalar curvature is preserved
under the RF, (2.40). It leads to d

dt
λ(f,h, t) > 0; therefore λ(t) is increasing.

2.2	 Variation	of	λ(t)	on	Homogeneous	Manifolds
In this section, we study the behavior of λ(t) when an initial metric is homogeneous.

Proposition	2.7 Suppose	that(M n, g(t))is	a	solution	of	the	URF	on	the	smooth	CRM(M n, g0)in
whichg0is	homogeneous.	The	�irst	nonzero	eigenvalueλ(t)of (1.5) under	the	URF	satis�ies

(2.49)

r − kert ≤ R ≤ r + kert.

−qkert ≤ 1
λ(f,h,t)

d
dt
λ(f,h, t) ≤ pkert.

ln
λ(t0)

λ(t1)
≥ln

λ(f(t0),h(t0),t0)

λ(f(t1),h(t1),t1)
≥ − qk

r
(ert0 − ert1),

ln λ(t0) +
qk

r
ert0 ≥ln λ(t1) +

qk

r
ert1 .

ln
λ(t2)

λ(t0)
≤ln

λ(f(t2),h(t2),t2)

λ(f(t0),h(t0),t0)
≤ pk

r
(ert2 − ert0);

− k
1+kt

≤ R ≤ k.

−kert ≤ R ≤ r + kert.

∂
∂t R = ΔR + R2.

d

dt
λ(f,h, t)|t=t0 = 2(α + 1)∫

M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ.



Proof The homogeneous metric remains homogeneous under RF, and the scalar curvature of a
homogeneous manifold is constant. Therefore (2.16) leads to

Note	2.8 In Proposition 2.7, if we suppose that (M n, g(t)) is a solution of the NRF on the
smooth CRM (M n, g0) in which g0 is homogeneous, then (2.23) yields

d

dt
λ(f,h, t)|t=t0 = 2(α + 1)∫

M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

−R
α + 1

p
∫

M

|Δf|pdμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ

−R
β + 1

q
∫

M

|Δh|qdμ

+Rλ(t0)∫
M

|f|α+1|h|β+1dμ + Rλ(t0)
α + 1

p
∫

M

|f|pdμ

+Rλ(t0)
β + 1

q
∫

M

|h|qdμ

= 2(α + 1)∫
M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ.



2.3	 Variation	of	λ(t)	on	Three-Dimensional	Manifolds
Now, we investigate the behavior of λ(t) on three-dimensional manifolds.

Proposition	2.9 Suppose	that(M 3, g(t)), t ∈ [0,T )is	a	solution	of	the	URF	on	a	CRM(M 3, g0)
with	a	positive	Ricci	curvature.	IfSij ≥ ϵRgijfor	some	constantϵwithmax { 1

p
, 1
q

} ≤ ϵ ≤ 1
3 at	time

t = 0,	then	the	principal	eigenvalue	of (1.5) is	increasing	along	the	RF.

Proof For any solution of the RF [10] on a CRM (M 3, g0) with a positive curvature, the
inequality Sij ≥ ϵRgij remains by the RF on [0,T ). Hence, Theorem 1.2 results that λ(t) is
increasing.

Proposition	2.10 Let(M 3, g(t))be	a	solution	to	the	URF	on	a	CRM(M 3, g0)with	homogeneous
metricg0and	nonnegative	Ricci	curvature;	then	the	principal	eigenvalue	of (1.5) is	increasing.

Proof The nonnegativity of the Ricci tensor remains under the RF [10] in dimension 3. From
(3.50), λ(t) is increasing.

3	 Example
We give an example of variation of λ(t) on some CRMs.

Example	3.1 Suppose that (M n, g0) is an Einstein manifold, i.e., Ric(g0) = cg0 for some
constant c. Let

(3.50)
be a solution to the RF for some positive function u(t). By direct computation, we have

Hence,
(3.51)

This shows that u(t) = −2ct + 1. Thus,

that is, g(t) is an Einstein metric. Also,
(3.52)

and

d

dt
λ(f,h, t)|t=t0 = 2(α + 1)∫

M

(Δf)(S ij∇i∇jf)|Δf|p−2dμ

+2(β + 1)∫
M

(Δh)(S ij∇i∇jh)|Δh|q−2dμ

−
2r

n
(α + 1)∫

M

|Δf|pdμ −
2r

n
(β + 1)∫

M

|Δh|qdμ.

g(t) = u(t)g0, u(0) = 1,

∂g
∂t = u′(t)g0.

u′(t)g0 = −2S(g(t)) = −2S(u(t)g0) = −2S(g0) = −2cg0.

g(t) = (1−2ct)g0,

S(g(t)) = S(g0) = cg0 = c
1−2ct g(t),R(g(t)) = 1

1−2ct R(g0) = cn
1−2ct ,



(3.53)
Using equation (2.16), for q ≥ p, we get

(3.54)
Hence λ(t)(1−2ct)p is increasing along the RF.
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Abstract
Firstly, we introduce a new frame and a new curvature function for a �ixed
parametrization r of a plane curve C. This new frame is called Jacobi since it involves the
rotation with the �irst two Jacobi elliptic functions of the usual Frenet frame. The Jacobi-
curvature involves only the third Jacobi elliptic function w and is computed for some
remarkable examples; the inequalities satis�ied by w imply inequalities for the Jacobi-
curvature. Secondly, we introduce a whole family of new parametrizations rρ for C with 
r = rρ=0. The expression of rρ involves an integral containing the curvature function k of
r, and all rρ have the same curvature.

Keywords Plane parametrized curve – Jacobi elliptic functions – Inequalities – Jacobi-
curvature – Jacobi mate

1	 Introduction
The delightful note [1] of Bishop proposes a new frame, as alternative to the classical
frame of Frenet, for the study of curves. Following this path, in an almost half of a
century, some new frames are considered, especially for space curves; see, for example,
the papers [9] and [10]. In order to consider the case of a plane curve C, we introduce in
the paper [3] a deformation (following the Masur terminology from [8]) called �low-
frame since it is the rotated version of the Frenet frame, the rotation angle being exactly
the time t of a current point of C. It follows naturally a new curvature, called �low-
curvature. We point out that some other curvature functions are de�ined in the paper [7].

In the present work we �irstly generalize this construction by de�ining the Jacobi-
frame of C using the well-known Jacobi elliptic functions u, v,w. These functions are
de�ined through a modulus ρ, and the vanishing of ρ implies u =cos and v =sin.
Correspondingly, this new frame de�ines a curvature, called Jacobi by us from natural
reasons and denoted kJ . Hence, the main theoretical result of this note is the

https://doi.org/10.1007/978-981-95-5148-4_12
mailto:mcrasm@uaic.ro


computation of kJ  and a comparison with the usual curvature k, as well as a relationship
with the �low-curvature kf . As is usually, we focus then on examples, with a special view
toward periodicity induced by the periodicity of the third Jacobi function w.

Secondly, we generalize a given arc-length parametrization r = r(s) of C. The main
tool of this new approach is an integral involving the ratio of k and w, and it is worth to
remark that all new parametrizations are also arc-length and with the same curvature k.
In fact, the initial r corresponds to ρ = 0. The dif�iculties in working with general Jacobi
elliptic functions force us to restrict the examples to the circles with center in the origin
of R2.

The contents are as follows. The next section reviews the �low-frame and the �low-
curvature as starting point for our generalization. The main section, namely 2, concerns
with the new frame and the new curvature, computed in Proposition 2.2 and calculated
for some examples. Also, we point out an extension of the notion of Jacobi-frame to space
curves. In the last section we construct the family of new parametrizations rρ preserving
the natural parameter s and the curvature k.

We �inish this introduction by pointing out that the ef�iciency of the Jacobi
generalization is already proved by our study [5]. As potential applications we consider
that the Computer Design and the Machine Learning can bene�it from such new tools.

2	 The	Flow-Curvature	of	a	Plane	Parametrized	Curve
Fix an open interval I ⊆ R, and consider C ⊂ R

2 a regular parametrized curve of
equation:

(2.1)
The ambient setting R2 is a Euclidean vector space with respect to the canonical

inner product:

(2.2)

The in�initesimal generator of the rotations in R2 = C is the linear vector �ield,
called angular:

(2.3)
It is a complete vector �ield with integral curves the circles C (O, r):

(2.4)

and since the rotations R(t) are isometries of the Riemannian metric 
gcan = dx2 + dy2 = |dz|, it follows that ξ is a Killing vector �ield of the Riemannian
manifold (R2, gcan). The �irst integrals of ξ are the Gaussian functions, i.e., multiples of
the square norm: fα(x, y) = α(x2 + y2), α ∈ R.

C : r(t) = (x(t), y(t)) = x(t)ī + y(t)j̄, ∥ r′(t) ∥> 0, t ∈ I.

⟨u, v⟩ = x1y1 + x2y2, u = (x1,x2) ∈ R2, v = (y1, y2) ∈ R2,

0 ≤∥ u ∥2= ⟨u,u⟩.

ξ(u) := −x2 ∂
∂x1 + x1 ∂

∂x2 , ξ(u) = i ⋅ u = i ⋅ (x1 + ix2), i = √−1.

⎧⎪⎨⎪ γ
ξ
u0(t) = (u1

0 cos t − u2
0 sin t,u1

0 sin t + u2
0 cos t) = R(t) ⋅ , t ∈ R,

r =∥ u0 ∥=∥ (u1
0,u2

0) ∥, R(t) := ∈ SO(2) = S 1,

⎛⎜⎝u1
0

u2
0

⎞⎟⎠⎛⎜⎝ cos t − sin t

sin t cos t
⎞⎟⎠



The Frenet apparatus of the curve C is provided by the Frenet frame {T ,N} and its
curvature function k:

(2.5)

The starting point in de�ining a new frame is the identity:
(2.6)

and remark that the Frenet equations can be uni�ied by means of the column matrix 

F(t) = (t)as

(2.7)
In a previous paper, namely [3], we have de�ined a new frame and correspondingly a

new curvature function for C:

De�inition	2.1 The �low-frame of C consists in the pair of unit vectors 
(E f

1 (t),E f
2 (t)) ∈ T 2 := S 1 × S 1 given by

(2.8)

the letter f being the initial of the word “�low.” The �low-curvature of C is the smooth
function kf : I → R given by the	�low-equations:

(2.9)

Hence, the main result of the cited work is the following:

Proposition	2.2 The	expression	of	the	�low-curvature	is
(2.10)

Proof We have directly in the �low-frame
(2.11)

and the conclusion follows. □

3	 The	Jacobi-Curvature	of	a	Plane	Parametrized	Curve
Fix now the real number ρ ∈ (−1, 1) as the	modulus for the differential system [6, p.
130]:

(3.12)

⎧⎪⎨⎪ T (t) = r′(t)
∥r′(t)∥

∈ S 1, N(t) = i ⋅ T (t) = 1
∥r′(t)∥

(−y′(t),x′(t)) ∈ S 1,

k(t) = 1
∥r′(t)∥ ⟨T ′(t),N(t)⟩ = 1

∥r′(t)∥3 ⟨r′′(t), ir′(t)⟩

= 1
∥r′(t)∥3 [x′(t)y′′(t) − y′(t)x′′(t)].

d
dt
R(t) = R(t + π

2 ) = R(t)R( π
2 ) = R( π

2 )R(t),

⎛⎜⎝ T

N
⎞⎟⎠ d

dt
F(t) =∥ r′(t) ∥ k(t)R(− π

2 )F(t).

E (t) := (t) = R(t)F(t) =

⎛⎜⎝E
f
1

E
f
2

⎞⎟⎠ ⎛⎜⎝ cos tT (t) − sin tN(t)

sin tT (t) + cos tN(t)
⎞⎟⎠d

dt
E (t) =∥ r′(t) ∥ kf(t)R(− π

2 )E (t).

kf(t) = k(t) − 1
∥r′(t)∥

< k(t).

∥ r′(t) ∥ kf(t)R(− π
2
) = R(t + π

2
)R(−t) + ∥ r′(t) ∥ k(t)R(t)R(− π

2
)R(−t),



Recall that its solutions are called Jacobi	elliptic	functions and there are usually denoted 
cn(⋅, ρ), sn(⋅, ρ), respectively, dn(⋅, ρ); we prefer the simple notation used above. As
solutions of the ODE system (3.12) these functions satisfy two remarkable identities:

(3.13)
Also, both functions u(⋅) and v(⋅) are periodic with L = 4L̃ for [6, p. 131]:

(3.14)

while w is periodic of period 2L̃. In particular, L̃(0) =arcsin s|1
0 =

π

2
 for the usual

trigonometrical functions cn(⋅, 0) =cos (⋅) and sn(⋅, 0) =sin (⋅). The complementary
modulus is ρ′ := √1 − ρ2 ∈ (0, 1], and the third Jacobi function is bounded by

(3.15)
The self-complementary	caseρ′ = ρ is provided by ρ = 1

√2
 and being in the interval 

(0, 1) is the eccentricity of an ellipse, called self-complementary and studied in [2]. The
picture of the function w = w(⋅, ρ = 1

√2
) is below with the half-period:

Following the path of the �irst section we introduce a new frame and a new curvature
function for the given curve (Fig. 1):

Fig.	1 The Jacobi functionw = w(t, ρ = 1 / √2), t ∈ (−9, 9)

De�inition	3.1 The Jacobi-frame of C consists in the pair of unit vectors 
(EJ

1 (t),EJ
2 (t)) ∈ T 2 given by

⎧⎪⎨⎪ du
dt

= −wv, u(0) = 1,
dv
dt

= wu, v(0) = 0,
dw
dt

= −ρ2uv, w(0) = 1.

u2 + v2 = 1, ρ2v2 + w2 = 1.

L̃ = L̃(ρ) :=∫
1

0

ds

√(1−s2)(1−ρ2s2)
,

0 < ρ′ ≤ w(t) ≤ 1.

L̃(ρ = 1
√2
) =

√2Γ(1/4)Γ(1/2)

4Γ(3/4)
≃ 1.85407.



(3.16)

The Jacobi-curvature of C is the smooth function kJ : I → R given by the	Jacobi-
frame	equations:

(3.17)

It follows now the main result, with a similar proof as above:

Proposition	3.2 The	expression	of	the	Jacobi-curvature	is
(3.18)

Remark	3.3
(i)

If we use Eq. (2.8) with R replaced by R ∘ Ω to de�ine the notion of Ω-frame for the
plane curve C, then the corresponding Ω-curvature of the plane curve C is

(3.19)
and the curves in polar coordinates with vanishing Ω-curvature are provided by

(3.20)
The �low-curvature corresponds to the identity map Ω = 1R, while the Jacobi-

curvature corresponds to the function Ω = W := ∫ w. This last function is usually
called amplitude, and we supposed to be strictly	positive.

 

(ii)
It is well known the identity:

and then we have the function W → t(W). The �irst two Jacobi differential
equations become

which are similar to the differential equations satis�ied by the trigonometrical
functions cos and sin.

 

(iii)
Let s ∈ (0,L(C) > 0) be a natural parameter for the curve C, i.e., ∥ r′(s) ∥= 1 for
all s. Here, L(C) is the length of the curve. Let also K = K(s) be the	structural
angle of C, i.e., k = dK

ds
. Then kJ  is a derivative:

 

(iv) Suppose now that the curve C is in the space R3 and is bi-regular, i.e., 

⎧⎪⎨⎪ E J(t) := (t) = RJ(t)F(t) = ,

RJ(t) := ∈ SO(2) = S 1.

⎛⎜⎝EJ
1

EJ
2

⎞⎟⎠ ⎛⎜⎝u(t)T (t) − v(t)N(t)

v(t)T (t) + u(t)N(t)
⎞⎟⎠⎛⎜⎝u(t) −v(t)

v(t) u(t)
⎞⎟⎠d

dt
E J(t) =∥ r′(t) ∥ kJ(t)R(− π

2 )E
J(t).

kJ(t) = k(t) − w(t)
∥r′(t)∥

∈ [kf(t), k(t) − ρ′
∥r′(t)∥

< k(t)].

kΩ(t) = k(t) − Ω′(t)
∥r′(t)∥

,

ρ(t) = Re
∫ t

t0
cot[Ω(u)−u+C]du, R > 0, C ∈ R.

t =∫
W(t)

0

dξ

√1−ρ2sin2ξ
,

du
dW

= −v ∘ t(W), dv
dW

= u ∘ t(W),

kJ(s) = (K − W)′(s).



pp p g
∥ r′(t) × r′′(t) ∥> 0 for all t ∈ I; hence it has the Frenet frame (T ,N ,B) and the
pair (curvature, torsion) = (k > 0, τ). We de�ine its Jacobi-frame as

(3.21)

and then, its matrix moving equation is

(3.22)

A similar computation yields
(3.23)

□

 

From now on we focus on computing some relevant examples:

Example	3.4
(i)

If C is the line r0 + tu, t ∈ R, with the vector u ≠ 0̄ = (0, 0), then kJ  is periodic
with the period 2L̃ since

(3.24)
In particular, if u is a unit vector, then kJ(t) = −w(t) ∈ [−1, −ρ′ < 0].

 

(ii)
The circle C (O,R) with the usual parametrization r(t) = Reit has

(3.25)

again a 2L̃-periodic kJ  curvature. Also, it follows a geometrical interpretation
of the third Jacobi function: w is the function 1 − kJ  of the unit circle S 1.

 

□

Example	3.5 The involute of the unit circle S 1 is
(3.26)

A direct computation gives

(3.27)

The parametrization (3.26) suggests the following generalization; we call Jacobi-
involute	ofS 1 the curve:

(3.28)
with

(t) := , 02(h) := (0, 0), 02(v) := ,

⎛⎜⎝ T

EJ
2

EJ
3

⎞⎟⎠ ⎛⎜⎝ 1 02(h)

02(v) RJ(t)
⎞⎟⎠⎛⎜⎝ T

N

B

⎞⎟⎠ ⎛⎜⎝0

0
⎞⎟⎠d

dt
(t) =∥ r′(t) ∥ (t).

⎛⎜⎝ T

EJ
2

EJ
3

⎞⎟⎠ ⎛⎜⎝ 0 k2
J
(t) k3

J(t)

−k2
J
(t) 0 τJ(t)

−k3
J(t) −τJ(t) 0

⎞⎟⎠⎛⎜⎝ T

EJ
2

EJ
3

⎞⎟⎠k2
J(t) = k(t)u(t), k3

J(t) = k(t)v(t), τf(t) = τ(t) − w(t)
∥r′(t)∥

< τ(t).

kJ(t) = − w(t)
∥u∥

∈ [kf(t) = − 1
∥u∥

, − ρ′
∥u∥

].

kJ(t) = 1−w(t)
R

∈ [kf = 0, 1−ρ′
R
]

C : r(t) = (cos t + t sin t, sin t − t cos t) = (1 − it)eit, t ∈ (0, +∞).

r′(t) = (t cos t, t sin t) = teit, ∥ r′(t) ∥= t, k(t) = 1
t

> 0,

kJ(t) = 1−w(t)
t

.

Cρ : rρ(t) = (u(t) + W(t)v(t), v(t) − W(t)u(t))



(3.29)
Finally, we obtain its curvatures:

(3.30)
by recalling the hypothesis from Remark 3.3 (i) that W(t) > 0; hence Cρ is a Jacobi-�lat
curve. The length of the curve Cρ|(0,L) is

(3.31)

□

Example	3.6 Recall that for R > 0 the cycloid of radius R has the equation
(3.32)

We have immediately

(3.33)

and then we restrict our de�inition domain to (0,π). It follows
(3.34)

□

The expression of kJ  suggests to de�ine the	Jacobi-cycloid as being the regular curve C
de�ined on (0, 2L̃) whose Frenet curvature k is

(3.35)
since the fundamental theorem of plane curves assures the existence of such a curve. □

4	 The	Jacobi	Mates	of	an	Arc-Length	Parametrization
Suppose again that the given parametrization is an arc-length one: r′(s) ∈ S 1. Here, 
L(C) is the length of the curve. Recall, after Remark 3.3(iii), the function 
K : (0,L(C)) → R as the antiderivative of the curvature function k = k(s). Then the
fundamental theorem of plane curves states that the velocity vector �ield is given by

(4.36)
Sometimes, the function θ is called the	structural	angle of the curve C since θ′ = k.

An immediate application of the above relation is the fact that the de�ining functions
x, y of the parametrization r of C satisfy the third-order differential equation [4]:

(4.37)
Hence, the aim of this section is to de�ine a generalization of (4.36). Following the

path of the previous section, we introduce a new antiderivative for the given curve:

(4.38)

This integral can be considered as the antiderivative of k with the	weight 1
w

> 0, and the
relationship with K is

(4.39)

r′
ρ(t) = W(t)w(t)(u(t), v(t)), ∥ r′

ρ(t) ∥= W(t)w(t).

kρ(t) = 1
W(t)

, kρJ ≡ 0

Length(Cρ|(0,L)) =∫
L

0
W(t)W ′(t)dt = W 2(L)

2 = π2

8 .

C : r(t) = R(t− sin t, 1− cos t) = R[(t, 1) − ei(
π
2 −t)], t ∈ R.

r′(t) = R(1− cos t, sin t) = R[(1, 0) − eit], ∥ r′(t) ∥= 2R| sin t
2 |, k(t)

= − 1
4R|sin t

2
|
,

kf(t) = − 3
4Rsin t

2

< 0, kJ(t) = − 1+2w(t)

4Rsin t
2

.

k(t) = − 1+2w(t)

4Rv( t
2 )

r′(s) = (− sin K(s), cos K(s)) = (cos θ(s), sin θ(s)), θ(s) := π
2 + K(s).

kU ′′′ − k′U ′′ + k3U ′ = 0.

K ρ(s) :=∫
s

0

k(t)
w(t)

dt.



Also, if k is strictly positive (e.g., C is a convex curve), then we have the inequalities:
(4.40)

De�inition	4.1 The	Jacobi	mate of the arc-length parametrization r is the function 
rρ : (0,L(C)) → R

2 with the derivative
(4.41)

Remark	4.2
(i)

The curvature of rρ is also k since the acceleration function for rρ is
(4.42)

Hence, rρ is a re-parametrization of the same curve C, and its components xρ, 
yρ satisfy the same ODE (3.2).

 

(ii)
The function r 1

√2

 can be called the	self-complementary	parametrization of C.  
□

Due to the complexity of computations we restrict to a single relevant example:

Example	4.3 The circle C (O,R) has the usual arc-length parametrization 
r(s) = Rei

s
R  for s ∈ (0, 2πR). We need the function

(4.43)

and hence, K ρ =
W̃

R
. Then the Jacobi mate is rρ with the derivative

(4.44)
Indeed, the case ρ = 0 recasts the usual r since then ρ′ = 1, and the Euler formula gives 
W̃(s) = s. □

5	 Conclusions
The Jacobi elliptic functions permit us to move beyond classical con�ines and provide us
with a framework in which we generalize some usual notions of the differential
geometry of plane curves.
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Abstract
We obtain B.-Y. Chen inequalities for submanifolds in m-dimensional, m > 4, conformally �lat
manifolds and conformally �lat manifolds endowed with a semi-symmetric metric connection. The
equality cases are also considered.
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metric connection

1	 Introduction
In recent years, the problem of establishing simple fundamental relations between the intrinsic
(mainly the scalar curvature, the sectional curvature, and the Ricci curvature) and extrinsic
invariants (mainly the squared mean curvature) of a submanifold has become one of the most
fundamental problems in the theory of the submanifolds. As the �irst result, in 1993, B.-Y. Chen
obtained a basic inequality involving the sectional curvature and the squared mean curvature of
submanifolds in a real space form [2]. For submanifolds of real space forms, the inequalities between
the Ricci curvature, k-Ricci curvature, and squared mean curvature were given in [4]. Now, these
inequalities are known as B.-Y. Chen inequalities. The inequalities obtained by B.-Y. Chen have
attracted great attention, and similar inequalities for submanifolds in various space forms have been
obtained by many authors. For the collections of the results in these directions, see [5–8, 11], and the
references therein.

Motivated by the above studies, in the present study, we �ind B.-Y. Chen inequalities for
submanifolds in m-dimensional, m > 4, conformally �lat manifolds and conformally �lat manifolds
endowed with a semi-symmetric metric connection. We obtain relations between the mean
curvature, scalar and sectional curvatures, and k-Ricci curvatures. Our results generalize some of the
results obtained for submanifolds in real space forms (see [2–4] and [12]) and in a Riemannian
manifold of quasi-constant curvature (see [14] and [16]).

2	 Preliminaries
The Weyl conformal curvature tensor of an m-dimensional Riemannian manifold (M̃, g̃) is de�ined by

C̃(X1, X2, X3, X4) = R̃(X1, X2, X3, X4)

− 1
m−2 {R̃ic(X2, X3)g̃(X1, X4) − R̃ic(X1, X3)g̃(X2, X4)

https://doi.org/10.1007/978-981-95-5148-4_13
mailto:cihan.ozgur@idu.edu.tr


(2.1)
where R̃ic and τ̃  denote the Ricci tensor and scalar curvature of (M̃, g̃), respectively. It is known that
for n ≥ 4, the manifold is conformally �lat if and only if C̃ = 0 [1].

Using (2.1), the Gauss equation for a submanifold M n of a conformally �lat manifold N m is

(2.2)
where h denotes the second fundamental form of M n in N m and RicN  and τ N  are the Ricci tensor
and scalar curvature of N m, respectively.

Let {e1, ..., em} be an orthonormal basis of the tangent space TxM n. Then the scalar curvature τ
at x ∈ M n is de�ined by

where K(ei ∧ ej) = Kij denotes the sectional curvature of a 2 -plane section spanned by ei, ej.
Let M n be an n-dimensional Riemannian manifold, Π a k-plane section of TxM n, x ∈ M n, and X

a unit vector in Π.
Let {ei},1 ≤ i ≤ k, be an orthonormal basis of Π such that e1 = X.
The Ricci	curvature (or k-Ricci	curvature) [4] of Π at X is de�ined by

For each integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk on M n is de�ined by

where Π runs over all k-plane sections in TxM n and X runs over all unit vectors in Π [4].

3	 Submanifolds	of	Conformally	Flat	Manifolds
Let H be the mean curvature vector of M n at a point x.

Now let M n, n ≥ 3, be an n-dimensional submanifold of an m -dimensional conformally �lat
manifold N m,m > 4, and x ∈ M n , {ei},1 ≤ i ≤ n, and {ej},n + 1 ≤ j ≤ m be orthonormal bases
of TxM n and T ⊥

x M n, respectively. The square norm ∥h∥2 of the second fundamental (see [2]) is
de�ined by

Let x ∈ M n, π ⊂ TxM n, π = sp{e1, e2}.
For a submanifold of a conformally �lat manifold, we prove the following �irst Chen inequality:

Theorem	3.1 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	an	m	-dimensional	conformally	�lat
manifoldN m,m > 4.	Then

(3.3)

+R̃ic(X1, X4)g̃(X2, X3) − R̃ic(X2, X4)g̃(X1, X3)}
+ 2τ̃

(m−1)(m−2) [g̃(X2, X3)g̃(X1X4) − g̃(X1, X3)g̃(X2, X4)],

R(X1, X2, X3, X4)

= 1
m−2 {RicN (X2, X3)g(X1, X4) − RicN (X1, X3)g(X2, X4)

+ RicN (X1, X4)g(X2, X3) − RicN (X2, X4)g(X1, X3)}

− 2τ N

(m−1)(m−2) [g(X2, X3)g(X1, X4) − g(X1, X3)g(X2, X4)],

+g(h(X1, X4), h(X2, X3)) − g(h(X1, X3), h(X2, X4)),

τ(x) =∑
1≤i<j≤n

K(ei ∧ ej),

RicΠ(X) =∑
k

i=2
K1i.

Θk(x) = 1
k−1 inf

Π,X
RicΠ(X), x ∈ M n,

∥h∥2 =∑
i,j=1

n

g(h(ei, ej), h(ei, ej)).

τ − K(π) ≤ − 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} + n2(n−2)

2(n−1) ∥H∥2



whereπis	a 2-plane	section	ofTxM n, x ∈ M n.	The	equality	case	of	inequality (3.3) holds	at	a	point
x ∈ M nif	and	only	if	there	exist	an	orthonormal	basis{ei},1 ≤ i ≤ n,ofTxM nand	an	orthonormal
basis{ep},n + 1 ≤ p ≤ m,ofT ⊥

x M nsuch	that	the	shape	operators	ofM ninN matxhave	the	following
forms:

(3.4)

(3.5)

where	we	denotehs
ij

= g(h(ei, ej), es), 1 ≤ i, j ≤ nandn + 2 ≤ s ≤ m,	andRicN , τ Nare	the	Ricci
tensor	and	scalar	curvature	ofN m,respectively.

Proof For X1 = X4 = ei,X2 = X3 = ej, i ≠ j, from the Gauss equation (2.2), by summation after 
1 ≤ i, j ≤ n, we have

(3.6)
When we take

(3.7)

from (3.6) and (3.7), we get
(3.8)

Let the normal vector en+1 be a unit vector in the direction of the mean curvature vector H at x.
Then using (3.8), we obtain

or equivalently,
(3.9)

+ n−1
m−2 [∑j=1

n

RicN (ej, ej)]− τ N [n(n−1)−2]
(m−1)(m−2) ,

Aen+1 = ,

⎛⎜⎝λ 0 0 ⋯ 0
0 μ 0 ⋯ 0
0 0 λ + μ ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ λ + μ

⎞⎟⎠Aes
= , n + 2 ≤ s ≤ m,

⎛⎜⎝hs
11 hs

12 0 ⋯ 0
hs

12 −hs
11 0 ⋯ 0

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋯ ⋮
0 0 0 ⋯ 0

⎞⎟⎠2τ = 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]− 2τ N

(m−1)(m−2) n(n−1)

+n2∥H∥2 − ∥h∥2.

ρ = 2τ − n2(n−2)
n−1 ∥H∥2 + 2τ N

(m−1)(m−2) n(n−1)

− 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)],

n2∥H∥2 = (n−1)(∥h∥2 + ρ).

(∑
n

i=1
hn+1

ii )
2

= (n−1)(∑
n

i,j=1
∑

m

s=n+1
(hs

ij)
2 + ρ),



By using Lemma 3.1 in [2], Eq. (3.9) gives us

(3.10)

When we use the Gauss equation for X1 = X4 = e1, X2 = X3 = e2, we have

which implies
(3.11)

Using (3.7), it follows from (3.11) that

which proves the inequality (3.3).
Similar to the proof of Lemma 3.2 in [2], it can be easily seen that the equality case holds at a

point x ∈ M n if and only if with respect to a suitable frame �ield, the shape operators of M n are of
the forms (3.4) and (3.5). □

n

∑
i=1

hn+1
ii

2

= (n−1)

n

∑
i=1

(hn+1
ii )

2
+∑

i≠j

(hn+1
ij )

2

+

n

∑
i,j=1

m

∑
s=n+2

(hs
ij)

2 + ρ .

⎛⎜⎝ ⎞⎟⎠ ⎧⎪⎨⎪ ⎫⎪⎬⎪2hn+1
11 hn+1

22 ≥∑
i≠j

(hn+1
ij )

2
+∑

n

i,j=1
∑

m

s=n+2
(hs

ij)
2 + ρ.

K(π) = R(e1, e2, e2, e1) = 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

− 2τ N

(m−1)(m−2) +∑
m

s=n+1
[hs

11hs
22 − (hs

12)2]

≥ 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2)

+ 1
2 [∑i≠j

(hn+1
ij )

2
+∑

n

i,j=1
∑

m

s=n+2
(hs

ij)
2 + ρ]

+∑
m

s=n+2
hs

11hs
22 −∑

m

s=n+1
(hs

12)2 = 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

− 2τ N

(m−1)(m−2) + 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
n

i,j=1
∑

m

s=n+2
(hs

ij)
2

+ 1
2 ρ +∑

m

s=n+2
hs

11hs
22 −∑

m

s=n+1
(hs

12)2

= 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2)

+ 1
2 ∑i≠j

(hn+1
ij )

2
+ 1

2 ∑
m

s=n+2
∑

i,j>2
(hs

ij)
2+

+ 1
2 ∑

m

s=n+2
(hs

11 + hs
22)2 +∑

j>2
[(hn+1

1j )
2

+ (hn+1
2j )

2]+ 1
2 ρ

≥ 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2) + ρ

2 ,

K(π) ≥ 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2) + ρ

2 .

K(π) ≥ τ + 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − n2(n−2)

2(n−1) ∥H∥2

− n−1
m−2 [∑j=1

n

RicN (ej, ej)]+ τ N [n(n−1)−2]
(m−1)(m−2) ,



Now using Theorem 3.1, we prove the following relationship between the k-Ricci curvature and the
squared mean curvature ∥H∥2:

Theorem	3.2 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	an	m	-dimensional	conformally	�lat
manifoldN m,m > 4.	Then

(3.12)

Proof Equation (3.6) can be written as

(3.13)

Let {ei},1 ≤ i ≤ m, be an orthonormal basis of TxN m at x such that the normal vector en+1 is
parallel to the mean curvature vector H and {ei},1 ≤ i ≤ n, diagonalize the shape operator Aen+1 .
Then Aen+1 = [a1, ..., an]n×n and Aes

= (hs
ij), i, j = 1, ..., n; s = n + 2, ..., m, trace Ar = 0. So in

view of (3.13), we get

(3.14)

On the other hand, it is trivial that

From (3.14), we have

(3.15)

or, equivalently,

and this proves the theorem. □

Using Theorem 3.2, we obtain the following:

Theorem	3.3 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	anm-dimensional	conformally	�lat
manifoldN m,m > 4.	Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	pointx ∈ M n,

∥H∥2 ≥ 2τ
n(n−1) − 2

n(m−2) [∑j=1

n

RicN (ej, ej)]

+ 2τ N

(m−1)(m−2) .

2τ + ∥h∥2 − n2∥H∥2 = 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]

− 2τ N

(m−1)(m−2) n(n−1).

n2∥H∥2 = 2τ(x) +∑
n

i=1
a2

i +∑
m

r=n+2
∑

n

i,j=1
(hr

ij)
2

− 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]+ 2τ N (x)
(m−1)(m−2) n(n−1).

∑
n

i=1
a2

i ≥ n∥H∥2.

n2∥H∥2 ≥ 2τ + n∥H∥2 −
2(n−1)
m−2

n

∑
j=1

RicN (ej, ej)

+
2τ N

(m−1)(m−2)
n(n−1),

⎡⎢⎣ ⎤⎥⎦∥H∥2 ≥
2τ

n(n−1)
−

2
n(m−2)

n

∑
j=1

RicN (ej, ej)

+
2τ N

(m−1)(m−2)
,

⎡⎢⎣ ⎤⎥⎦



(3.16)

Proof Let {ei},1 ≤ i ≤ n, be an orthonormal basis of TxM n. Denote by Πα1...αk
 the k-plane section

spanned by {eαi
},1 ≤ i ≤ k. By de�inition, we have (see [4])

which implies (3.16). □

4	 Submanifolds	of	Conformally	Flat	Manifolds	Endowed	with	a
Semi-symmetric	Metric	Connection
Let N m be an m-dimensional Riemannian manifold and ∇̃ a linear connection on N m. If the torsion
tensor T̃  of ∇̃ satis�ies

for a 1-form η, then the connection ∇̃ is called a semi-symmetric	connection. Let g̃ be a Riemannian
metric on N m. If ∇̃g̃ = 0, then ∇̃ is called a semi-symmetric	metric	connection on N m.

By Yano [15], a semi-symmetric metric connection ∇̃ on N m is given by

for any vector �ields X̃1 and X̃2 on N m , where D̃ denotes the Levi-Civita connection with respect to
the Riemannian metric g̃ and E is a vector �ield de�ined by g̃(E, X̃) = η(X̃) for any vector �ield X̃.

Let M n be an n-dimensional submanifold of an m-dimensional Riemannian manifold N m. Let ∇
and D denote the induced semi-symmetric metric connection and the induced Levi-Civita connection,
respectively.

Let R̃, R̃D̃, R, and RD denote the curvature tensors of ∇̃,D̃,∇, and D, respectively.
The Gauss formulas with respect to ∇̃, respectively, D̃ are given by

where h is the second fundamental form of M n in N m and σ is a (0, 2)-tensor on M n (see [1] and
[13]). According to the formula (7) from [13], σ is also symmetric and σ = h when E is tangent to 
M n.

Let N m be a conformally �lat manifold, m ≥ 4, endowed with a semi-symmetric metric
connection ∇̃.

The curvature tensor R̃ with respect to the semi-symmetric metric connection ∇̃ on N m can be
written as (see [10])

(4.17)

where Xi ∈ χ(M n), 1 ≤ i ≤ 4, and β is a (0, 2) -tensor �ield de�ined by

From (2.1) and (4.17), it follows that the curvature tensor R̃ can be expressed as

∥H∥2 ≥ Θk(x) − 2
n(m−2) [∑j=1

n

RicN (ej, ej)]

+ 2τ N

(m−1)(m−2) .

τ(x) ≥ n(n−1)
2 Θk(x),

T̃(X̃1, X̃2) = η(X̃2)X̃1 − η(X̃1)X̃2

∇̃
X̃1

X̃2 = D̃
X̃1

X̃2 + η(X̃2)X̃1 − g̃(X̃1, X̃2)E,

∇̃X1X2 = ∇X1X2 + σ(X1, X2), X1, X2 ∈ χ(M),

D̃X1X2 = DX1X2 + h(X1, X2), X1, X2 ∈ χ(M),

R̃(X1, X2, X3, X4) = R̃D̃(X1, X2, X3, X4) − β(X2, X3)g̃(X1, X4)
+β(X1, X3)g̃(X2, X4) − β(X1, X4)g̃(X2, X3)
+β(X2, X4)g̃(X1, X3),

β(X1, X2) = (DX1η)X2 − η(X1)η(X2) + 1
2 η(E)g̃(X1, X2).

R̃(X1, X2, X3, X4)



(4.18)

Let λ = trace(β).
The Gauss equation for a submanifold M n into a conformally �lat manifold N m,m > 4, is

(4.19)

and from [13], the Gauss equation with respect to the semi-symmetric metric connection is

(4.20)

We denote the mean curvature H  with respect to the semi-symmetric metric connection by

and

From [9], we know that H = H if and only if the vector �ield E is tangent to M n.
Now let M n, n ≥ 3, be an n-dimensional submanifold of an m -dimensional conformally �lat

manifold N m,m > 4, endowed with a semi-symmetric metric connection ∇̃ and x ∈ M n , {ei},
1 ≤ i ≤ n, and {ep},n + 1 ≤ p ≤ m be orthonormal bases of TxM n, and T ⊥

x M n, respectively. Let 
x ∈ M n, π ⊂ TxM n, π = sp{e1, e2}.

We prove the following �irst Chen inequality:

Theorem	4.1 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	an	m-dimensional	conformally	�lat
manifoldN m,m > 4,endowed	with	a	semi-symmetric	metric	connection∇̃.	Then

(4.21)

whereπis	a 2-plane	section	ofTxM n,x ∈ M n,	andτ ∇, K ∇are	the	scalar	curvature	and	the
sectional	curvature	of	the	induced	semi-symmetric	metric	connection∇,respectively,	andRicNandτ N

are	the	Ricci	tensor	and	the	scalar	curvature	ofN mwith	respect	to	the	Levi-Civita	connection,
respectively.

Proof For X1 = X4 = ei,X2 = X3 = ej,i ≠ j, from Eqs. ( 4.18) and (4.20), by summation after 
1 ≤ i, j ≤ n, it follows that

(4.22)

where

When we take

= 1
m−2 {RicN (X2, X3)g(X1, X4) − RicN (X1, X3)g(X2, X4)

+RicN (X1, X4)g(X2, X3) − RicN (X2, X4)g(X1, X3)}

− 2τ N

(m−1)(m−2) [g(X2, X3)g(X1, X4) − g(X1, X3)g(X2, X4)]
−β(X2, X3)g(X1, X4) + β(X1, X3)g(X2, X4)
−β(X1, X4)g(X2, X3) + β(X2, X4)g(X1, X3).

R̃D̃(X1, X2, X3, X4) = RD(X1, X2, X3, X4) + g(h(X1, X3), h(X2, X4))
−g(h(X1, X4), h(X2, X3)),

R̃(X1, X2, X3, X4) = R(X1, X2, X3, X4) + g(σ(X1, X3), σ(X2, X4))
−g(σ(X2, X3), σ(X1, X4)).

H = 1
n

trace(σ)

β(e1, e1) + β(e2, e2) = λ − trace(β∣
π⊥).

τ ∇ − K ∇(π) ≤ (n−2)[ n2

2(n−1) ∥H ∥2 − λ]− trace(β∣
π⊥)

− 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

+ n−1
m−2 [∑j=1

n

RicN (ej, ej)]− τ N [n(n−1)−2]
(m−1)(m−2) ,

2τ ∇ + ∥σ∥2 − n2∥∥2 = −2(n−1)λ

+ 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]− 2τ N

(m−1)(m−2) n(n−1),

∥σ∥2 =∑
i,j=1

n

g(σ(ei, ej), σ(ei, ej)).



(4.23)

we have

Let the normal vector en+1 be a unit vector in the direction of the mean curvature vector H  at x.
Similar to the proof of Theorem 3.1, we have

For X1 = X4 = e1, X2 = X3 = e2, the Gauss equation with respect to the semi-symmetric
metric connection gives

which implies

Using (4.23), we get

ρ = 2τ ∇ − n2(n−2)
n−1 ∥H ∥2 + 2(n−1)λ

− 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]+ 2τ N

(m−1)(m−2) n(n−1),

n2∥H ∥2 = (n−1)(∥σ∥2 + ρ).

2σn+1
11 σn+1

22 ≥∑
i≠j

(σn+1
ij )

2
+∑

n

i,j=1
∑

m

s=n+2
(σs

ij)
2 + ρ.

K ∇(π) = R(e1, e2, e2, e1) = 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

− 2τ N

(m−1)(m−2) − β(e1, e1) − β(e2, e2) +∑
m

s=n+1
[σs

11σs
22 − (σs

12)2]

≥
1

m−2
{RicN (e1, e1) + RicN (e2, e2)} −

2τ N

(m−1)(m−2)

−β(e1, e1) − β(e2, e2) +
1
2
∑

i≠j

(σn+1
ij )

2
+

n

∑
i,j=1

m

∑
s=n+2

(σs
ij)

2 + ρ

⎡⎢⎣ ⎤⎥⎦+∑
m

s=n+2
σs

11σs
22 −∑

m

s=n+1
(σs

12)2 = 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

− 2τ N

(m−1)(m−2) − β(e1, e1) − β(e2, e2)

+ 1
2 ∑i≠j

(σn+1
ij )

2
+ 1

2 ∑
n

i,j=1
∑

m

s=n+2
(σs

ij)
2 + 1

2 ρ +∑
m

s=n+2
σs

11σs
22 −∑

m

s=n+1
(σs

12)2

= 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2)

−β(e1, e1) − β(e2, e2) + 1
2 ∑i≠j

(σn+1
ij )

2
+ 1

2 ∑
m

s=n+2
∑

i,j>2
(σs

ij)
2

+ 1
2 ∑

m

s=n+2
(σs

11 + σs
22)2 +∑

j>2
[(σn+1

1j )
2

+ (σn+1
2j )

2
] + 1

2 ρ

≥ 1
m−2 {RicN (e1, e1) + RicN (e2, e2)} − 2τ N

(m−1)(m−2)

−β(e1, e1) − β(e2, e2) + ρ

2 ,

K ∇(π) ≥
1

m−2
{RicN (e1, e1) + RicN (e2, e2)} −

2τ N

(m−1)(m−2)

−β(e1, e1) − β(e2, e2) +
ρ

2
.

K ∇(π) ≥ τ ∇ + (n−2)[− n2

2(n−1) ∥H ∥2 + λ]+ trace(β∣
π⊥)



which proves the inequality. □

When the vector �ield E is tangent to M n, for the equality case of the inequality (4.21), we have the
following theorem:

Theorem	4.2 If	the	vector	�ield	E	is	tangent	toM n,	the	equality	case	of	the	inequality (4.21) holds	at
a	pointx ∈ M nif	and	only	if	for	suitable	chosen	orthonormal	bases	ofTxM nandT ⊥

x M n,	the	shape
operators	ofM ninN mat	x	have	the	forms (3.4) and (3.5).

Similar to Theorem 3.2, using Theorem 4.1, we give the following relationship between the k-Ricci
curvature and the squared mean curvature ∥H∥2:

Theorem	4.3 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	anm-dimensional	conformally	�lat
manifoldN m,m > 4,endowed	with	a	semi-symmetric	metric	connection∇̃such	that	the	vector	�ield	E	is
tangent	toM n.	Then

Proof The relation (4.22) is equivalent to

(4.24)

Similar to the proof of Theorem 3.2, from (4.24), we get

Hence, we have
(4.25)

or, equivalently,

□

Similar to Theorem 3.3, using Theorem 4.3, we can state the following theorem:

+ 1
m−2 {RicN (e1, e1) + RicN (e2, e2)}

− n−1
m−2 [∑j=1

n

RicN (ej, ej)]+ τ N [n(n−1)−2]
(m−1)(m−2) ,

∥H∥2 ≥ 2τ ∇

n(n−1) − 2
n(m−2) [∑j=1

n

RicN (ej, ej)]

+ 2τ N

(m−1)(m−2) + 2
n

λ.

n2∥H∥2 = 2τ ∇ + ∥h∥2 + 2(n−1)λ

− 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]+ 2τ N

(m−1)(m−2) n(n−1).

n2∥H∥2 = 2τ ∇ +∑
n

i=1
a2

i +∑
m

r=n+2
∑

n

i,j=1
(hr

ij)
2

+2(n−1)λ − 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]+ 2τ N

(m−1)(m−2) n(n−1).

n2∥H∥2 ≥ 2τ ∇ + n∥H∥2 + 2(n−1)λ

− 2(n−1)
m−2 [∑

j=1

n

RicN (ej, ej)]+ 2τ N

(m−1)(m−2) n(n−1),

∥H∥2 ≥ 2τ ∇

n(n−1) − 2
n(m−2) [∑j=1

n

RicN (ej, ej)]

+ 2τ N

(m−1)(m−2) + 2
n

λ.



Theorem	4.4 LetM n, n ≥ 3,be	an	n-dimensional	submanifold	of	an	m-dimensional	conformally	�lat
manifoldN m,m > 4,endowed	with	a	semi-symmetric	metric	connection∇̃such	that	the	vector	�ield	E	is
tangent	toM n.	Then,	for	any	integerk,2 ≤ k ≤ n,	and	any	pointx ∈ M n,	we	have

Proof The proof is obtained by a similar way given in the proof of Theorem 3.3. □
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Abstract
In this chapter, we prove general Chen inequalities in statistical submanifolds of Kenmotsu
statistical manifolds of constant ϕ-sectional curvature. Furthermore, we investigate the equality
case of these inequalities. Finally, we point out a representative example.
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1	 Introduction
The concept of curvature is one of the central notions of differential geometry, distinguishing the
geometrical core of the subject from those aspects that are analytic, algebraic, or topological [35].
The curvature invariants play a key role in physics, chemistry, geology, biology, art, technology, etc.
Honeycombs and shells, crystals and galaxies, DNA-molecules, red blood cells, �lowers, stems,
tissues, pollen grains of plants, the relativistic space-time universe itself, etc. all do assume shapes
in accordance with similar natural curvature conditions [24].

Motivated by the challenges of applying the famous Nash’s embedding theorem [32] to
submanifold theory, B.-Y. Chen formulated the following fundamental problem [6].

Problem	1.1 Establish simple relationships between main extrinsic invariants and main
intrinsic invariants of a submanifold.

https://doi.org/10.1007/978-981-95-5148-4_14
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Solutions of this problem are focused on some geometrical inequalities involving intrinsic
invariants and extrinsic invariants of submanifolds. On the one hand, there are intrinsic
curvatures like sectional curvature, scalar curvature, and Chen invariants, which give together like
the DNA-structure of the Riemannian manifolds involved [7]. On the other hand, there are
extrinsic curvatures like mean curvature, shape operator, and Casorati curvature, which
fundamentally relate to the shape that these submanifolds assume in their ambient space.

Fascinating solutions of this basic problem are revealed by B.-Y. Chen who de�ined in the 1990s
new types of intrinsic invariants called δ-invariants or Chen	invariants, involved in optimal
inequalities for submanifolds in real space forms [5]. The theory of δ-invariants turns out to be a
very fruitful branch of the differential geometry (see, e.g., [14, 16, 25, 31, 33, 37, 38]). Very ample
surveys on this research �ield can be explored in [9, 12, 13, 15, 29, 30].

Moreover, new answers of this basic problem refer to other types of geometric inequalities,
like Casorati inequalities and Wintgen inequalities (see, e.g., [1, 3, 4, 9–11, 13, 17, 18]).

Kenmotsu	geometry was �irst studied in 1972 by K. Kenmotsu [26] as a �ield of contact
geometry, leading to a broad spectrum of applications in physics and control theory [36]. On the
other hand, S. Amari de�ined the concept of statistical	manifold in 1985 in a study of information
geometry [2]. Moreover, H. Furuhata introduced the notion of Kenmotsu	statistical	manifold, which
is locally constructed as a warped product of a holomorphic statistical manifold and a real line
[22]. In the context of the above basic problem, new solutions are achieved considering a
Kenmotsu statistical manifold. Thus, Casorati inequalities for submanifolds in Kenmotsu statistical
manifolds of constant ϕ-sectional curvature are demonstrated in [18]. In addition, other Casorati
inequalities are proved in [19] for submanifolds in the latter ambient space endowed with semi-
symmetric metric connection. Recently, the authors of the present work established in [20] the
�irst Chen inequality for statistical submanifolds in Kenmotsu statistical manifolds of constant ϕ-
sectional curvature. The statistical manifolds endowed with almost product structures are
investigated in [39].

In this chapter, we obtain general Chen inequalities in terms of the general Chen invariants
(intrinsic invariants) and the mean curvature (extrinsic invariant) of statistical submanifolds in
Kenmotsu statistical manifolds having a constant ϕ-sectional curvature. Furthermore, the equality
case of these inequalities is investigated. Finally, a representative example is emphasized.

2	 Preliminaries
We consider (M̄ , ḡ) a Riemannian manifold, ḡ a Riemannian metric on M̄ , and ∇̄ an af�ine
connection on M̄ . The triplet (M̄ , ḡ, ∇̄) is named a statistical	manifold if the torsion tensor �ield of 
∇̄ vanishes and ∇̄g as a (0, 3)-tensor is symmetric [21]. The pair (ḡ, ∇̄) is called a statistical
structure on M̄  [34]. For any connection ∇̄ on (M̄ , ḡ), one de�ines its dual	connection∇̄∗ with
respect to ḡ as follows:

for any vector �ields X, Y , Z on M̄ . Furthermore, denote the Levi-Civita connection on M̄  by ∇̄0,
de�ined by [40]

If (M̄ , ḡ, ∇̄) is a statistical manifold, then so is (M̄ , ḡ, ∇̄∗).
For a statistical structure (ḡ, ∇̄), we set a tensor �ield K̄ ∈ Γ(TM̄ (1,2)) by

(2.1)
Moreover, K̄ is given by

ḡ(∇̄XY ,Z) + ḡ(Y , ∇̄∗
XZ) = X ḡ(Y ,Z),

∇̄0 = ∇̄+∇̄∗

2 .

K̄XY = K̄(X,Y ) = ∇̄XY − ∇̄0
XY .

K̄(X,Y ) = ∇̄0
XY − ∇̄∗

XY = 1
2 (∇̄XY − ∇̄∗

XY ).



It is clear that K̄ satis�ies the properties:

Let M be a submanifold of a statistical manifold (M̄ , ḡ, ∇̄) with g the induced metric on M and 
∇ the induced connection on M. Then it is known that (M, g, ∇) is a statistical manifold as well.

The Gauss formulas are given by Furuhata and Hasegawa [21]

for any X,Y ∈ Γ(TM), where we denoted h and h∗ the imbedding curvature tensor of M in M̄  for
∇̄ and ∇̄∗, respectively.

Next, denote by R, R̄, R∗, and R̄∗ the (0, 4)-curvature	tensors for the connections ∇, ∇̄, ∇∗, and
∇̄∗, respectively. We de�ine the statistical	curvature	tensor	�ield [21] on M and M̄ , denoted by S and
S̄, respectively,

(2.2)
for any X,Y ,Z ∈ Γ(TM), and

(2.3)
for any X,Y ,Z ∈ Γ(TM̄).

For any X,Y ∈ Γ(TM̄), one de�ines Q̄ the (1, 3)-tensor �ield on M̄  given by [34]

Recall that Q̄ is called the Hessian curvature tensor for the connection ∇̄.
It is known that Q̄(X,Y ) satis�ies the relation [34]:

Afterward, let (M̄, ḡ,ϕ, ξ) be a (2n + 1)-dimensional Kenmotsu manifold de�ined as an almost
contact metric manifold M̄  which satis�ies for any X,Y ∈ Γ(TM̄) the relations:

where ϕ ∈ Γ(TM̄ (1,1)), ξ ∈ Γ(TM̄), and η is a 1-form on M̄  with

A Kenmotsu manifold M̄  equipped with a statistical structure (ḡ, ∇̄) is called a Kenmotsu
statistical manifold [22] if the following expression holds for any X,Y ∈ Γ(TM̄):

where K̄ is the tensor �ield de�ined in (2.1).
A Kenmotsu statistical manifold (M̄, ∇̄, ḡ,ϕ, ξ) is said to be of constant ϕ-sectional curvature c

if the statistical curvature tensor �ield S̄ is given by Furuhata and Hasegawa [22]

(2.4)

K̄(X,Y ) = K̄(Y ,X),

ḡ(K̄(X,Y ),Z) = ḡ(Y , K̄(X,Z)).

∇̄XY = ∇XY + h(X,Y ),

∇̄∗
XY = ∇∗

XY + h∗(X,Y ),

S(X,Y )Z = 1
2 {R(X,Y )Z + R∗(X,Y )Z},

S̄(X,Y )Z = 1
2 {R̄(X,Y )Z + R̄∗(X,Y )Z},

Q̄(X,Y ) = [K̄X, K̄Y ].

R̄(X,Y ) + R̄∗(X,Y ) = 2R̄0(X,Y ) + 2Q̄(X,Y ).

(∇̄0
X
ϕ)(Y ) = ḡ(ϕX,Y )ξ − η(Y )ϕX,

∇̄0
X
ξ = X − η(X)ξ,

η(X) = ḡ(X, ξ).

K̄(X,ϕY ) = −ϕK̄(X,Y ),

S̄(X,Y )Z =
c−3

4
{ḡ(Y ,Z)X − ḡ(X,Z)Y )}

+
c + 1

4
{ḡ(ϕY ,Z)ϕX − ḡ(ϕX,Z)ϕY−2ḡ(ϕX,Y )ϕZ

− ḡ(Y , ξ)ḡ(Z, ξ)X + ḡ(X, ξ)ḡ(Z, ξ)Y
+ ḡ(Y , ξ)ḡ(Z,X)ξ − ḡ(X, ξ)ḡ(Z,Y )ξ},



for any X,Y ,Z ∈ Γ(TM̄).
Let M be an (m + 1)-dimensional submanifold of a Kenmotsu statistical manifold M̄  of

dimension 2n + 1. Then the Gauss	equations are the following [23]:

(2.5)

(2.6)

(2.7)

where h and h∗ are the imbedding	curvature	tensor of M in M̄  with respect to the dual connections
∇̄ and ∇̄∗.

The mean	curvature vector �ields of M are de�ined by, respectively,

These latter notions imply

and

where h0 and H 0 are the second fundamental form and the mean curvature �ield of M,
respectively, with respect to the Levi-Civita connection ∇0 on M.

Then, the squared	mean	curvatures of the submanifold M in M̄  are given by

where hα
ij = g(h(ei, ej), eα) and h∗α

ij = g(h∗(ei, ej), eα), for i, j ∈ {1, … ,m + 1}, 
α ∈ {m + 2, … , 2n + 1}.

If p ∈ M  and π ⊂ TpM  is a nondegenerate 2-plane, then the sectional	curvature is de�ined as
[21]

(2.8)

where {X,Y } is a basis of π.
The scalar	curvatureτ  of (M, ∇, g) at a point p ∈ M  is de�ined by

(2.9)

where {e1, … , em+1} is an orthonormal basis at p.
If L ⊂ TpM  is an r-dimensional subspace, then the scalar curvature of L is de�ined by

(2.10)

where {e1, … , er} ⊂ L is an orthonormal basis.
Let k ∈ N

∗ and n1, … ,nk ≥ 2 be integers such that n1 < m + 1 and n1 + … + nk ≤ m + 1.
For each k-tuple (n1, … ,nk) and any p ∈ M , the Chen invariant δ(n1, … ,nk) is de�ined by

ḡ(R̄(X,Y )Z,W) = g(R(X,Y )Z,W) − ḡ(h(Y ,Z),h∗(X,W))
+ḡ(h(X,Z),h∗(Y ,W)),

2ḡ(S̄(X,Y )Z,W) = 2g(S(X,Y )Z,W) − ḡ(h(Y ,Z),h∗(X,W))
+ḡ(h(X,Z),h∗(Y ,W)) − ḡ(h∗(Y ,Z),h(X,W)) + ḡ(h∗(X,Z),h(Y ,W)),

4ḡ(R̄0(X,Y )Z,W) = 4g(R0(X,Y )Z,W)
−ḡ(h(Y ,Z) + h∗(Y ,Z),h(X,W) + h∗(X,W))

+ḡ(h(X,Z) + h∗(X,Z),h(Y ,W) + h∗(Y ,W)),

H = 1
m+1 ∑

m+1

i=1
h(ei, ei), H ∗ = 1

m+1 ∑
m+1

i=1
h∗(ei, ei).

2h0 = h + h∗

2H 0 = H + H ∗,

∥ H ∥2= 1
(m+1)2 ∑

2n+1

α=m+2
(∑

m+1

i=1
hα
ii)

2

, ∥ H ∗ ∥2= 1
(m+1)2 ∑

2n+1

α=m+2
(∑

m+1

i=1
h∗α
ii )

2

,

K (π) =
g(S(X,Y )Y ,X)

g(X,X)g(Y ,Y ) − g2(X,Y )
,

τ(p) = ∑
1≤i<j≤m+1

g(S(ei, ej)ej, ei),

τ(L) =∑
1≤α<β≤r

K (eα ∧ eβ),



where L1, … ,Lk are mutually orthogonal subspaces of TpM  such that dim Li = ni, 
∀ i = 1, … , k.

In particular, δ(2) = τ − infK  is the Chen �irst invariant.
B.-Y. Chen proved in [8] a fundamental inequality involving the general Chen invariants

(intrinsic invariants) and the squared mean curvature (extrinsic invariant) for submanifolds M n

in Riemannian space forms M̄m(c):

These inequalities are known as Chen inequalities. General Chen inequalities for statistical
submanifolds in Hessian manifolds of constant Hessian curvature are established in [31].

Next, we consider the following result.

Lemma	2.1	([31]) Letm ≥ 2, k ≥ 1be	two	integers,	and	letn1,n2, … ,nk ≥ 2be	integers	such
thatn1 < m + 1, n1 + … + nk ≤ m + 1.	DenoteN0 = 0, Ni = n1 + … + nifori = 1, … , k.
Then,	for	any	real	numbersa1, … , am+1,	we	have

(2.11)

Moreover,	the	equality	holds	if	and	only	if

3	 Main	Inequality
Let (M̄, ∇̄, ḡ,ϕ, ξ) be a (2n + 1)-dimensional Kenmotsu statistical manifold of constant ϕ-
sectional curvature c, and let M be an (m + 1)-dimensional statistical submanifold of (
M̄, ∇̄, ḡ,ϕ, ξ).

Let Q be the Hessian curvature tensor for the connection ∇, that is,

for any X,Y ∈ Γ(TM). Then it is clear that we have (see also [31])

Let π be a plane in TpM , for p ∈ M . Take an orthonormal basis {X,Y } of π, and de�ine the
sectional Q-curvature K Q(π) of the plane section π by [34]

(3.12)

Then K Q(π) can be written also
(3.13)

We denote by

δ(n1, … ,nk)(p) = τ(p) − inf{τ(L1) + … + τ(Lk)},

δ(n1, … ,nk) ≤
n2(n+k−∑k

i=1 ni−1)

2(n+k−∑k
i=1 ni)

∥ H ∥2 + 1
2 [n(n−1)

−∑
k

i=1
ni(ni−1)]c.

∑
1≤i<j≤m+1

aiaj −∑
k

i=1
∑

Ni−1+1≤αi<βi≤Ni

aαi
aβi

≤ m+k−∑k
i=1 ni

2(m+1+k−∑k
i=1 ni)

(∑
m+1

j=1
aj)

2

.

∑
Ni

αi=Ni−1+1
aαi

= aNk+1 = … = am+1, ∀ i = 1, … , k.

Q(X,Y ) = [KX,KY ],

R(X,Y ) + R∗(X,Y ) = 2R0(X,Y ) + 2Q(X,Y ).

K
Q(π) = g(Q(X,Y )Y ,X)

=
1
2

{g(R(X,Y )Y ,X) + g(R∗(X,Y )Y ,X)−2g(R0(X,Y )Y ,X)}.

K
Q(π) = g(S(X,Y )Y ,X) − g(R0(X,Y )Y ,X).

K0 = K0(X,Y ) = g(R0(X,Y )Y ,X)



the sectional curvature of the Levi-Civita connection ∇0 on M and by h0 the second fundamental
form of M.

In this chapter, we assume that the structure vector �ield ξ is tangent to the submanifold M.
Then, we consider {e1, … , em, em+1 = ξ} and {em+2, … , e2n+1} orthonormal bases of TpM  and
T ⊥
p M , respectively, for any p ∈ M .

The Q-scalar curvature of M, denoted by τQ, corresponding to the sectional Q-curvature of M is
de�ined by

Then, τQ becomes
(3.14)

where τ  is the statistical scalar curvature of ∇ on M and τ0 is the scalar curvature of the Levi-
Civita connection ∇0 on M.

Next, we denote ϕX = PX + FX, where PX is the tangent component of ϕX and FX is the
normal component of ϕX.

Equations (2.4) and (2.6) imply

(3.15)

where ∥ P ∥2 denotes the squared norm of P, given by (see [27, 28])

Furthermore, summing over 1 ≤ i < j ≤ m + 1 for X = W = ei and Y = Z = ej in the
Gauss equation (2.7), we get

(3.16)

τQ = ∑
1≤i<j≤m+1

K
Q(ei ∧ ej)

=
1
2
∑

1≤i<j≤m+1

[g(R(ei, ej)ej, ei) + g(R∗(ei, ej)ej, ei)

− 2g(R0(ei, ej)ej, ei)]

= ∑
1≤i<j≤m+1

g(S(ei, ej)ej, ei) − ∑
1≤i<j≤m+1

g(R0(ei, ej)ej, ei).

τQ = τ − τ0,

τ =
m(m + 1)(c−3)

8
+

3(c + 1)
8

∥ P ∥2 −
(c + 1)m

4

+
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

(h∗α
ii h

α
jj + hα

iih
∗α
jj −2hα

ijh
∗α
ij ),

∥ P ∥2=∑
1≤i,j≤m+1

ḡ2(ei,Pej).



Then, using Eqs. (3.15) and (3.16) in Eq. (3.14), we obtain

(3.17)

On the other hand, let L1, … ,Lk be k mutually orthogonal subspaces of TpM , dim Li = ni, for
any i = 1, … , k, de�ined by

Moreover, we denote N0 = 0, Ni = n1 + … + ni for i = 1, … , k.
From the Gauss equations (2.6) and (2.7), we obtain

2τ0 = 2τ̄0 +
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

[hα
iih

α
jj − (hα

ij)
2]

+
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

[h∗α
ii h

∗α
jj − (h∗α

ij )2]

+
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

(hα
jjh

∗α
ii + hα

iih
∗α
jj −2hα

ijh
∗α
ij ).

τQ = (τ−2τ0) + τ0

=
m(m + 1)(c−3)

8
+

3(c + 1)
8

∥ P ∥2 −
(c + 1)m

4

+τ0−2τ̄0 −
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

[hα
iih

α
jj − (hα

ij)
2]

−
1
2

2n+1

∑
α=m+2

∑
1≤i<j≤m+1

[h∗α
ii h

∗α
jj − (h∗α

ij )2].

L1 = sp{e1, … , en1},
L2 = sp{en1+1, … , en1+n2},

… … … …
Lk = sp{en1+…+nk−1+1, … , en1+…+nk−1+nk

}.



where we denote Ψ(Li) = ∑
αi<βi

ḡ2(Peαi
, eβi

). By summing over i = 1, … , k the latest
relation, we get

(3.18)

By subtracting Eq. (3.18) from Eq. (3.17), we obtain

τQ(Li) =
1
2
∑

Ni−1+1≤αi<βi≤Ni

[g(R(eαi
, eβi

)eβi
, eαi

) + g(R∗(eαi
, eβi

)eβi
, eαi

)]

− ∑
Ni−1+1≤αi<βi≤Ni

g(R0(eαi
, eβi

)eβi
, eαi

)

= ∑
Ni−1+1≤αi<βi≤Ni

g(S(eαi
, eβi

)eβi
, eαi

)

− ∑
Ni−1+1≤αi<βi≤Ni

g(R0(eαi
, eβi

)eβi
, eαi

)

= τ(Li) − τ0(Li)

= τ0(Li)−2τ̄0(Li) +
ni(ni−1)(c−3)

8
+

3(c + 1)
4

Ψ(Li)

−
(c + 1)(ni−1)

4

−
1
2

2n+1

∑
r=m+2

∑
Ni−1+1≤αi<βi≤Ni

[hr
αiαi

hr
βiβi

− (hr
αiβi

)2]

−
1
2

2n+1

∑
r=m+2

∑
Ni−1+1≤αi<βi≤Ni

[h∗r
αiαi

h∗r
βiβi

− (h∗r
αiβi

)2],

k

∑
i=1

τQ(Li) =

k

∑
i=1

[τ0(Li)−2τ̄0(Li) +
ni(ni−1)(c−3)

8
+

3(c + 1)
4

Ψ(Li)

−
(c + 1)(ni−1)

4
]

−
1
2

2n+1

∑
r=m+2

k

∑
i=1

∑
Ni−1+1≤αi<βi≤Ni

[hr
αiαi

hr
βiβi

− (hr
αiβi

)2]

−
1
2

2n+1

∑
r=m+2

k

∑
i=1

∑
Ni−1+1≤αi<βi≤Ni

[h∗r
αiαi

h∗r
βiβi

− (h∗r
αiβi

)2].



Next, by using Lemma 2.1, we have

(3.19)

and

(3.20)

Applying the expressions of (3.19) and (3.20) in the latest equation, we establish the general
Chen inequalities for arbitrary statistical submanifolds of a Kenmotsu statistical manifold of
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constant ϕ-sectional curvature c, as follows.

Theorem	3.1 Let	(M̄, ∇̄, ḡ,ϕ, ξ)	be	a(2n + 1)-dimensional	Kenmotsu	statistical	manifold	of
constantϕ-sectional	curvature	c,	and	M	is	an(m + 1)-dimensional	statistical	submanifold	of	(
M̄, ∇̄, ḡ,ϕ, ξ).	Then,	for	any	integersn1, … ,nk ≥ 2, k ∈ N∗,	such	thatn1 < m + 1, 
n1 + … + nk ≤ m + 1,	the	following	inequalities	hold:

(3.21)

whereL1, … ,Lkare	mutually	orthogonal	subspaces	ofTpM ,	withdim Li = ni, ∀ i = 1, … , k.
Moreover,	the	equality	case	holds	in (3.21) at	a	pointp ∈ M if	and	only	if	there	exist

{e1, … , em+1}and{em+2, … , e2n+1}orthonormal	bases	ofTpMandT ⊥
p M ,	respectively,	such	that

the	shape	operators	have	the	expressions:

forr = m + 2, … , 2n + 1,	where	I	is	the	identity	matrix,	andAr
iandA

∗r
i are	symmetricni × ni

submatrices	withtrace Ar
i

= μrandtrace A∗r
i

= μ∗
r ,	for	alli = 1, … , k.

We remark that the equality case of (3.21) follows immediately from the equality case of Lemma
2.1. We would like to note that the particular case of the above theorem for k = 1 and n1 = 2 was
established in [20].

We notice also that if (M̄ = N × R, ∇̄ = ∇̄0 + K̄, ḡ,ϕ, ξ) is a Kenmotsu statistical manifold of
constant ϕ-sectional curvature c, where (N , ∇̃, g̃,J) is a holomorphic statistical manifold, then 
c = −1 [22]. In this respect, we have the following result.

Corollary	3.2 Let	(M̄ = N × R, ∇̄ = ∇̄0 + K̄, ḡ,ϕ, ξ)	be	a(2n + 1)-dimensional	Kenmotsu
statistical	manifold	of	constantϕ-sectional	curvature,	where(N , ∇̃, g̃,J)is	a	holomorphic	statistical
manifold,	and	let	M	be	an(m + 1)-dimensional	statistical	submanifold	ofM̄ .	Then,	for	any	integers
k ∈ N∗andn1, … ,nk ≥ 2such	thatn1 < m + 1, n1 + … + nk ≤ m + 1,	the	following	inequalities
hold:

(3.22)
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whereL1, … ,Lkare	mutually	orthogonal	subspaces	ofTpM ,	withdim Li = ni, ∀ i = 1, … , k.

4	 An	Example
Let (H 2n+1, ∇̄ = ∇̄0 + K̄, ḡ,ϕ, ξ) be the (2n + 1)-dimensional Kenmotsu statistical manifold
studied in [22, Examples 3.3 and 3.10]. We have

The structure tensors (g,ϕ, ξ) are de�ined by

and

For any X,Y ∈ Γ(TH 2n+1), we set the (1, 2)-tensor �ield K̄ as

where ν ∈ C∞(H 2n+1) and η̄ is the 1-form on H 2n+1 dual to ξ, that is, η̄(X) = g(X, ξ).
Then (H 2n+1, ∇̄ = ∇̄0 + K̄, g,ϕ, ξ) is a Kenmotsu statistical manifold with constant ϕ-

sectional curvature c = −1. Moreover, M = H 2k+1 (where 0 < k < n) is a statistical submanifold
of the Kenmotsu statistical manifold H 2n+1 for which the inequality (3.21) holds with equality
case.

5	 Conclusions
In this chapter, we established general Chen inequalities for statistical submanifolds in Kenmotsu
statistical manifolds of constant ϕ-sectional curvature. Moreover, the equality case of these
inequalities is examined, and an example is revealed to highlight our results.
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38. Suceavă, B.D., Vajiac, M.B.: Estimates of B.Y. Chen’s δ-invariant in terms of Casorati curvature and mean curvature for strictly
convex Euclidean hypersurfaces. Intern. Electron. J. Geom. 12(1), 26–31 (2019)

39. Vıl̂cu, G.E.: Almost product structures on statistical manifolds and para-Kähler-like statistical submersions. Bull. Sci. Math. 171,
103018 (2021)
[Crossref]

40. Vos, P.: Fundamental equations for statistical submanifolds with applications to the Bartlett correction. Ann. Inst. Statist. Math. 41,
429–450 (1989)
[MathSciNet][Crossref]

http://www.ams.org/mathscinet-getitem?mr=2043839
https://doi.org/10.1063/1.1668333
http://www.ams.org/mathscinet-getitem?mr=319102
http://www.ams.org/mathscinet-getitem?mr=3896999
https://doi.org/10.1007/s11040-018-9297-x
https://doi.org/10.3390/math10173061
http://www.ams.org/mathscinet-getitem?mr=75639
https://doi.org/10.2307/1969989
http://www.ams.org/mathscinet-getitem?mr=4565245
http://www.ams.org/mathscinet-getitem?mr=3466639
https://doi.org/10.1016/j.laa.2016.02.021
http://www.ams.org/mathscinet-getitem?mr=1072814
https://doi.org/10.1080/00029890.1990.11995659
https://doi.org/10.2991/978-94-6239-240-3_5
https://doi.org/10.1016/j.bulsci.2021.103018
http://www.ams.org/mathscinet-getitem?mr=1032591
https://doi.org/10.1007/BF00050660


(1)
(2)
(3)

 

 

 

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2026
B.-Y. Chen, M. A. Choudhary  (eds.), Geometric	Inequalities	and	Applications, Infosys Science Foundation Series in Mathematical Sciences
https://doi.org/10.1007/978-981-95-5148-4_15

B.	Y.	Chen	Inequalities	for	Pointwise	Quasi	Hemi-slant
Submanifolds	of	a	Kaehler	Manifold
Nergiz O� nen Poyraz1  , Mehmet Akif Akyol2   and Erol Yaşar3  

Faculty of Arts and Sciences, Department of Mathematics, Çukurova University, Adana, Turkey
Faculty of Engineering and Natural Sciences, Department of Mathematics, Uşak University, Uşak, Turkey
Faculty of Science and Arts, Department of Mathematics, Mersin University, Mersin, Turkey

 
Nergiz	Önen	Poyraz
Email:	nonen@cu.edu.tr

Mehmet	Akif	Akyol	(Corresponding	author)
Email:	mehmet.akyol@usak.edu.tr

Erol	Yaşar
Email:	yerol@mersin.edu.tr

Abstract
In this study, we establish Chen-type inequalities for pointwise quasi hemi-slant submanifolds within
Kaehler manifolds, giving explicit relations among the mean curvature, scalar curvature, sectional curvature,
Ricci curvature, and the ambient space’s sectional curvature. Moreover, we characterize the conditions
under which these inequalities become equalities.

Keywords Pointwise quasi hemi-slant submanifold – Chen inequality – Kaehler manifold – Complex space
form – Second fundamental form

1	 Introduction
The theory of submanifolds is a central topic in differential geometry, with signi�icant applications in diverse
areas such as mathematical physics, image processing, economic modeling, and computer-aided design.
Within complex geometry, one particularly rich research direction concerns slant submanifolds, introduced
by Chen in [5] as a generalization of holomorphic and totally real submanifolds, and further summarized in
[6]. Over the years, many extensions of this concept have been proposed, including semi-slant, hemi-slant,
bi-slant, and quasi bi-slant submanifolds, each studied extensively (see [1, 3, 4, 9, 11, 13, 14, 18–21, 23, 24,
26–28, 30, 33]).

In 2002, Chen and Garay [16], inspired by Etayo’s de�inition of quasi-slant submanifolds [17], introduced
the notion of pointwise slant submanifolds in Hermitian geometry. Later, Şahin [29] de�ined pointwise semi-
slant submanifolds. More recently, Akyol and Beyendi [2] proposed the concept of pointwise quasi hemi-
slant submanifolds as a natural generalization encompassing slant, semi-slant, hemi-slant, bi-slant, and
quasi bi-slant submanifolds.

In Riemannian geometry, one of the most notable curvature invariants for a Riemannian manifold 
(M1, g1) is the Chen invariant, introduced by Chen [8] as

where τ(p) is the scalar curvature of M1 and

is the in�imum of the sectional curvatures at the point p ∈ M1.
A fundamental problem in submanifold theory is to discover simple yet meaningful relationships

between the intrinsic and extrinsic invariants of a submanifold. In this regard, Chen established a series of

δM1
= τ(p) − inf (K)(p),

inf (K)(p) =inf {K(Π) : Π is a plane section of TpM1}
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in�luential inequalities—now known as Chen inequalities—in [7, 10]. In recent years, Chen-like inequalities
have been investigated for various classes of Riemannian submanifolds (see [15, 22, 25, 31, 32, 35]).

The present work focuses on pointwise quasi hemi-slant submanifolds of Kähler manifolds. We establish
several inequalities involving the mean curvature, scalar curvature, sectional curvature, Ricci curvature, and
the sectional curvature of the ambient space. In addition, we analyze the conditions under which the
equality cases occur.

The structure of the chapter is as follows: Sect. 2 reviews the necessary preliminaries, including basic
de�initions and fundamental formulas. Section 3 presents the main results, deriving inequalities for
pointwise quasi hemi-slant submanifolds of Kaehler manifolds and examining the equality cases.

2	 Preliminaries
Let M̃1 be a smooth manifold of dimension 2m1. Then, M̃1 is said to be an almost Hermitian manifold if it
admits a tensor �ield J1 of type (1, 1) and a Riemannian metric h̃ on M̃1 satisfying

(2.1)
for any vector �ields E1,E2 on TM̃1, where I denotes the identity transformation. The fundamental 2-form 
Ω on M̃1 is de�ined by Ω(E1,E2) = h̃(E1,J1E2), ∀E1,E2 ∈ Γ(TM̃1), with Γ(TM̃1) being the section of
tangent bundle TM̃1 of M̃1. An almost Hermitian manifold M̃1 is called a Kaehler manifold [34] if

(2.2)
where ∇̃ is the Levi-Civita connection on M̃1 with respect to h. Let M2 be a Riemannian manifold
isometrically immersed in M̃1, and the induced Riemannian metric on M2 is denoted by the same symbol h̃
throughout this chapter. Let A  and h denote the shape operator and second fundamental form, respectively,
of immersion of M2 into M̃1. The Gauss and Weingarten formulas of M2 into M̃1 are given by [12]

(2.3)
and

(2.4)
for any vector �ields E1,E2 ∈ Γ(TM2) and F2 ∈ Γ(T ⊥M2), where ∇ is the induced connection on M2, ∇⊥

represents the connection on the normal bundle T ⊥M2 of M2, and AF2  is the shape operator of M2 with
respect to normal vector F2 ∈ Γ(T ⊥M2). Moreover, AF2

 and h are related by
(2.5)

for any vector �ields E1,E2 ∈ Γ(TM2) and F2 ∈ Γ(T ⊥M2). The mean curvature vector H is given by 
H = 1

n
trace(h). The submanifold M2 is totally geodesic if h = 0 and minimal if H = 0. The Gauss equation

is given by

(2.6)

for all E1,E2,E3,E4 ∈ Γ(TM2), where R is the curvature tensor of M2. Let Π = Span{ei, ej} be 2-
dimensional nondegenerate plane of the tangent space TpM2 at p ∈ M2. Then the number

(2.7)

is called the sectional curvature of section Π at p ∈ M2. Let M2 be an m2-dimensional Riemannian
manifold. We denote by K(π) the sectional curvature of M2 associated with a plane section π ⊂ TpM2, 
p ∈ M2. If {e1, … , em2} is an orthonormal basis of the tangent space TpM2, then the scalar curvature τ  at 
p is de�ined by

Let M2 be an m2-dimensional Riemannian manifold, L be a k-plane section of TpM2, p ∈ M2, and E be a unit
vector in L. We choose an orthonormal basis {e1, … , ek} of L such that e1 = E. Ricci curvature (or k-Ricci
curvature) of L at E is de�ined by

J 2
1 = −I, h̃(J1E1,J1E2) = h̃(E1,E2)

(∇̃E1J1)E2 = 0,

∇̃E1
E2 = ∇E1

E2 + h(E1,E2)

∇̃E1
F2 = −AF2

E1 + ∇⊥
E1
F2,

h̃(h(E1,E2),F2) = h̃(AF2
E1,E2)

R̃(E1,E2,E3,E4) = R(E1,E2,E3,E4) − h̃(h(E1,E4),h(E2,E3))

+h̃(h(E1,E3),h(E2,E4))

Kij =
h̃(R(ej,ei)ei,ej)

h̃(ei,ei)h̃(ej,ej)−h̃(ei,ej)
2

τ(p) =∑
1≤i<j≤m

Kij.

RicL(E) = K12 + K13 + … + K1k,



where Kij denotes, as usual, the sectional curvature of the 2-plane section spanned by ei, ej. For each
integer k, 2 ≤ k ≤ m2, the Riemannian invariant θk on M2 is de�ined by

(2.8)

where L runs over all k-plane sections in TpM2 and E runs over all unit vectors in L. A Kaehler manifold M̃1

is named a complex space form if it has a �ixed holomorphic sectional curvature represented by M̃1(c). The
curvature tensor of the complex space form M̃1(c) is dedicated by

(2.9)

for any E1,E2,F1 ∈ Γ(TM̃1).

De�inition	2.1 A submanifold M2 of an almost Hermitian manifold M̃1 is called pointwise slant if, at each
point p ∈ M2, the Wirtinger angle θ(E1) is independent of the choice of nonzero vector E1 ∈ T ∗

p M2, where 
T ∗
p M2 is the tangent space of nonzero vectors. In this case, θ is called the slant function of M2 [16].

De�inition	2.2	([2]) Let M2 be an isometrically immersed submanifold in a Kaehler manifold M̃1. Then
we say that M2 is a pointwise quasi hemi-slant submanifold if it is furnished with three orthogonal
distributions (D,Dθ,D

⊥) satisfying the conditions:

(i)
TM2 = D ⊕ Dθ ⊕ D⊥.  

(ii)
The distribution D is invariant, i.e., JD = D.  

(iii)
For any nonzero vector �ield E1 ∈ (Dθ)p , p ∈ M2, the angle θ between J1E1 and (Dθ)p is slant
function and is independent of the choice of the point p and E1 in (Dθ)p,

 
(iv)

The distribution D⊥ is anti-invariant, i.e., J1D
⊥ ⊆ T ⊥M .  

We call the angle θ a pointwise quasi hemi-slant angle of M2. A pointwise quasi hemi-slant submanifold M2

is called proper if its pointwise slant function satis�ies θ ≠ 0, π
2 , and θ is not constant on M2.

If we represent by d̃1, d̃2, and d̃3 the dimension of D, Dθ, and D⊥, respectively, then from our
generalized de�inition of pointwise quasi hemi-slant submanifold M2, we can easily see the following
particular cases:
(i)

If d̃1 = 0, then M2 is pointwise hemi-slant submanifold. 
(ii)

If d̃2 = 0, then M2 is semi-invariant submanifold  
(iii)

If d̃3 = 0, then M2 is pointwise semi-slant submanifold.  
Let M2 be a pointwise quasi hemi-slant submanifold of a Kaehler manifold M̃1. Then, for any 

ξ ∈ Γ(TM2), we have
(2.10)

where Q, R, and S denote the projections on the distributions D, Dθ, and D⊥, respectively.
(2.11)

where Pξ and Fξ are tangential and normal components on M2. By using (2.10) and (2.11), we get
immediately

(2.12)
here since JD = D, we have FQξ = 0. Thus we get

(2.13)
and

θk(p) = 1
k−1 inf

L,X
RicL(E), p ∈ M,

R̃(E1,E2)F1 = c
4 {h̃(E2,F1)E1 − h̃(E1,F1)E2 + h̃(J1E2,F1)J1E1

−h̃(J1E1,F1)J1F2 + 2h̃(E1,J1E2)J1F1}

ξ = Qξ + Rξ + Sξ,

J1ξ = Pξ + Fξ,

J1ξ = PQξ + FQξ + PRξ + FRξ + PSξ + FSξ;

J1(TM2) = D ⊕ TDθ ⊕ FDθ ⊕ J1D
⊥



(2.14)
where μ is the orthogonal complement of FDθ ⊕ J1D

⊥ in T ⊥M2 and J1μ = μ. Also, for any η ∈ T ⊥M2,
we have

(2.15)
where Bη ∈ Γ(TM2) and Cη ∈ Γ(T ⊥M2).

3	 Main	Results
Let M2 be m2-dimensional pointwise quasi hemi-slant submanifold of a complex space form M̃1(c). Then,
from (2.6) and (2.9) we get following equations:

(3.16)

We choose

an orthonormal basis of TpM2, where m2 = 2d1 + 2d2 + d3. Then we get

(3.17)

and

(3.18)

Lemma	3.1 Ifr ≥ 2andp1, … , pr, pare	real	numbers	such	that

then2p1p2 ≥ pwith	equality	holding	if	and	only	if

Theorem	3.2 LetM2bem2-dimensional	pointwise	quasi	hemi-slant	submanifold	of	a	complex	space	form
M̃1(c).	Then,	the	following	statements	are	true:

(i)
For	any	plane	sectionπinvariant	by	P	and	tangent	toD,

(3.19)

 

(ii)
For	any	plane	sectionπinvariant	by	P	and	tangent	toDθ,

(3.20)

 

(iii) For	any	plane	sectionπinvariant	by	P	and	tangent	toD⊥,

(3.21)

Equality	case	of (3.19), (3.20),	and (3.21) at	a	pointp ∈ M2if	and	only	if
(3 22)

 

T ⊥M2 = FDθ ⊕ J1D
⊥ ⊕ μ,

J1η = Bη + Cη,

R(E1,E2,E3,E4) = R̃(E1,E2,E3,E4) + h̃(h(E1,E4),h(E2,E3))

− h̃(h(E1,E3),h(E2,E4))

= c
4

{h̃(E2,E3)h̃(E1,E4) − h̃(E1,E3)h̃(E2,E4) + h̃(J1E2,E3)h̃(J1E1,E4)

−h̃(J1E1,E3)h̃(J1E2,E4) + 2h̃(E1,J1E2)h̃(J1E3,E4)}

+h̃(h(E1,E4),h(E2,E3)) − h̃(h(E1,E3),h(E2,E4)).

e1, e2 = J1e1, … , e2r1−1, e2d1
= J1e2d1−1, e2d1+1, e2d1+2 = secσPe2d1+1, … ,

e2d1+2d2−1, e2d1+2d2
= secσPe2d1+2d2−1, e2d1+2d2+1, … , e2d1+2d2+d3

h̃2(Jed, ed+1) =

⎧⎪⎨⎪ 1 , d ∈ {1, 2, … , 2d1−1}

cos2 σ , d ∈ {2d1 + 1, … , 2d1 + 2d2−1}

0 , d ∈ {2d1 + 2d2 + 1, … , 2d1 + 2d2 + d3−1}

∑
m2

i,j=1
h̃2(Jei, ej) = 2(d1 + d2 cos2 σ).

(∑r

i=1
pi)

2

= (r−1)(∑r

i=1
p2
i + p),

p1 + p2 = p3 = … = pn.

τ(p) −K(π) ≤
m2

2(m2−2)

2(m2−1)
∥H∥2

+ c
8 ((m2

2 − m2−2) + 6(d1−1 + d2 cos2 σ)).

τ(p) −K(π) ≤
m2

2(m2−2)

2(m2−1)
∥H∥2

+ c
8
((m2

2 − m2−2) + 6(d1 + (d2−1) cos2 σ)).

τ(p) −K(π) ≤
m2

2(m2−2)

2(m2−1)
∥H∥2

+ c
8 ((m2

2 − m2−2) + 6(d1 + d2 cos2 σ)).



Case	1

(3.22)

and

(3.23)

whereλ = a + b, {e1, e2, … , em2
}basis	ofTpM2and{em2+1, em2+2, … , en}basis	ofTpM

⊥
2 .

Proof Let p∈M2, {e1, e2, … , em2
} be the basis of TpM2, and {em2+1, em2+2, … ,  be the basis of 

TpM
⊥
2 . If we put E1 = E4 = ei and E2 = E3 = ej in Eq. (3.16), then

(3.24)

holds. Hence we derive

(3.25)

where

If we use (3.18) in (3.25), we get
(3.26)

If we denote
(3.27)

then
(3.28)

holds.
Let p ∈ M2, π ⊂ TpM2, dimπ = 2, and π invariant by P.
We consider three cases:

The plane section π is tangent to D. We may assume that π = sp{e1, e2} and em2+1 = H
∥H∥

, and Eq.
(3.28) can be rewritten by

(3.29)

or

(3.30)

where

Am2+1 =
⎡⎢⎣ a 0 0 . . 0

0 b 0 . . 0

0 0 . . . λIm2−2

⎤⎥⎦Ar = ,  r = m2 + 2, … ,n,
⎡⎢⎣ hr

11 hr
12 0 . . 0

hr
12 hr

22 0 . . 0

0 0 . . . 0n−2

⎤⎥⎦∑
m2

i,j=1
R(ei, ej, ej, ei) =∑

m2

i,j=1
h̃(h(ei, ei),h(ej, ej)) − h̃(h(ei, ej),h(ej, ei))

+ c
4 ∑

m2

i,j=1
{h̃(ej, ej)h̃(ei, ei) − h̃(ei, ej)h̃(ej, ei)

+h̃(J1ej, ej)h̃(J1ei, ei)

−h̃(J1ei, ej)h̃(J1ej, ei) + 2h̃(ei,J1ej), h̃(J1ej, ei)}

2τ(p) = m2
2∥H∥2 − ∥h∥2 + c

4 {(m2
2 − m2) + 6∑

i,j=1

m2

h̃2(J1ei, ej)},

∥h∥2 =∑
n

i,j=1
h̃(h(ei, ej),h(ei, ej)).

2τ(p) = m2
2∥H∥2 − ∥h∥2 + c

4 {(m2
2 − m2) + 6(d1 + d2 cos2 σ)}.

ε = 2τ(p) −
m2

2(m2−2)

m2−1
∥H∥2 − c

4
{(m2

2 − m2) + 6(d1 + d2 cos2 σ)},

m2
2∥H∥2 = (m2−1)(ε + ∥h∥2)

(∑
i=1

m2

hm2+1
ii )

2

= (m2−1)(∑
i,j=1

m2∑
r=m2+1

n

(hr
ij)

2
+ ε)

(∑
i=1

m2

hm2+1
ii )

2

= (m2 + 1)(∑
i=1

m2

(hm2+1
ii )

2
+∑

i≠j

m2

(hm2+1
ij )

2

+∑
i,j=1

m2 ∑
r=m2+2

n

(hr
ij)

2
+ ε),

hr
ij = h̃(h(ei, ej), er).



If we apply Lemma 3.1 to Eq. (3.30), we get

(3.31)

If we put E1 = E3 = e1 and E2 = E4 = e2 in Eq. (3.16), then we get

(3.32)

By using (3.31) in (3.32)

Finally, we can write
(3.33)

By virtue of (3.27) and (3.33), we have

(3.34)

Hence we get (3.19).
If the equality case of (3.19) holds, then the inequalities given by (3.31) and (3.34) become equalities,

and we have the equality in Lemma 3.1

We may choose {e1, e2} such that hm2+1
12 = 0, and we denote a = h

m2+1
11 , b = h

m2+1
22 , 

λ = h
m2+1
33 = … = hm2+1

m2m2
. Thus, the shape operator of M2 takes the form given by (3.22) and (3.23). The

converse is easy to follow. Similar to the proof of Case (i), one can obtain Case (ii) and Case (iii). □

From the last theorem, we have the following corollary:

Corollary	3.3 LetM2be	anm2-dimensional	pointwise	quasi	hemi-slant	submanifold	of	a	complex	space	form
M̃1(c).	Then,	the	following	statements	are	true:

(3.35)

(3.36)

(3.37)
Equality	case	of (3.35), (3.36),	and (3.37) if	and	only	if,	for	the	basis{e1, e2, … , em2}ofTpM2and	basis

{em2+1, em2+2, … , en}ofTpM
⊥
2 ,	equations (3.22) and (3.23) are	satis�ied.

2hm2+1
11 h

m2+1
22 >∑

i≠j

m2

(hm2+1
ij )

2

+∑
i,j=1

m2 ∑
r=m2+2

n

(hr
ij)

2

+ ε.

K(π) = c
4
{h̃(e2, e2)h̃(e1, e1) − (h̃(e1, e2))

2
+ h̃(J1e2, e2)h̃(J1e1, e1)

−h̃(J1e1, e2)h̃(J1e2, e1)} + 2h̃(e1,J1e2)h̃(J1e2, e1)}

+∑
r=m2+1

n

(hr
11h

r
22 − (hr

12)2)

= c
4 {1 + 3g2(Je1, e2)} +∑

r=m2+1

n

(hr
11h

r
22 − (hr

12)2).

K(π) ≥ c + 1
2 (∑i≠j

m2

(hm2+1
ij )

2
+∑

r=m2+2

n

∑
i,j>2

m2

(hr
ij)

2

+∑
r=m2+1

n

(hr
11 + hr

22)2 + ε)

+ ∑
j>2

m2

((hm2+1
1j )

2
+ (hm2+1

2j )
2
).

K(π) ≥ c + ε
2 .

τ(p) − K(π) ≤
m2

2(m2−2)

2(m2−1) ∥H∥2

+ c
8 ((m2

2 − m2−2) + 6(d1−1 + d2 cos2 σ)).

hm2+1
ij = 0, ∀i ≠ j,  i, j > 2,

hr
ij = 0, ∀i ≠ j,  i, j > 2, r = m2 + 1, … ,n,

hr
11 + hr

22 = 0, ∀r = m2 + 2, … ,n,

h
m2+1
1j = h

m2+1
2j = 0, ∀j > 2,

h
m2+1
11 + h

m2+1
22 = hm2+1

33 = … = hm2+1
m2m2

.

δM2 ≤
m2

2(m2−2)

2(m2−1)
∥H∥2 + c

8 ((m2
2 − m2−2) + 6(d1−1 + d2 cos2 σ)),

δM2 ≤
m2

2(m2−2)

2(m2−1)
∥H∥2 + c

8 ((m2
2 − m2−2) + 6(d1 + (d2−1) cos2 σ),

δM2 ≤
m2

2(m2−2)

2(m2−1)
∥H∥2 + c

8 ((m2
2 − m2−2) + 6(d1 + d2 cos2 σ)).



Theorem	3.4 LetM2be	anm2-dimensional	pointwise	quasi	hemi-slant	submanifold	of	a	complex	space	form
M̃1(c).	Then,	the	following	statements	are	true.

(i)
For	each	unit	vectorE ∈ Γ(D)we	have

(3.38)
 

(ii)
For	each	unit	vectorE ∈ Γ(Dθ)we	have

(3.39)
 

(iii)
For	each	unit	vectorE ∈ Γ(D⊥)we	have

(3.40)
Also,	the	equality	cases	of (3.38)–(3.40) hold	if	and	only	if	there	exist	an	orthonormal	basis

{e1 = E, e2, … , em2
}ofTpM2and{em2+1, em2+2, … , en}ofTpM

⊥
2 such	that

 

Proof Let M2 be an m2-dimensional hemi-slant submanifold of a complex space form M̃1(c). From (3.26),
we can write

(3.41)
From (3.41), we have

(3.42

Using (2.6), we also have

(3.43)

On the other hand, since M̃1(c) is a complex space form, its curvature tensor R̃ satis�ies (2.9), and we get

(3.44)

As e1 ∈ Γ(D), we get immediately

(3.45)

By virtue of (3.42), (3.43), and (3.45), we have

(3.46)

holds. Hence, we get

(3.47)

If we choose e1 = E as any unit vector of TpM2 in the above equation, we obtain (3.38). Now, we remark
that the equality case of (3.38) holds if and only if the equality is attained in (3.47). However, this happens if
and only if

Ric(E) ≤ 1
4
m2

2∥H∥2 + c
4

(m2 + 2).

Ric(E) ≤ 1
4 m

2
2∥H∥

2
+ c

4 (m2−1 + 3 cos2 σ).

Ric(E) ≤ 1
4
m2

2∥H∥2 + c
4

(m2−1).

hr
12 = hr

13 = … = hr
1m2

= 0 and hr
11 = hr

22 + … + hr
m2m2

,  r ∈ {m2 + 1, … ,n}.

2τ(p) = m2
2∥H∥2 − ∥h∥2 + c

4 {(m2
2 − m2) + 6(d1 + d2 cos2 σ)}.

1
4 m

2
2∥H∥2 = τ(p) − c

8 {(m2
2 − m2) + 6(d1 + d2 cos2 σ)}

+ 1
4 ∑r=m2+1

n

(hr
11 − hr

22 − … − hr
nn)

2

+∑
r=m2+1

n

∑
j=2

m2

(hr
1j)

2
−∑

n

r=m2+1
∑

2≤i<j≤m2
(hr

iih
r
jj − (hr

ij)
2).

∑
n

r=m2+1
∑

2≤i<j≤m2
(hr

iih
r
jj − (hr

ij)
2
) =∑

2<i<j≤m2
Kij −∑

2≤i<j≤m2

∼
Kij.

∑
2≤i<j≤m2

∼
Kij = c

4 {
(m2−2)(m2−1)

2 + 3∑
2≤i<j≤m2

h̃2(J1ei, ej)}.

∑
2≤i<j≤m2

∼
Kij = c

8 {(m2
2−3m2−2) + 6(d1−1 + d2 cos2 σ)}.

1
4
m2

2∥H∥2 = τ(p) − c
4 {(m2 − m) + 6(d1 + d2 cos2 σ)}

+ 1
4 ∑r=m2+1

n

(hr
11 − hr

22 − … − hr
nn)

2

+∑
r=m2+1

n

∑
j=2

m

(hr
1j)

2 −∑
2<i<j≤m2

Kij

+ c
8 {(m2

2−3m2−2) + 6(d1−1 + d2 cos2 σ)}

Ric(e1) = 1
4 m

2
2∥H∥2 + c

4 (m2−1 + 3) − 1
4 ∑r=m2+1

n

(hr
11 − hr

22 − … − hr
nn)

2

−∑
r=m2+1

n

∑
j=2

m2

(hr
1j)

2.

hr
12 = hr

13 = … = hr
1m2

= 0 and hr
11 = hr

22 + … + hr
m2m2

,  r ∈ {m2 + 1, … ,n}.



The proof of the converse part is straightforward. Thus we obtain Case (i). Similar to the proof of Case (i),
one can get Case (ii) and Case (iii). □

Theorem	3.5 LetM2be	anm2-dimensional	pointwise	quasi	hemi-slant	submanifold	of	a	complex	space	form
M̃1(c).	Then	we	get

(3.48)
The	equality	case	of (3.48) holds	atp ∈ M2if	and	only	if	p	is	a	totally	umbilical	point.

Proof Let p ∈ M2 and {e1, … , em2
} be an orthonormal basis of TpM2. The relation (3.25) is equivalent to

(3.49)
We choose an orthonormal basis {e1, … , em2

, em2+1, … , en} at p such that em2+1 is parallel to the mean
curvature vector H(p) and e1, … , em2  diagonalize the shape operator Aem2+1 . Then the shape operators
take the forms

(3.50)

(3.51)
By (3.49), we have

(3.52)

Since

(3.53)

we �ind

(3.54)

which gives

(3.55)

Hence by using (3.52) and (3.55), we get

(3.56)

If the equality case of (3.48) holds, then from (3.53) and (3.56) it follows that
(3.57)

Hence, p is a totally umbilical point. The converse is straightforward. □

Theorem	3.6 LetM2be	anm2-dimensional	pointwise	quasi	hemi-slant	submanifold	of	a	complex	space	form
M̃1(c).	Then	we	have

(3.58)

Proof Let {e1, … , em2
} be an orthonormal basis of TpM2. Denote by Li1…ik  the k-plane section spanned

by {ei1
, … , eik}. If we consider the de�initions of the Ricci and scalar curvatures, we have

(3.59)

τ(p) ≤
(m2

2−m2)
2 ∥H∥2 + c

8 {(m2
2 − m2) + 6(d1 + d2 cos2 σ)}.

m2
2∥H∥2 = 2τ(p) + ∥h∥2 + c

4
{(m2

2 − m2) + 6(d1 + d2 cos2 σ)}.

Aen+1 = ,

⎡⎢⎣ a1 0 . . . 0

0 a2 . . . 0

. . . .

. . . .

. . . .

0 0 . . . am2

⎤⎥⎦Aer = (hr
ij),    i, j = 1, … ,m2;    r = m2 + 2, … ,n,    traceAer = 0.

m2
2∥H∥2 = 2τ(p) +∑

n

i=1
a2
i +∑

n

r=m2+2
∑

m2

i,j=1
(hr

ij)
2

+ c
4
{(m2

2 − m2) + 6(d1 + d2 cos2 σ)}.

0 ≤∑
i<j

(pi − pj)
2 = (m2−1)∑

i
p2
i −2∑

i<j
pipj,

m2
2∥H∥2 = (∑

m2

i=1
pi)

2

=∑
m2

i=1
p2
i + 2∑

i<j
pipj ≤ m2∑

m2

i=1
p2
i ,

∑
m2

i=1
p2
i ≥ m2∥H∥2.

m2
2∥H∥2 ≥ 2τ(p) + m2∥H∥2 +∑

n

r=m2+2
∑

m2

i,j=1
(hr

ij)
2

+ c
4
{(m2

2 − m2) + 6(d1 + d2 cos2 σ)}.

p1 = p2 = … = pm2
  and  Aer = 0,  r = m2 + 2, … ,n.

θk(p) ≤ ∥H∥2 + c
4 {1 + 6

m2
2−m2

(d1 + d2 cos2 σ)}.

τ(Li1…ik) = 1
2 ∑i∈{i1,…,ik}

RicLi1…ik
(ei),



(3.60)

By virtue of (2.8), (3.59), and (3.60), we get
(3.61)

Taking into account of (3.48) and (3.61), we obtain (3.58). □
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