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Preface

Geometric inequalities play a crucial role in various branches of science
and engineering, providing foundational tools for theoretical
development and problem-solving. In mathematics, applications of
geometric inequalities span across geometry, analysis, and
optimization, among many others. For instance, the priori estimates for
differential equations and the theory of functions of complex variables
provide many such examples. In physics, particularly in general
relativity and string theory, geometric inequalities help describe
spacetime geometries and their properties under various physical
conditions. For example, physicists can use geometric inequalities to
derive constraints on energy distributions based on geometric
configurations.

Geometric inequalities also play a crucial role in geometric analysis,
particularly in studying elliptic partial differential equations related to
geometric flows. They help establish regularity results for solutions to
these equations by controlling various norms associated with functions
defined on (Riemannian) manifolds. Also, the Sobolev inequalities
provide bounds on functions defined on manifolds concerning their
derivatives and integrals over certain domains. These inequalities are
instrumental in studying partial differential equations on manifolds and
have implications for embedding theorems.

In differential geometry, geometric inequalities play a crucial role,
providing important tools for understanding the properties of
geometric objects, such as Riemannian manifolds and their
submanifolds. In addition, geometric inequalities help to analyze
curvature properties of manifolds. For example, the Cauchy-Schwarz
inequality has been applied to derive bounds on sectional curvature,
which is crucial in studying Riemannian manifolds with constant
curvature, such as spheres and hyperbolic spaces. Moreover, the
relationship between curvature and geometric inequalities allows
differential geometers to classify manifolds based on their curvature
characteristics. In addition, geometric inequalities facilitate comparison
theorems that relate different geometric structures. For example,
Bonnet-Myers’ theorem uses geometric inequalities to prove that if a



Riemannian manifold has positive Ricci curvature, then it is always
compact and it has a finite diameter. Such results are pivotal in
understanding the global structure of Riemannian manifolds. In
addition, embedding theorems often rely on geometric inequalities to
establish conditions under which a manifold can be embedded into
Euclidean space. For instance, the Whitney and Nash embedding
theorems utilize concepts from geometric inequalities to demonstrate
that any smooth manifold can be embedded into a Euclidean space of
higher dimension.

This book is devoted to recent advances in a variety of geometric
inequalities in differential geometry, as well as in the theory of solitons.
As a result, this book consists of 15 chapters authored by leading
mathematicians, encompassing a wide array of topics, including “Some
Inequalities for Geometric Solitons” by A. M. Blaga, “Generalized Ricci-
Yamabe Soliton on 3-Dimensional Lie Groups” by A. Delloum and G.
Beldjilali, “Riemannian Invariants in Submanifold Theory” by A. Mihai,
“Chen Inequalities for Submanifolds of Kenmotsu Space Forms” by L.
Unal, A. Barman and D. G. Prakasha, “Improved Chen-Ricci Inequalities
for Semi-slant £&--Riemannian Submersions from Sasakian Space
Forms” by M. A. Akyol and N. Poyraz, “Characterizations of Perfect Fluid
and Generalized Robertson-Walker Space-Time Admitting k Almost
Ricci Yamabe Solitons” by K. De and U. C. De, “Riemannian Concircular
Structure Manifold and Solitons” by S. K. Chaubey and A. Haseeb,
“Statistical Maps and a Chen'’s First Inequality for These Maps” by S.
Kazan and A. N. Suddiqui, “Hyperbolic Ricci-Yamabe Solitons and 7-
Hyperbolic Ricci-Yamabe Solitons” by M. D. Siddiqji, “A Survey on
Hitchin-Thorpe Inequality and Its Extensions” by B.-Y. Chen, M. A.
Choudhary, and M. Nisar, “The Principal Eigenvalue of a (p, q)-
Biharmonic System Along the Ricci Flow” by S. Azami and Gh. Fasihi-
Ramandi, “The Jacobi Geometry of Plane, Parametrized Curves and
Associated Inequalities” by M. Crasmareanu, “B.-Y. Chen Inequalities for
Submanifolds of a Conformally Flat Manifold” by C. Oziir, “General Chen
Inequalities for Statistical Submanifolds in Kenmotsu Statistical
Manifolds of Constant ¢-Sectional Curvature” by S. Decu and G.-E. Vilcu,
and “B. Y. Chen Inequalities for Pointwise Quasi Hemi-Slant
Submanifolds of a Kaehler Manifold” by N. Poyraz, M. A. Akyol, and Erol
Yasar.



Both editors of this book hope that readers will find this book a
valuable reference for geometrical inequalities, enabling them to
perform their research more effectively, successfully, and creatively.

Bang-Yen Chen

Majid Ali Choudhary
East Lansing, MI, USA
Hyderabad, India
April, 2025
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Some Inequalities for Geometric Solitons

Adara M. Blagal
(1) Faculty of Physics and Mathematics, Department of Mathematics, West University of Timisoara,
Timisoara, Romania

Abstract

For different types of geometric solitons with a certain kind of potential vector field, we provided
some necessary and sufficient inequalities that must be satisfied by the Ricci and the scalar
curvatures for the solitons to be trivial. By means of similar inequalities, we have also given new
characterizations of a Euclidean sphere.

Keywords Trivial soliton - Ricci curvature - Euclidean sphere

1 Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold (n > 2). We denote by C'*°(M) the set of
smooth real functions on M, by Ric the Ricci curvature tensor field, by @ the Ricci operator, by r the
scalar curvature, by V the Levi-Civita connection of g, and by £; the Lie derivative operator in the

direction of a smooth vector field ¢ tangent to M. We will briefly recall the definitions of certain

types of geometric solitons which we shall use in the sequel. Let { be a smooth vector field and ny a
1-form on M. Then, (M, g, ¢) is said to be:

1.
An almost Ricci soliton [23] if

| S
Ef.'(g + Ric = 1g, where A € C™(M) (1.1)

2.
An almostn-Ricci soliton [2, 3, 18] if

1 ,
Efié’ +Ric=Aig +un ®@mn, where A, u € C¥(M) (1.2)

3.
An almost Einstein soliton [11, 17] if

1 : ‘
S£cg + Ric = (x n ,E) ¢, where 4 € C¥(M)  (1.3)

4.
An almost Ricci-Bourguignon soliton [19] if

1 i
Ei'(g + Ric = (A + pr)g, where L € C¥(M),p € R (1.4)
5. A generalized Ricci soliton [24] if

1 !
Ei'cg + a Ric = Bg, where o, B € C(M) (1.5)
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A generalized soliton [8] if
(1.6)

1 , .
Efgg +aRic = Bg+yn®mn, where a,B.y € C(M)

A hyperbolic Ricci soliton [20] if
£efrg+ AL g +Ric=pg, where A, neR (1.7)

A hyperbolic Yamabe soliton [15] if
fefrg+ Mg = —r)g, where A, ueR (1.8)

For the abovementioned solitons, if the functions are constant, then we drop almost. Also, for all
types of solitons, if the potential vector field is of gradient type [25], i.e., ( = V f, where V f denotes
the gradient of f € C'°° (M), then we use the name of gradient soliton, and we call fa potential
function. Any of these solitons is called a trivial soliton if its potential vector field is a Killing vector
field [25],1.e., £:g = 0.

Two essential problems in the theory of solitons are (i) finding conditions under which a soliton
is trivial and (ii) finding characterizations of the Euclidean sphere. The present chapter aims to
collect some characterization results for trivial solitons with different types of potential vector
fields, as well as some characterizations of a Euclidean sphere, by means of (integral or not)
inequalities satisfied by the Ricci curvature tensor field (see [2-16, 24]), completed by new results.

2 Some Ricci Inequalities

We have provided, in [4], a sufficient inequality satisfied by the Ricci and the scalar curvatures for a
compact almost Ricci soliton to be a Ricci-flat manifold, i.e., Ric = 0. We recall that a vector field
on (M, g) is called concircular [25] if V¢ = fI, where f € C*(M) and [ is the identity map on the

smooth sections of M. As a particular case of Theorem 5 from [4], we have the following result.

Proposition 2.1 Let (1.1) define a compact gradient almost Ricci soliton satisfying

fM Ric(¢,¢) > fM{(r — (=N + (n—1)A2}.

Then,is a concircular vector field, and(M, g)is a Ricci-flat manifold.

Proof Since the soliton is of gradient type, the vector field ¢ is closed, and (1.1) becomes
V(+ Q = AI.Then, for f = —1, 9o = @,and h = X in Theorem 5 from [4], we get @ = 0 and
V(= Al.oO

A similar inequality satisfied by the Ricci curvature and the potential vector field of a gradient
almost Ricci soliton implies that the manifold is an Einstein manifold [1], i.e., Ric = %g. We recall
that a vector field ¢ on (M, g) is called conformal Killing [25] if £: g = fg, where f € C®°(M);
affine Killing [25] if £V = 0; and affine conformal Killing [25] if

£V=df @I +1®adf —g@Vf where f € C®(M).Itis known [21] that the above condition
from the definition of an affine conformal Killing vector field is equivalent to the following

condition:

frg=2fg+K, VK =0, (2.9)



where K is a symmetric (0, 2)-tensor field. In [9], we have proved the following result.

Proposition 2.2 Let (1.1) define a compact and connected gradient almost Ricci soliton with affine
conformal Killing potential vector field{ = V hsatisfying

fM Ric(Vh,Vh) >n fM f{(n—1)f + trace(K) } + 2=+ fM(trace(K))2.

Then,Cis a conformal Killing vector field, and(M, g)is an Einstein manifold.

We recall that a vector field ¢ on (M, g) is called 2-Killing [22] if £:£: g = 0.

A sufficient condition for a hyperbolic Ricci or a hyperbolic Yamabe soliton to be of constant
scalar curvature is further provided (see [5]).

Proposition 2.3 Let (1.7) (respectively, (1.8)) define a compact and connected gradient hyperbolic
Ricci (respectively, a compact and connected gradient hyperbolic Yamabe) soliton withA # Osuch that
ty pty rgis divergence-free and

A fM Ric(Vf,Vr) <0.
Then,(M, g)is a manifold of constant scalar curvature.

In particular, a compact and connected gradient Ricci (as well as a compact and connected
gradient Yamabe) soliton with 2-Killing potential vector field{ = V fsatisfying

fM Ric(Vf,Vr) <0

is a manifold of constant scalar curvature.

Proof The particular cases follow from Proposition 2.10 from [5], considering A = % in (1.7)
(respectively, (1.8)) and taking into account that £y £y g = (. O

In [7], we have obtained inequalities considering solitons defined by an affine connection
associated with a 1-form. In [3, 10], and [16], respectively, we have found lower and upper bounds
of the Ricci curvature tensor field’s norm for gradient almost Ricci, gradient almost n-Ricci, and
gradient almost Ricci-Bourguignon solitons. Similar inequalities can be determined for a gradient
generalized soliton, recovering these as particular cases, as in the following.

Proposition 2.4 If (1.6) defines a gradient generalized soliton,( = V f, andn = df, then

A()—|VFI?)?
| Hess(f) |12 +97 | V£ ||+ =V (| 9 |[2) — LU <
< a? || Ric ||2<
< Hess(f) |2 +72 | V£ I+ =4V LI VFI2) + =5
In particular:

()

For a gradient almostn-Ricci soliton with( = V fandn = d f, we have

| Hess(f) 12+ | V£ |1t~V (| V1 |[2) - COSEIL <

<|| Ric ||*<
<[| Hess(f) || +p2 | V£ |* —uVF(| V£ ?) + =



(i)
For a gradient generalized Ricci soliton with( = V f, we have

2

(A())* . 2
| Hess(f) ||* —-=3— < o || Ric [|*<|| Hess(f) ||* +<~.
(iii)
For a gradient almost Ricci soliton, a gradient almost Einstein soliton, as well as for a gradient
almost Ricci-Bourguignon soliton with( = V f, we have

| Hess(f) ||2 — AL <) Ric |°<|| Hess(f) ||? +%.

Proof By taking the trace in

Hess(f) + aRic = g + vdf ® df,
we get
A(f) +ar=nB+y | VF|*.
Now, taking successively the scalar product with Hess( f) and Ric, respectively, we obtain

| Hess(f) |> +a(Ric, Hess(f)) = BA(f) +yHess(f)(V, V)
and
(Hess(f), Ric) + a || Ric ||?= Br + vRic(V £, V).
By multiplying the last relation with e and comparing it with the previous one, we infer

| Hess(f) |2 —BA(f) — vHess(f)(V £, Vf) = o2 || Ric |2 —afBr
—avRic(Vf,Vf).

Since we have

aRic(Vf,Vf) =B V| +v || VF* —Hess(f)(V£, V)

and

Hess(f)(Vf, V) = 9(Vv;VEV) =3V VP,
we obtain 2
A(f)—vIVFII?
| Hess(7) |” +9 | V£ [* V(| V£ |2) — O 210

+e — o2 | Ric %,

and we get the conclusion.

Fora =1,8= \v = u, we get (i); for v = 0, we get (ii); fora = 1,8 = A\, = 0, for
a=1,8=A+4,y=0andfora=1,8= X+ pr,y = 0, we get (iii). The proof is complete. O

In [24], we have given a sufficient inequality for the potential function fof a gradient generalized
Ricci soliton to be a harmonic function, i.e, A(f) = 0, where A denotes the Laplacian operator.
More precisely:

Proposition 2.5 If (1.5) defines a gradient generalized Ricci soliton and

| Hess(f) |12< o2 (| Ric ||~ ),
thenf = *&, and fis a harmonic function.
In particular, for a gradient almost Ricci soliton satisfying
2

| Hess(f) ||*<|| Ric [|* -,

fis a harmonic function.



Proof The particular case follows from Proposition 1 from [24], considering & = 1 in (1.5). O

Under certain assumptions, if the potential function of an almost Einstein, of an almost Ricci-
Bourguignon, or of a generalized soliton is a harmonic function, we obtained lower bounds for the
Ricci curvature tensor field’s norm in [6, 14, 16], respectively. For a gradient generalized soliton
with harmonic potential function, we have

| Htess(f) |2+ — 49 7() V£ [12) = o (I Ric |12 %) (2.11)

n

from (2.10), and we can state the following proposition:

Proposition 2.6 A gradient generalized soliton defined by (1.6) with( = V f,n = df, such that fis
a harmonic function,a(x) # Ofor anyx € M, and

| Hess(f) [|? + 22000 < (| w7 |12)

is an Einstein manifold.

Proof By means of Schwartz’s inequality, || Ric ||? —T—nz > 0, we conclude that Ric = —g.0

From (2.11), we also deduce the following proposition:

Proposition 2.7 A gradient generalized Ricci soliton defined by (1.5) with( = V fsuch that fis a
harmonic function satisfies

2 2 )12 2
| Hess(f) |12= o2 (| Ric || ~%).
In particular, for a gradient almost Ricci, for a gradient almost Einstein, and for a gradient almost

Ricci-Bourguignon soliton with a harmonic potential function f, we have
| Ric [|*>|| Hess(f) ||*.

3 Trivial Solitons

We shall highlight conditions under which a soliton reduces to a trivial soliton. We remark that an
Einstein manifold is a trivial Ricci soliton. Also, a manifold possessing a Ricci vector field satisfying
V({ = —Q is a steady Ricci soliton (i.e., a Ricci soliton with A = 0). We recall that a vector field { on
(M, g) is called parallel [25] if V¢ = 0. Since any parallel vector field is a Killing vector field, the
solitons with parallel potential vector fields are trivial solitons, too.

As particular cases of Theorems 8 and 9 from [4], we have the following results.

Proposition 3.1 Let (1.1) define a compact steady Ricci soliton with Ricci potential vector field

satisfyingV{ = —Q. If

‘[IMRic(C,C)Z"T‘ler2 or fMRic(g,g)ng{%JrC(r)_z | Ric ”z},

then(M, g)is a Ricci-flat manifold and(is a parallel vector field (hence, the soliton is trivial).

Proof In this case, we have



(£ Rio)(X, Y) = ¢(Rie(X,Y)) —Ric([¢, X1, Y) — Ric(X, [¢, Y])
= C(g(X, QY)) — g(Ve X, QY) + g(Vyx (., QF)
—8(OX. V:Y)+g(QX, Vy{)
= g(X, V QYY) — g(X, Q(V(Y)) — 28(QX, QY)
=g¢(X. (V. O)Y) — 2¢(0X, 0Y),
for any vector fields X, Y tangent to M. Let { E; },_;,, be alocal orthonormal frame on (M, g).

Then,

n
trace(£; Ric) = Y (£ Ric)(E;. E;)

i=l1

=Y g(Ei, (V;Q)E) —2) g(QF;, QE))

i=1 i=1
= ¢(r) — 2| Ric||*.
Now we apply Theorems 8 and 9 from [4] fora = —1,and we get @ = 0 and V{ = 0.0

Concerning the compact hyperbolic Ricci solitons, we have given in [5] the following sufficient
condition for the soliton to be trivial.

Theorem 3.2 Let (1.7) define a compact hyperbolic Ricci soliton. IfA # 0, £; £; gis trace-free, and
JLRmaogm
then(is a parallel vector field (hence, the soliton is trivial).

Proof See Theorem 2.2 from [5]. O

Sufficient conditions for a compact hyperbolic Yamabe soliton to be trivial have been provided also
in [15].

Theorem 3.3 Let (1.8) define a compact hyperbolic Yamabe soliton.

IfA # 0, £, £, gis trace-free, and

J;mdQOS&

then(is a parallel vector field (hence, the soliton is trivial).
(i)
IfCis divergence-free,\ # 0, and

L 2
[ et < o=t or [ Rt fiver + S
M M M . 5

then the soliton is trivial.
Proof For (i), see Theorem 2.2 from [5], and for (ii), see Proposition 2.3 from [15]. O

3.1 Solitons with Gradient Vector Fields



For compact gradient generalized, gradient hyperbolic Ricci and gradient hyperbolic Yamabe
solitons, we have determined in [6] and [5] some triviality conditions.

Theorem 3.4 If (1.6) defines a compact gradient generalized soliton witha, B, and~yconstant,
¢(=Vfn=df and

o f awrvna [ vrvip <o

then the soliton is trivial.
In particular:

@)
A compact gradientn-Ricci soliton with( = V f,n = df, and

fMg(Vf, Vr) + ufM Vi VEI?) <0

is a trivial soliton.
(ii)

A compact gradient generalized Ricci soliton withaandfconstant,{ = V f, and

ang(Vf,Vr) <0

is a trivial soliton.
(iii)
A compact gradient Ricci soliton with( = V fand

fM g(Vf,Vr)<0

is a trivial soliton.

Proof For the first statement, see Proposition 4 from [6].
Fora =1,8= \,v = u, we get (i); for v = 0, we get (ii); and fora = 1, 8 = A,y = 0, we get
(iii). The proof is complete. O

Theorem 3.5

(i
If (1.7) defines a compact gradient hyperbolic Ricci soliton withA # Osuch thatty y£v ¢ gis trace-
free and

fM Ric(Vf,Vf) > %IM 9(Vf,Vr) or f Ric(Vf,Vf) > 4)\2 f (r —np)?,

then the soliton is trivial.

(if)
If (1.8) defines a compact gradient hyperbolic Yamabe soliton withA # Osuch thatfv y£v ¢ gis
trace-free and

f Ric(Vf,Vf) > f g(Vf,Vr) or f Ric(Vf,VS) > 4 fM(r—u)z,

then the soliton is trivial.



Proof For (i), see Theorems 2.5 and 2.7(i), and for (ii), see Theorems 2.4 and 2.7(ii) from [5]. O

Proposition 3.6 If (1.7) (respectively, (1.8)) defines a compact gradient hyperbolic Ricci
(respectively, a compact gradient hyperbolic Yamabe) soliton with\ # Osuch thatfy y£v ¢ gis trace-

free and

then the soliton is trivial.
Proof See Corollary 2.6 from [5]. O

3.2 Solitons with Geodesic and Generalized Geodesic Vector Fields
We recall that a vector field ¢ on (M, g) is called geodesic [25] if V ¢ = 0, and we have from [11]

and [24] the following characterizations of trivial almost Einstein and trivial generalized Ricci
solitons.

Theorem 3.7 If (1.3) defines a compact almost Einstein soliton with geodesic potential vector field
andr # (0, then

r{(n—2)r +2nA} >0
if and only if the soliton is trivial.
Proof See Theorem 3.4 from [11].O

Theorem 3.8 If(1.3) defines a compact and connected almost Einstein soliton with geodesic
potential vector field andr # 0, then(is an eigenvector of the Ricci operator with a constant

eigenvaluec € R\ {0}and
r(r—no) <0

if and only if the soliton is trivial.
Proof See Theorem 3.5 from [11].O

We shall further denote by 0 := i.g the dual 1-form of ¢, and we define the (1, 1)-tensor field F by

g(FX,Y) := 1(d6)(X,Y),
for any vector fields X, Y tangent to M. Then, in terms of F and Ric, we have from [11] the
following characterizations of a trivial almost Einstein soliton with geodesic potential vector field.

Theorem 3.9 If(1.3) defines a connected almost Einstein soliton with geodesic potential vector
field, then
Ric(¢,¢) =|| F |%,

and the function(n—2)r + 2nM\is constant on the integral curves ofCif and only if the soliton is
trivial.

Proof See Theorem 3.7 from [11].O

Theorem 3.10 If (1.3) defines a compact and connected almost Einstein soliton with geodesic
potential vector field, then



Ric(¢, Q) [ F [|* +55-M((n—2)r + 2nX))?
if and only if the soliton is trivial.
Proof See Theorem 3.6 from [11].O

Theorem 3.11 If(1.3) defines a compact and connected almost Einstein soliton with geodesic
potential vector field, then

Ric(F¢, F¢) > 2L (div(F¢))? and M (n—2)r +2n)} <0
if and only if the soliton is trivial.

Proof See Theorem 3.9 from [11].O

Necessary and sufficient conditions for a generalized Ricci soliton with geodesic potential vector
field to be trivial have been given in [24].

Theorem 3.12 If(1.5) defines a compact and connected gradient generalized Ricci soliton with
geodesic potential vector field,r # 0, andaandfBare constant (o # 0), thenV fis an eigenvector of the

Ricci operator with constant eigenvaluegand

ra(ra —nf) <0
if and only if the soliton is trivial.
Proof See Theorem 3 from [24].O

Theorem 3.13 If(1.5) defines a compact and connected gradient generalized Ricci soliton with
geodesic potential vector field, then

Ric(Vf,Vf) > =L(ra — nf)’
if and only if the soliton is trivial.
Proof See Theorem 4 from [24]. O

We recall that a vector field ¢ on (M, g) is called generalized geodesic (see [13]) if V¢ = f(, where
f € C°°(M), and we have proved in [13] that the following inequalities ensure that an almost Ricci
or a generalized Ricci soliton with a generalized geodesic potential vector field is a trivial soliton.

Theorem 3.14 If(1.5) defines a compact generalized Ricci soliton with generalized geodesic
potential vector field and

28 < ra <nf and Ric(Va,Va) > 7|Va|?® + 9(§Vr— (n—1)VB — £(,Va),

then the soliton is trivial.
In particular, a compact almost Ricci soliton with generalized geodesic potential vector field and

20 < r < n
is a trivial soliton.

Proof See Theorem 1 and Corollary 1 from [13]. O



3.3 Solitons with 2-Killing Vector Fields

In [13] we have shown that the following inequalities make a compact almost Ricci or generalized
Ricci soliton with a 2-Killing potential vector field be a trivial soliton.

Theorem 3.15 If (1.5) defines a compact generalized Ricci soliton with 2-Killing potential vector
field and

nB < ra < 2nB and Ric(Va,Va) < r|Va|?®+ g(%Vr — (n=1)VB - £, Va),

then the soliton is trivial.
In particular, a compact almost Ricci soliton with 2-Killing potential vector field and

nA <r<2nA
is a trivial soliton.
Proof See Theorem 2 and Corollary 2 from [13]. O

3.4 Solitons with Affine Killing and Affine Conformal Killing Vector Fields

Sufficient conditions for a compact and connected almost Ricci soliton with affine Killing or affine
conformal Killing potential vector field to be a trivial soliton have been given in [12] and [9].

Theorem 3.16 If(1.1) defines a compact and connected almost Ricci soliton with affine Killing
potential vector field and

r(r —nA) <0,
then the soliton is trivial.
Proof See Theorem 3 from [12]. O

Theorem 3.17 If(1.1) defines a compact and connected gradient almost Ricci soliton with affine
conformal Killing potential vector field and

Ri > —n A
'-/:\Z[ lC(C, C) = j;([(( )7
then the soliton is trivial.

In particular, a compact and connected gradient Ricci soliton with

f LRG0 =0

is a trivial soliton.

Proof See Proposition 4.4 from [9]. O

4 New Characterizations of the Euclidean Spheres

Based on Obata’s theorem, in [12] and [24], we have given new necessary and sufficient conditions
for an almost Ricci or a generalized Ricci soliton to be isometric to a sphere.
Let (M, g) be an n-dimensional compact and connected Riemannian manifold (n > 2).

Theorem 4.1 Let (1.1) define an almost Ricci soliton with positive Ricci curvature. Then,



fM{Ric(cg, o¢)+ =L (AN } < fM{2(n—1)HV)\H2 +rA( },

for a nonzero constant c if and only ifc > O0and M is isometric to the sphereS™(c).
Proof See Theorem 2 from [12]. O

Theorem 4.2 Let (1.1) define a nontrivial almost Ricci soliton (i.e., Ais nonconstant) with Hodge
decomposition of the potential vector field{ = ( + V h. Then,

fMRic(E,E) sz]]FH2 and er(r—n/\)§0

if and only if M is isometric to the sphereS™(c)withc = ﬁ

Proof See Theorem 4 from [12]. O

Theorem 4.3 Let (1.5) define a gradient generalized Ricci soliton of constant scalar curvature, such
thatV (f + a)is an eigenvector of the Ricci operator corresponding to the eigenvalue—-. Then,

Ric(V£,Vf) > L[ VS|’
ifand only ifr > Oand M is isometric to the sphereS™ (c)withc =

T

n(n—1) "

Proof See Theorem 1 from [24].O
Theorem 4.4 Let (1.5) define a gradient generalized Ricci soliton. Then,
Ric(Vf,Vf) > (n—1)c||Vf||* and fM(ra —npf—cf)(ra —np—ncf) <0
withc > 0(a constant) if and only if M is isometric to the sphereS™(c).

Proof See Theorem 2 from [24]. O
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Abstract
We explore the presence of generalized Ricci-Yamabe solitons (briefly, GRYS)
within the framework of three-dimensional left-invariant Lie groups.

Keywords Ricci soliton - Yamabe soliton - Lie groups

1 Introduction

Let (M™, g) be an n-dimensional Riemannian manifold. The Riemannian curvature
tensor R is defined by

R(X, Y)Z — VXVYZ - VYVXZ - V[X,Y]Za (11)
where V is the Levi-Civita connection associated with g. The Ricci curvature
tensor is formulated as

S(X7 Y) = E :izl g(R(X, ei)ei,Y), (1.2)
where {ei}{izl’_“7n} is an orthonormal frame with respect to g. Herein, X, Y, Z are

smooth vector fields on M.

The exploration of geometric properties on Riemannian manifolds constitutes
a broad and dynamic area of research, drawing considerable attention in recent
literature such as [3, 5, 6, 9]. Among these investigations, the elucidation of

_) =) =)

structures like the Ricci soliton holds particular significance, facilitating the
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development of indispensable geometric tools including specialized vector fields,
metric deformations, and manifold products.

The seminal work of Hamilton [11] in 1982 introduced the concept of Ricci
flow, aimed at deriving a canonical metric for smooth manifolds. Over time, Ricci
flow has emerged as a potent analytical tool for examining Riemannian manifolds,
particularly those exhibiting positive curvatures. Central to this framework is the
notion of a Ricci soliton, which represents a distinct solution of the Ricci flow
generated by a vector field V. Notably, a Ricci soliton assumes the form of a
gradient Ricci soliton when the generating vector field V aligns with the gradient
of a potential function. The generalized Ricci soliton equation (briefly, GRS), as
formulated in a Riemannian manifold (M™", g), is characterized by its definition

(see [15])

Lyg = —2c1 VP @ VP +2¢,8 + 2)g, (1.3)
where %y g is the Lie derivative of the metric g along the vector field V
(Lvg)(X,Y) =g(VxV,Y) +g(X,VyV) (1.4)

and V" is the g-dual of the vector V
V'(X) = g(X,V).

Equation (1.3) is a generalization of

 Killing’s equationc; =co =A=0
e Equation for homothetiesc; = co =0
e Riccisolitonc; =0,¢c9 = —1

1

 Cases of Einstein-Weylc; = 1,¢0 = —5

e Metric projective structures with skew-symmetric Ricci tensor in projective
classci =1,¢c9 = —ﬁ,)\ =0

e Vacuum near-horizon geometry equationc; = 1, ¢y =

1

2
Furthermore, when V is a Killing vector field (i.e.,, £y g = 0), Eq. (1.3) describes
(M™, g) as a perfect fluid space (briefly, PFS).

Recent research on generalized Ricci solitons has produced a substantial body
of work, highlighting their significance in differential geometry and theoretical
physics. These studies often explore the properties, classification, and applications
of generalized Ricci solitons. For instance, researchers have investigated the
classification of generalized Ricci solitons under various curvature conditions and
symmetry constraints, providing insights into their geometric structures and
potential applications in string theory and general relativity [4, 8]. Moreover, the
stability and uniqueness of generalized Ricci solitons have been topics of
considerable interest, with findings indicating conditions under which these
solitons exhibit unique solutions and stability properties [13, 17]. Research on
perfect fluid spaces has significantly advanced our understanding of their role in
general relativity and cosmology. Perfect fluid spaces are essential in modeling
astrophysical objects and cosmological scenarios, as they describe space-times



filled with a fluid that has uniform properties at every point. Studies have
extensively examined the properties and dynamics of these spaces, leading to new
insights into their stability, evolution, and potential singularities [14, 18].
Furthermore, the interaction between perfect fluid spaces and other fields, such as
electromagnetic fields, has been a focus of recent investigations, revealing complex
behaviors and contributing to the broader understanding of gravitational
interactions [1, 10]. These contributions are fundamental to both theoretical
explorations and practical applications in astrophysics.
Conversely, a Ricci-Yamabe soliton (briefly, RYS) is defined as a semi-
Riemannian manifold (M™", g) equipped with a vector field V on M that satisfies
Zyvg=2aS+2(A+rp)g, (1.5)
where p € R is constant and r denotes the scalar curvature, defined as the trace of
the Ricci tensor S with respect to the metric g
r="1Tr,S. (1.6)
Likewise, Eq. (1.5) is a natural generalization of:

 Ricci soliton (briefly, RS)aa =1,p =0
e Ricci-Bourguignon soliton (briefly, GBS) o =1, p € R
e Yamabe soliton (briefly, YS)a = 0,p = —1

Ricci-Yamabe solitons have been an active area of investigation in differential
geometry. These solitons generalize both Ricci solitons and Yamabe solitons,
serving as self-similar solutions to the Ricci flow and the Yamabe flow, respectively.
Recent studies have explored various aspects of Ricci-Yamabe solitons, including
their existence, uniqueness, and classification under different geometric
conditions. Notable contributions include the work of Deshmukh and Alodan [7],
which examined the geometric properties of Ricci-Yamabe solitons on warped
product manifolds, and Blaga [2], who studied n-Ricci-Yamabe solitons in the
context of almost contact metric manifolds. In their work, Traore et al. conducted a
thorough investigation and provided detailed characterizations of the geometric
properties of manifolds that admit almost n-Ricci-Bourguignon solitons, as
documented in [19, 20]. These investigations provide valuable insights into the
interplay between curvature and the underlying geometry of the manifolds.
Motivated by the work of [15], we define a generalized Ricci-Yamabe soliton

(briefly, GRYS) as follows:

Lrg=—2c1V" @V’ + 2,8 + 2\ + rp)g. (1.7)
Equation (1.7) is an immediate generalization of the following:
e GRS equation (1.3) forp =10
e RYS (1.5) (briefly, RYS) Eq. (1.5) forc; =0
In this chapter, we investigate and classify the existence of generalized Ricci-

Bourguignon solitons (GRYS) (1.7) on left-invariant three-dimensional Lie groups
(M2, g).



This chapter is organized as follows: In the next section, we review the
necessary prerequisites related to left-invariant three-dimensional Lie groups,
their algebras, and curvatures. In the final section, we provide a complete
classification of the GRYS associated with each algebra of three-dimensional left-
invariant Lie groups.

2 Left-Invariant Three-Dimensional Lie Groups

A three-dimensional left-invariant Lie group G is a smooth manifold of dimension
3 equipped with a group structure such that left translations L, defined by

L,:G —G
x — Li(z) =a.x
for a,x € G are diffeomorphisms. This implies that the tangent space T, G at the
identity element e € G, equipped with the Lie bracket operation derived from the
group multiplication, forms a three-dimensional Lie algebra.

A Riemannian frame on a three-dimensional left-invariant Lie group (G, g)
consists of three smooth vector fields {el, es, e3} on GG, which are left-invariant
and form an orthonormal basis with respect to the Riemannian metric g.
Specifically, at each point p € G,

g(ei,ej) ), = dij,
where d;; is the Kronecker delta.

The Riemannian metric g induces a natural Levi-Civita connection, which is
torsion-free and compatible with g. This connection allows for the study of
curvature properties within the framework of the Lie group structure.

In Jantzen’s work [12], L. Bianchi compiled a catalog of three-dimensional real
Lie algebras, accompanied by a demonstration that each three-dimensional Lie
algebra finds isomorphism with a singular entry on his list. Given our focus on left-
invariant structures, our analysis is confined to the Lie algebras associated with
their respective Lie groups. The ensuing outcome elucidates the various categories
of three-dimensional Lie algebras [16].

Proposition 2.1 Letgbe a three-dimensional real Lie algebra. Then ifgis not
abelian, it is isomorphic to one and only one of the Lie algebras listed below (Tablel):

Table 1 Classification of three-dimensional real Lie algebras
and their structure equations

Algebra | Structure equations

o1 [e2, e3] = e1

239 [e1,e3] = e1,[e2,e3] = e1 + e

o33 le1,e3] = e1,[e2, e3] = e




Algebra | Structure equations

s 4 [e1,e3] = e1,[e2, €3] = —ea

4273‘?5 [e1,e3] = e1, [e2,e3] = e, (0 < |8] < 1)

36 [e1,e3] = —ea, [e2,e3] = e1

4273‘?7 [e1,e3] = —de1 — ea, [ea, €3] = e1 + dea, (6 > 0)
238 [e1, e2] = e1,[e1,e3] = —2es, [e2, €3] = €3

29 le1,e2] = e3, [e1,e3] = —ea, [e2, €3] = €1

3 GRYS on Three-Dimensional Lie Groups
Our inquiry will delve into the presence of a GRYS (1.7) within the realm of three-
dimensional left-invariant Lie groups, on each algebra o3, k € {1,...,9}, with
the potential vector field V
{ a? ab ac \
V = aey + bes + ceg, and V"®Vbzl\ab b? bc/l.
ac bc c?

Obviously, formula (1.7) is symmetric, and we are lead to solve a system of six
equations
(Lvg);; = —2e1ViVj + 26355 + 2(A + 7). (3.8)

3.1 The Algebra 75 ;

The covariant derivatives of the basis elements are given by the following
expressions:

_ 1 _ 1
velel = Oa veleZ = —5€3, v6163 = 35€2,
_ 1 _ 1
V6261 - _5637 V6262 - 07 Veze?) - fela
1 _ 1
V€3el — 35€2, V6362 —5€1, V6363 —

Using formulas (1.2), (1.4), and (1.6), we obtain

[0 ¢ —b) [+ 0 o]
-b 0 0 0 0 _%
and the scalar curvature (1.6) is
r=—3 (3.10)

By directly substituting (3.9) into (3.8), we must address the challenge of
solving
(3.11)



P
-(A-3) =0,
c1b2 + C; (A-%) =0, (3.12)
ac’+ 2 -A-%) =0, (3.13)
c+2ciab =0, (3.14)
b—2ciac =0, (3.15)
cibc = 0. (3.16)
By analyzing various cases related to Eq. (3.16), we obtain the following
results:
e Ifc; =0, then b = ¢ = 0is obtained from (3.14) and (3.15). The system
becomes

_% — ()\ — %) =0, (3.17)
% _ ( — %) — 0. (3.18)

. . P
From one hand, summing Egs. (3.17) and (3.18) yields A = 5. On the other

hand, subtracting Eqgs. (3.17) and (3.18) resultsin ¢y = 0.
e Ifcy # 0,then be = 0. Assume b = 0, then ¢ = 0 by virtue of (3.14). Substituting
in (3.12) yields A = 3 + £ and this along with (3.11) yields a = 0. A similar

result to this latter is obtained in the case where ¢ = 0.

In summary, the solutions of Eq. (3.8) within the algebra 47 ; are as follows:

V=ae, ca=%, A=5+2, acR* and c3pcR.

3.2 The Algebra .27; 5

The derivatives with respect to covariant bases are delineated as follows:

1
Velel = —e3, V6162 = —35€3, Veleg =e1 + 62,
1
Ve €1 = — 5 €3, Ve,€2 = —es, Ve,€3 = 561 + es,
1 1
Ve,e1 = Sea, Ve,e2 = —5e1,  Vees =0.

Thus, from Egs. (1.2), (1.4), and (1.6), we derive

{ 2c c —a-—2>b \ l _% —1 0 \
(ng)ij = '\ (& 2c —b /l, Sij = ‘\ -1 —% 0 ) (3.19)
—a—b -b 0 0 0 _%
and the scalar curvature is
r=—33. (3.20)

By employing Egs. (3.19) and (3.20) within (1.7), we are prompted to
undertake the challenge of resolving
cia’ +3es— (A= £p)+c =0, (3.21)



b’ +2ey—(A—2p)+c =0, (3.22)

cic® + %cz — ()\ — %p) =0, (3.23)
ciab+ce+ 5 =0, (3.24)
ciac — aTer =0, (3.25)
cibe— 2 =0, (3.26)

Exploring different scenarios informed by Eq. (3.26), we discover:

e Ifb =0, theneithera =0orci;c = %, as indicated by (3.25):

- If a = 0, the system of equations simplifies to

Sea— (A= Ep)+c =0, (3.27)
sea— (A= 2p)+c =0, (3.28)
cic+2es— (A—22p) =0, (3.29)
cat+ £ =0. (3.30)

Subtracting (3.27) from (3.28) yields co = 0. Substituting this into (3.30)
gives ¢ = 0, and thus A = %p.
-Ifcic = % then substituting ¢ = L results in

261
c1a’ + 4c— (A= 3p) + 5 =0, (3.31)
s — (A= 2p) + 5= =0, (3.32)
1 5 13
wt3e—(A-3p) =0, (3.33)
¢+ 5= =0. (3.34)
Subtracting (3.32) from (3.33), we obtain cl—l = 0, which has no solution.
e Ifcic= %, then from (3.25) necessarily b = 0 and from (3.24) ¢3 = —4—}:1.
Direct substitution gives

1 13 _
oo~ (A—=3Fp) =0, (3.35)
ab’ = (A= Fp) -5 =0, (3:36)

3 13 _
ot (A=%p) =0 (3.37)

Summing Egs. (3.35) and (3.37) gives é = 0, which has no solution.

Summarizing the above, Eq. (3.8) on the algebra 273 » has no solution.

3.3 The Algebra o7 3

The covariant derivatives of the basis elements are as follows:



Ve,e1 =0, Ve,ea = —e3,  Vees = e,
V6361 - Y V63e2 - Y vegeB - O
Hence, from (1.2), (1.4), and (1.6), we have
{ 2c 0 —a \ { -2 0 0 \
(ng)ij = 0 2¢c —by, Sij = 0 —2 0 ,, (3.38)
I\—a —-b 0 /I \ 0 O —2/I
and the scalar curvature (1.6) is
r = —6. (3.39)

Upon substituting Egs. (3.38) and (3.39) into (1.7), we find it necessary to
address the task of resolving

ci1a®> +2co —A+6p+c =0, (3.40)
c1b® +2¢o — X+ 6p+c =0, (3.41)
cic? +2c;—A+6p =0, (3.42)
ciab =0, (3.43)

2ciac —a =0, (3.44)

2cibc —b = 0. (3.45)

Examining various scenarios based on Eq. (3.43), the outcomes are as follows:

e Ifc; =0,thena = b = 0, and from (3.42) we get A = 2¢c3 + 6p. Substituting in
either (3.40) or (3.41) yields ¢ = 0.
o Ifab = 0, we distinguish two particular cases:

-Ifa = 0and b # 0, then from (3.45) we have cic = % By direct substitution,

we get
2c; = A +6p+ 5~ =0, (3.46)
c1b® +2c3 = A+ 6p+ 5~ =0, (3.47)
2o 262 =X +6p =0. (3.48)

Substituting (3.48) from (3.46) yields c—ll = 0, which has no solution.
- The case wherea # 0,b = 0,and cic = % yields an identical result as
previously discussed.

e Ifa = b =0, we obtain
2ca —A+6p+c =0, (3.49)

cic?4+2c5—A+6p =0. (3.50)
Subtracting (3.48) from (3.50) provides ¢(cic—1) = 0. Therefore:
- Either c = 0 and A = 2¢2 + 6p



_ 1 _ 1
—Ol"c—aand)\—QCQ#—Gp%—c—1

In conclusion, the solutions of Eq. (3.8) on the algebra 273 3 are given by

V = ces, 61=%, =i—i—202+6p, where c€ R* and co,p € R.

3.4 The Algebra /; 4

The covariant derivatives of the basis elements are as follows:

Veer =—e3,  Veer =0, Vees =ei,
Ve261 = 0, V6262 — és3, V6263 = —e€g,
Vegel = O, Vegez = 0, Ve3€3 =0.
With the help of (1.2), (1.4), and (1.6), we have
{ 2c 0 —a \ { 00 O \
(.,?Vg)ij = 0 —2¢ b , Sij =10 0 O , (3,51)
I\—a b 0 /I I\() 0 —2/I
and the scalar curvature is
r=—2. (3.52)
After substituting Egs. (3.51) and (3.52) into (3.8), we need to resolve
cra’ —A+2p+c =0, (3.53)
b = A+2p—c =0, (3.54)
cic?4+2c—A+2p =0, (3.55)
ciab =0, (3.56)
a—2ciac =0, (3.57)
b+ 2cibc = 0. (3.58)

Considering different scenarios outlined in Eq. (3.56), the following

observations arise:

If c; = 0, then (3.57) and (3.58) yield a = b = 0. By direct substitution, we
obtain

A =2p+c, (3.59)
A =2p—c, (3.60)
A = 2cy+ 2p. (3.61)

Subtracting Eq. (3.60) from (3.59) gives ¢ = 0. Summing Egs. (3.59) and
(3.60) yields A = 2p. Putting all of the above in (3.61), we obtain c2 = 0.
If ab = 0 and ¢y # 0, we consider three cases:

-Ifa = b = 0, again using Egs. (3.59), (3.60), and (3.61), we find ¢ = 0, A = 2p,

and cs = 0.
-Ifa=0andb # 0, thencic = — % Substituting gives



1
)\+2p_2_cl :Oa
clb2—)\—|—2p—|—2—i1 =0,
= +20—-A+2p =0.

From (3.62), we get A = 2p — 2%1 Substituting in (3.63) yields % =

, which has no real solutions.

- The case where b = 0,a # 0,and cic = —+

(3.62)

(3.63)

(3.64)

1
2c2

is similar to the previous one.

Combining all the results, the solutions to Eq. (3.8) within the algebra <73 4

exhibit no solutions.

5
3.5 The Algebra %,5

The covariant derivatives of the basis elements are as follows:

Veer =—e3, Vger =0, Vees =eq,
v62€1 = 0, ve262 = —(563, Vezeg = 562,
Ve3€1 = 0, Ve3€2 = 0, V3363 = 0,
where 0 < || < 1. With direct computations, we have
[ 2¢ 0 —a [-1-6 0 0
(ng)ij = '\ 0 2¢co —b5/1, Sij = |\ 0 "y p— 0 /l, (3.65)
—a —bd O 0 0 —§%-1
and the scalar curvature is
r = —28%2—-26—2. (3.66)
Substituting Eq. (3.65) into (3.8), we are compelled to engage in the process of
resolving
cia’? + (1+8)eca —A+2(6%+6+1)p+c =0, (3.67)
c1b? +8(8+1)ca — A +2(82 + 5+ 1)p+dc =0, (3.68)
cic? + (82 +1)ca—A+2(82+6+1)p =0, (3.69)
ciab =0, (3.70)
ciac — 5 =0, (3.71)
c1bc — 5% =0. (3.72)
Evaluating different possibilities with respect to Eq. (3.70), we conclude:
e Ifcy = 0, then Egs. (3.71) and (3.72) give a = b = 0. Thus, we have
(14+8)ca —A+2(82+6+1)p+c =0, (3.73)
56+ 1ca—A+2(6*+6+1)p+dc =0, (3.74)
(2 4+1Deca —A+2(82+5+1)p =0. (3.75)

Subtracting Egs. (3.73) from (3.74), we find ¢ = —(§ + 1)cs. From Eq. (3.75),
A = (62 + 1)ca + 2(62 + § + 1) p. By substituting these results into either Eq.



(3.73) or (3.74), we get (62 + 1)ca = 0, and hence ¢y = 0.
e Ifa =b=0andc; # 0, then Egs. (3.73) and (3.74) resultinc = —(§ + 1)co

and A = 2(62 + § + 1)p. Substituting into (3.69), we obtain ¢y = _(52£++11)61
e Ifa # 0,b = 0, then from (3.71) we getc = 2%1 Thus
c1a’ + (14 68)c —A+2(82+ 5+ 1)p+ 5 =0, (3.76)
SO0+ 1)ey —A+2(82+5+1)p+ 52 =0, (3.77)
= (24 Deya = A+2(02+5+1)p =0. (3.78)

Subtracting Eq. (3.77) from (3.78), we find ¢; = (5 51) . Using these results

—28%+6—1

along with Eq. (3.76), we find a® = =~
1

due to —246% + 6—1 < 0.
e Ifa =0,b+# 0, then from (3.72) we get c = 2%1. Using direct substitution, we

, which leads to an impossibility

have
(1+38)co—A+2(0°+6+1)p+ - =0, (3.79)
c1b? +5(5+ ez —A+2(0° +5+1)p+ 2 =0, (3.80)
401 + (2 +1)ca —A+2(82+6+1)p =0. (3.81)
Subtracting Eq. (3.80) from (3.81), we find ¢; = 4(1‘5—6) From (3.79) we
pull
_ —6+2
A= (1 ey
Finally, substituting in (3.80), we obtain
2 8*—6+2
b* = 4c?

1

which is absurd due to the fact > — § +2 > 0 forall 0 < |§| < 1.
In summary, Eq. (3.8) within the algebra ,5273‘,55 admits the following solution:
V=ces;, c=—(0+1)cy, c2=-— 41

(62+26+1)cy ?
A=2(62+3+1)p,
ci € R* and peR.

3.6 The Algebra 275 ¢

The covariant derivatives of the basis elements are as follows:
Velel = 0, Veleg = 0, Veleg = 0,
V62€1 = 0, V6262 = O, v62€3 = O,
V6361 = €9, v63€2 = —éq, V63€3 = 0.



With direct computations, we have

{ 0 0 -b \ I 0 00 \
(«zvg)ij =4 0 0 a g, Sij=40 0 0y, (3.82)
'\—b a 0 /I I\0 0 O/I
and the scalar curvature is
r=0. (3.83)
Substituting these into (3.8), we tackle the endeavor of resolving
cia’ -\ =0, (3.84)
b’ =)\ =0, (3.85)
cict =\ =0, (3.86)
ciab =0, (3.87)
ciac — % =0, (3.88)
cibc+ 5 =0. (3.89)

Reviewing several scenarios outlined by Eq. (3.87), the analysis indicates:

e Ifcy = 0, then from (3.84), (3.88), and (3.89) weget A = a = b = 0.
 Consider ¢; # 0:

-Ifa = 0, then from (3.88), b = 0, leadingto A = 0 and ¢ = 0.
- Similarly, if b = 0, from (3.89), a = 0, resultingin A = 0 and ¢ = 0.

Combining all the results, Eq. (3.8) within the algebra 273 ¢ satisfies only the
Killing equation for V' = ce3 where ¢ # 0.

5
3.7 The Algebra &7,

The covariant derivatives of the basis elements are as follows:

V6161 - 563, vele2 = Oa vele?) = _5617
V€2€1 - 0) V6262 - _5637 V€263 - 562a
V6361 = €9, ve3e2 = —€q, vege3 = 07
where § > 0.
With direct computations, we have
[ —2¢6 0 ad—b| [ 0 26 0 |
(Zvg),; = l\ 0 2¢0 a-— Jb/l, Sij = |\25 0 0 /I, (3.90)
ad—b a—3db 0 0 0 —242
and the scalar curvature is
r = —262. (3.91)
We need to solve the following equations from (3.8):
cia®> — A +28%p—cd =0, (3.92)
cib? —A+28%p+céd =0, (3.93)

c1c? 4 2¢98%2 — A +26%p =0, (3.94)



ciab—2cy0 =0, (3.95)

crac+46—-L =0, (3.96)
cibe+ 4 — 25 =0. (3.97)

Analyzing Eq. (3.96), we obtaln b= 2c1ac + ad. Substituting into (3.97) yields
a(cte® + 45) = 0. (3.98)

Reviewing several scenarios outlined by Eq. (3.98), the analysis indicates:

e Ifa = 0, substituting in (3.96) and using (3.95) give b = 0 and ¢y = 0.
Substituting into (3.92) and (3.93) gives ¢ = 0 and A = 242p.

V-1
2

e Ifcic= , which is valid only for § > 1, then by direct substitution we get:

- If§ > 1, then @ = 0, and similar results are obtained as discussed previously.
-1f§ = 1, then ¢; = 0. In the first case, from (3.95) we get ¢, = 0 and from
(3.96) a = b. Hence, we are left with

—A+2p—c =0, (3.99)
—A+2p+c =0, (3.100)
—A+2p =0, (3.101)

which clearly gives A = 2p and ¢ = 0.
In the second case, where ¢ = 0, again from (3.96) we have a = b, and

using (3.95) we geta = 20—012 Finally, from (3.94) we obtain A = 2¢5 + 2p.
Combining all the results, the solutions to Eq. (3.8) within the algebra 4273‘?7 are
V =a(e1 + e2), 01:%, A=2c+2p, acR* and cy,p€R.

3.8 The Algebra 2/; ¢

The covariant derivatives of the basis elements are

Veer = —es, Ve =e+es, Vees = —es,
Vezel = €3, veze2 = 07 V€263 = —€i1,
Veer = e, Vees = —e1—e3, Vees =eo.
From direct computations, we obtain
{ 2b —a—2c 0 \ { -2 0 -2 \
(Zvg)y; = -\—a—ZC 0 2a + c/l, Si; = -\ 0 0 O /- (3.102)
2a+c —2b
The scalar curvature is given by
r= —4. (3.103)

Therefore, upon substituting (3.102) and (3.103) into (3.8), the following
equations must be satisfied:
c1a® +2co —A+4p+b =0, (3.104)



c1b2—A+4p =0,
clc2—|—202—)\—1—4p—b =0,
ciab— 5 —c =0,
ciac+ 2¢cy =0,
cibcta+ <+ =0.

(3.105)
(3.106)
(3.107)
(3.108)
(3.109)

From (3.107), we deduce ¢ = c1ab — <. Substituting this into (3.109) gives

(e + ) =0,

Hence, @ = 0 and ¢ = 0. This implies ca = 0. Substituting c2 = 0 into (3.105)
yields A = 4p. Finally, substituting A = 4p into either (3.104) or (3.106) provides

b=0.
In conclusion, Eq. (3.8) in the algebra 273 g has no solution.

3.9 The Algebra o7 9

The covariant derivatives of the basis elements are

Velel :07 V6162 :%63, Vele?: - %62,
Vezel :_%637 v6262 :07 V6263 :%617
Vegel :%627 V6362 :_%617 VegeS =
From direct computations, we obtain
1
[0 0 0) [3 0 0]
(Zva);; \0 0 0/- l-jzl\o 5 0/],
0 0O 0 0 %
and the scalar curvature is
3
’l":?.

Thus, the following equations must be satisfied:
2ci1a® — ca—22—3p =0,
261b2 — 02—2)\—3p = 0,
2¢1¢? — ca—22—3p =0,

ciab =0,
ciac =0,
cibc = 0.
Analyzing Eqgs. (3.115)-(3.117) yields:
e Ifecy =0,then \ = —%cz — %pandcz,p € R.

o Ifcy %O,thena:b:c:0,)\:—%c2—%p,and@,peR.

Therefore, the solution set is

(3.110)

(3.111)

(3.112)
(3.113)
(3.114)
(3.115)
(3.116)
(3.117)

V =ae; +bes +ces, c1 =0, A:—lcg—%p, and a,b,c,co,p € R

2



Theorem 3.1 The generalized Ricci-Yamabe soliton equation

SLyg=—2c1V" @V’ 4+ 2¢38 + 2(A 4 rp)g
admits the following solutions on three-dimensional left-invariant Lie algebras:

Algebras/; 1:
V=ae;, c1= 2—3, )\:§+%, acR* and ca,pc R
Algebras/; 5:

V=ces, c1= %, A= C—ll + 2¢c9 + 6p, where c€R* and cy,p€R.
Algebraa).:

_ _ e
V =ces, c= (6 + 1)62’ C2 = (62426+1)cy

A=2(2+6+1)p, where c; €R* and pcR.
Algebra%‘}:

V=ales+e2), c1= %, A=2c3+2p, a€R* and cy,p€R.
Algebras/; o:

V =ae; + bes +ces, c¢1 =0, A:—%CQ—%p, and a,b,c,co,p € R.

4 Conclusion

In this chapter, we have extended the concept of the Ricci-Yamabe soliton through
Eq. (1.7) and explored the presence of this structure on left-invariant three-
dimensional Lie groups. The findings provide concrete examples that substantiate
the existence of this structure, thus demonstrating its viability. This work opens a
wide range of possibilities for future research in this area. We can summarize the
existence of various solitonic structures on left-invariant three-dimensional Lie
algebras in the following (Table 2):

Table 2 Possible solitonic structure on left-invariant
three-dimensional Lie algebras

Algebra |GRYS |GRS |RBS (RS [YS |PFS
3 v v v v |V IV
35 X X X X X |X
33 v v v v |V OIX
34 X X X X |[X |X
A v v v v v X
3.6 X X X X X |X




Algebra |GRYS |GRS [RBS |RS |YS |PFS

AR v v v v v

38 X X

39 v v v v v X
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Abstract
The basics of submanifolds in complex space forms and Sasakian space forms are recalled, and then Chen-
type inequalities for different submanifolds in complex and Sasakian space forms are presented.

The most important Chen inequalities in real space forms are stated. We give a general construction
method for purely real submanifolds and present geometric inequalities for purely submanifolds in complex
space forms. We obtain an improved Chen-Ricci inequality for Kaehlerian slant submanifolds in complex
space forms. Works on DDVV conjecture are also presented. Next, results on submanifolds in Sasakian
manifolds are presented. We prove Chen’s first inequality for contact slant submanifolds in Sasakian space
forms. We define Chen-type Sasakian invariants, obtain sharp inequalities for these invariants, and derive
characterizations of the equality case in terms of the shape operator. We generalize a result of Chen and
obtain a Chen-Ricci inequality for purely real submanifolds with T parallel with respect to the Levi-Civita
connection. Another subsection presents certain results for submanifolds in space forms with semi-
symmetric metric (respectively, nonmetric) connections. We study statistical submanifolds and their
behavior in statistical manifolds of constant curvature.

Next, we present results on warped product submanifolds in complex space forms, generalized complex
space forms, and quaternion space forms.

After that, a new characterization of Einstein spaces by using their curvatures symmetries is given.

This chapter represents a collection of results from the author’s papers on this topic; the proofs are given
in detail, so the reader can follow the techniques.

Keywords Kaehler manifolds - Sasakian manifolds - Einstein manifolds - Submanifolds - Riemannian
invariants - Chen invariants - Chen inequalities

1 Preliminaries

In Riemannian Geometry the manifolds endowed with certain endomorphisms of their tangent bundles play
an important role.

Among these, the most important ones are the almost complex structures (on even-dimensional
manifolds) and almost contact structures (on odd-dimensional manifolds). In particular the Kaehler
manifolds and the Sasakian manifolds, respectively, are the most studied such manifolds, because they have
the most interesting properties and applications.

In order to have the highest degree of homogeneity (i.e. their group of isometries has the maximum
dimension), the spaces of constant sectional curvatures are the most investigated. It is known that a Kaehler
manifold with constant sectional curvature is flat. For this reason the notion of complex space form (a
Kaehler manifold with constant holomorphic sectional curvature) was introduced. Analogously, the Sasakian
space forms were defined.

On the other hand, starting from the classical theory of curves and surfaces in Euclidean spaces, the
theory of submanifolds is an important field of research in Riemannian Geometry.

There are certain important specific classes of submanifolds in Kaehler manifolds and Sasakian
manifolds, respectively, for example complex and Lagrangian submanifolds in Kaehler manifolds and
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invariant and Legendrian submanifolds in Sasakian manifolds. For a comprehensive study on submanifolds
see [21].

Let M bea complex manifold of dimension m and J its standard almost complex structure. A Hermitian
metric on M is a Riemannian metric g invariant with respect to J, i.e,,
g(JX,JY) = g(X,Y), VX,Y € T(TM).

The pairing (M, g) is called a Hermitian manifold.

Any complex manifold admits a Hermitian metric.

A Hermitian metric g on a complex manifold M defines a nondegenerate 2-form
w(X,Y) = g(JX,Y), X,Y e I'(TM), which is called the fundamental 2-form. Clearly,
w(JX,JY) =w(X,Y).

A Hermitian manifold is called a Kaehler manifold if the fundamental 2-form w is closed.

Necessary and sufficient conditions for a Hermitian manifold to be a Kaehler manifold are given by the
following:

Theorem ([94]) Let(M, g)be an m-dimensional Hermitian manifold andVthe Levi-Civita connection
associated with g. The following statements are equivalent to each other:

Q]

M is a Kaehler manifold.
(i) — -~

The standard almost complex structure | onMis parallel with respect toV, i.e,VJ = 0.
(iii) —

For anyzy € M, there exists a holomorphic coordinate system in a neighborhood ofzgsuch that

g= (5kj + hkj)dzkdzj,
Ohy;j .
wherehyj(zy) = az’;’ (z9) = 0, foranyk, 3,1l =1,...,m.

(iv)

Locally, there exists a real differentiable function F such that the fundamental 2-form is given by
w = 100F ,where the exterior differentiation d is decomposed inda = o 4+ Oav.

Examples of Kaehler manifolds are:

1. N
N ard : . _ k 1=k
C" with the Euclidean metric g = Zk:l dz"dz".
2.
The complex torusT™ = C" / , with the Hermitian structure induced by the Euclidean metric of C™.
3.
The complex projective spaceP™(C) endowed with the Fubini-Study metric, which, in local coordinates,
is given by
__ (erz)dp 2t
g]k - (1+2825)2
4.
The complex Grassmann manifoldG,(CP*1) with a generalized Fubini-Study metric.
5. ,
Let D" = Int $*"~! be the unit disk in C",i.e, D" = {z € C" | Y, |27|* < 1}, endowed with the
Bergman metric
__ (=2z)eut72k
Iik = T (1_om)?
6.

Any orientable surface is a Kaehler manifold.

There are obstructions to the existence of Kaehlerian metrics on a compact complex manifold.

Theorem ([69]) On a compact Kaehler manifold the Betti numbers of even order are nonzero.



As an application, the Calabi manifolds S>™*! x §?"1 do not admit any Kaehler metric if (m, n) # (0, 0).
In particular, Hopf manifolds are not Kaehler manifolds.

Theorem ([69]) On a compact Kaehler manifold the Betti numbers of odd order are even.

A sectional curvature of a Kaehler M in direction of an invariant 2-plane section by J is called a holomorphic

sectional curvature of M.
For the 2-plane section 7 invariant by J, one considers an orthonormal basis { X, J X}, with unit X. Then

the holomorphic sectional curvature is given by K (7) = R(X, JX, X, JX).
Let M be a Kaehler manifold. If the function holomorphic sectional curvature K is constant for all 2-plane
sections 7 of T}, M invariant by ] for any p € M, then M is called a space withconstant holomorphic sectional

curvature (or complex space form).
The curvature tensor of a complex space form of constant holomorphic sectional curvature 4c has the

expression

R(Xa Y, Z, W) = C[g(X, Z)g(Yv W) - g(X7 W)g(Y7 Z)
+g(X7 JZ)g(Y, JW) - g(Xa JW)g(Y, JZ)
+29(X, TY)g(Z, TW)),
for any tangent vector fields X,Y, Z, W.
Recall that a Riemannian manifold (M, g) is an Einstein manifold if the Ricci tensor S is proportional to
the Riemannian metric g, i.e., S = Ag, where ) is a real number.

Each complex space form is an Einstein manifold.
Examples of complex space forms:

C" with the Euclidean metric is a flat complex space form.
P"(C) with the Fubini-Study metric has holomorphic sectional curvature equal to 4.

D™ with the Bergman metric has holomorphic sectional curvature equal to —4.

Conversely, the following result holds good.

Theorem ([69]) Let M be a connected, simply connected, and complete complex space form. Then M is
isometric to eitherC"™, P™(C), orD™.

Let (]Tf, J, g) be an m-dimensional Kaehler manifold and M an n-dimensional submanifold of M. The
induced Riemannian metric on M is also denoted by g. We denote by V and V the Levi-Civita connections on

M and M, respectively. The fundamental formulae and equations for a submanifold are recalled below.
Let h be the second fundamental form of the submanifold M. Then the Gauss formula is written as

VxY =VxY + h(X, Y),
forany X,Y € I'(TM).
Denoting by V* the connection in the normal bundle and by A the shape operator, one has the
Weingarten formula:

Vxé=—AX + Vi,
forany X € T(TM) and ¢ € T(T+M).

Let R R, and R be the curvature tensors with respect to 6, V,and V4, respectively.
Forany X,Y,Z, W € I'(T M), the Gauss equation is expressed by

R(X,Y,2,W) = R(X,Y,Z,W) - g(h(X, Z),h(Y, W) + g(h(X, W), h(Y, Z)).
One denotes
(Vxh)(Y, Z) = V3h(Y, Z) — h(VxY, Z) — h(X, Vy Z);
then the normal component of R(X,Y)Z is given by



~ 1L
(R(X,Y)Z) = (Vxh)(Y,Z) - (Vyh)(X, Z).
The above relation represents the Codazzi equation.

Using the Weingarten formula, one obtains the Ricci equation:

R(X,Y,&n) = RY(X,Y,&,n) — g(AnA:X,Y) + g(A:AnX,Y)

= RL(Xa Y7 57 77) + g([Afa ATI}X, Y)?
forany X,Y € T(TM) and ¢, € T(T+ M).
If the second fundamental form h vanishes identically, M is a totally geodesic submanifold.
Let{e1,...,en} be an orthonormal basis of the tangent space T, M, p € M, and H be the mean

curvature vector, i.e.,
n
H(p) =+ E :i_l h(e;, €i).

The submanifold M is said to be minimal if H(p) = 0,Vp € M.

There are no compact minimal submanifolds of R™.

For a normal section V on M, if Ay is everywhere proportional to the identity transformation /, i.e.,
Ay = al, for some function a, then V is called an umbilical section on M, or M is said to be umbilical with
respect toV'. If the submanifold M is umbilical with respect to every local normal section of M, then M is said
to be totally umbilical.

An equivalent definition is the following: M is totally umbilical if h(X,Y) = g(X,Y)H, for any vector
fields X, Y tangent to M.

If the second fundamental form and the mean curvature of M in M satisfy g(h(X,Y), H) = fg(X,Y)
for some function fon M, then M is called pseudo-umbilical.

The submanifold M is a parallel submanifold if the second fundamental form h is parallel, thatis, Vh = 0
, identically.

According to the behavior of the tangent spaces of a submanifold M under the action of the almost
complex structure J of the ambient space M, we distinguish two special classes of submanifolds:

i

® Complex submanifolds, if J(T, M) = T,M,Vp € M

ii

) Totally real submanifolds, if J(T, M) C TPLM, Vpe M

Any complex submanifold of a Kaehler manifold is a Kaehler manifold and a minimal submanifold.

If the real dimension of the totally real submanifold M is equal to the complex dimension of the Kaehler
manifold ]W, then M is called a Lagrangian submanifold. In other words, a Lagrangian submanifold is a
totally real submanifold of maximum dimension.

Other classes of submanifolds in Kaehler manifolds are of interest in submanifold theory.

A slant submanifold [23, 84] is a submanifold M of a Kaehler manifold (]T/.f, J, g) such that, for any
nonzero vector X € T,, M, the angle (X)) between /X and the tangent space T,, M is a constant (which is
independent of the choice of the point p € M and the choice of the tangent vector X in the tangent plane
T,M).

It is obvious that complex submanifolds and totally real submanifolds are special classes of slant
submanifolds. A slant submanifold is called proper if it is neither a complex submanifold nor a totally real
submanifold.

A submanifold M of a Kaehler manifold M is said to be a CR-submanifold if it admits a holomorphic
differentiable distribution 2, i.e., J (@p) = 9p,Vp € M, such that its complementary orthogonal
distribution 2+ is totally real, i.e, J(2,") C T;M, p € M.

The CR-submanifolds were studied by B.Y. Chen [22], A. Bejancu [11], K. Yano and M. Kon [123], etc.

Both complex and totally real submanifolds are improper CR-submanifolds.

It is easily seen that a real hypersurface of a Kaehler manifold is a proper CR-submanifold.

Roughly speaking, a Sasakian manifold is the odd-dimensional correspondent of a Kaehler manifold.

A (2m + 1)-dimensional Riemannian manifold (M, g) is said to be a Sasakian manifold if it admits an

endomorphism ¢ of its tangent bundle TM, a vector field & and a 1-form 7, satisfying



¢’ =—-Id+n®¢& n(E) =1, ¢ =0, no¢d =0,
(X, ¢Y) = g(X,Y) — n(X)n(Y), n(X) = 9(X, &),

(Vx9)Y = —g(X,Y)E+n(Y)X, Vxé=¢X,
for any vector fields X,Y on M, where V denotes the Levi-Civita connection with respect to g.

A plane section 7 in TpMis called a ¢-section if it is spanned by X and ¢ X, where X is a unit tangent
vector orthogonal to & The sectional curvature of a ¢-section is called a ¢-sectional curvature. A Sasakian
manifold with constant ¢-sectional curvature c is said to be a Sasakian space form and is denoted by M ().

The curvature tensor of R of a Sasakian space form ]\7(0) is given by [13]

+H{(X)(2)Y —n(Y)n(2)X
+g(X7 Z)U(Y)£ - g(Y7 Z)’?(X)E
+9(9Y, 2)pX — g(¢X, Z)pY —29(¢ X, Y )9 Z},
for any tangent vector fields X, Y, Z on M (c).
As examples of Sasakian space forms we mention R*™! and §%™"!, with standard Sasakian structures
(see [13, 14, 124]).
Let M be an n-dimensional submanifold in a Sasakian manifold M.
By analogy with the submanifolds of a Kaehler manifold, we distinguish special classes of submanifolds
of Sasakian manifolds.
A submanifold M normal to £ in a Sasakian manifold M is said to be a C-totally real submanifold. In this
case, it follows that ¢ maps any tangent space of M into the normal space, that is, ¢(T, M) C TpLM, for

everyp € M.
In particular, if dim M =2 dim M + 1, then Mis called a Legendrian submanifold.
For submanifolds tangent to the structure vector field &, there are different classes of submanifolds. We
mention the following:
U . . _— T
A submanifold M tangent to £ is called an invariant submanifold if ¢ preserves any tangent space of M,
thatis, (T, M) C T, M, for everyp € M.
An invariant submanifold of a Sasakian manifold is a Sasakian manifold and a minimal
submanifold.
(i)
A submanifold M tangent to £ is called an anti-invariant submanifold if ¢ maps any tangent space of M
into the normal space, that is, ¢(T, M) C TpLM, for every p € M.

iii
(D A contact slant submanifold is a submanifold M tangent to £ of a Sasakian manifold (M, ®,&,m, g) such
that, for any vector X € T}, M linearly independent with £,, the angle §(X) between ¢X and the
tangent space T}, M is a constant (which is independent of the choice of the point p € M and the
choice of the tangent vector X in the tangent plane T, M).

i
() A submanifold M tangent to £ is called a contact CR-submanifold if it admits an invariant differentiable

distribution 2 with respect to ¢ whose orthogonal complementary orthogonal distribution 2 is
anti-invariant, thatis, TM = 9 & 2, with ¢(2,) C 9, and ¢(2,") C T,"M, for every p € M.

2 Chen Invariants and Chen-Type Inequalities

The Riemannian invariants of a Riemannian manifold are the intrinsic characteristics of the Riemannian
manifold. Among the Riemannian invariants, the most studied were sectional, scalar, and Ricci curvatures.



We recall a string of Riemannian invariants on a Riemannian manifold, which are known as Chen invariants
[30].

The Chen first invariant of a Riemannian manifold M is given by d/(p) = 7(p) — (inf K)(p),p € M,
where K and T are the sectional curvature and the scalar curvature of M, respectively.

For an integer k > 0, we denote by S(n, k) the finite set that consists of k-tuples (n, ..., n;) of integers
> 2 satisfyingny < m,n; + ...+ ng < n. Denote by S(n) the set of k-tuples with k > 0 for a fixed n.

For each k-tuple (n1,...,ni) € S(n), Chen introduced a Riemannian invariant defined by
8(na,..,mi) (p) = 7(p) — inf {r(L1) + ... +7(Ly)},
where Ly, ..., L run over all k mutually orthogonal subspaces of T, M such thatdim L; = nj,
i=1,... k.

In the introduction of the article [29], B.Y. Chen recalled one of the basic problems in submanifold
theory:

Find simple relationship between the main extrinsic invariants and the main intrinsic invariants of a
submanifold.

We recall the most important Chen inequalities obtained by B.Y. Chen for submanifolds in real space forms.

Theorem 2.1 ([24]) LetM™be an n-dimensional (n > 3) submanifold of a real spaceformMm(c)of
constant sectional curvature c. Then

oar < 272 A + (n+ Ve 1)

Equality holds if and only if, with respect to suitable frame fields{ei, . .., €en,ent1, ..., €m}, the shape
operators take the following forms:

a 0 0 0
0 pu—a O 0
0 0 0
An+1: . )
0 0 0 m
hi; hiy, O 0
hi, —hi; O .0
0 0 0 ... 0
A = ) ) o |, r=n+2,....m
0 0 0 0

Furthermore, when the equality sign of (2.1) holds at a pointp € M™, we also haveK (e1 N\ e3) =inf Kat
point p.

For each (n1,...,n;) € S(n), one defines
k
n? <n+k7172 n,-)
=
k
2 <n+k72 nj>
=

k
b(n,...,ng) =3 ln(n—l) - Z]’l n]-(n]-—l)] .

For proving the above inequality, B.Y. Chen uses the following algebraic lemma (which we call from now
as Chen’s lemma).

d(ni,...,nE) =

)



Lemma ([24]) Letn > 3be an integer anday, as, . . ., ay, breal numbers such that

n 2 n
( g i a,-) = (n—l)( g i a? + b).
Then2aias > b.

The equality holds if and only ifa; + a3 = ag = ... = ay.

The following sharp inequality involving the Chen invariants and the squared mean curvature obtained in
[30] plays the most fundamental role in this topic.

Theorem 2.2 ([30]) Foreach(ni,...,n;) € S(n)and each n-dimensional submanifold M in a Riemannian
spaceformMm(c) of constant sectional curvature c, we have
8(n1,...,nx) < d(ny,...,n0)|H|* + b(ny,...,ng)e (2.2)
The equality case of inequality (2.2) holds at a pointp € Mif and only if there exists an orthonormal basis
{e1,...,em}atp such that the shape operators of M inﬁm(c)atp take the following forms:

ag 0 0 ... O
0 a 0o ... 0
0 0 as ... 0
Appr = . . . -
0 0 O an
AT 0 0 0
AT 0 0
Ar,- = 0 0 Mo 0], r=n+ 27 Iz
0 0 0 L
whereay, . . . , apsatisfy
ar+...+ Ap) = .o = Q4. +ng g +1 +...+ Ani+.. 4np = Ani+.. 4+l = -« = Anp,

e . ; o
and eachAjls a symmetricn; X njsubmatrix satisfying

trace(A}) = ... = trace(A}) = pr.

2.1 Purely Real Submanifolds
A proper slant submanifold M of a Kaehler manifold is said to be Kaehlerian slant if the canonical
endomorphism P, i.e., the restriction of ] to TM, is parallel; more precisely, VP = 0, where V is the Levi-
Civita connection on M.

A Kaehlerian slant submanifold is a Kaehler manifold with respect to the induced metric and the almost

complex structure J = (secf)J, where @ is the slant angle.

On a Kaehlerian slant submanifold the coefficients of the second fundamental form have the symmetry
property: hfj = hj-k = hfﬂ.. Examples of proper slant submanifolds and Kaehlerian slant submanifolds are
given in [23].

We recall now few properties of P. Denoting Q = P2, then Q is a self-adjoint endomorphism of TM. Each
tangent space T}, M admits an orthogonal decomposition of eigenspaces of Q:

T,M =D} ®...® Dy?.



Moreover, each eigenvalue A; of Q lies in [—1, 0].

If \; # 0, then the corresponding eigenspace D;'] is of even dimension and invariant under P,
P(D}) = Di;if X\; # —1, then dim F(D}) =dim D}, and the normal subspaces F/(D) are mutually
perpendicular, where FX is the normal component of JX.

Definition ([23]) A submanifold M is called a purely real submanifold if every eigenvalue of Q = P? lies in
(—1,0],i.e, FX # 0, for any nonzero vector X tangent to M.

Thus, by definition, the class of purely real submanifolds contains both slant submanifolds and totally
real submanifolds (in particular Lagrangian submanifolds, i.e., totally real submanifolds of maximum
dimension).

To generalize Kaehlerian slant submanifolds we will consider purely real submanifolds with VP = 0.

Submanifolds with VP = 0 are characterized by the following proposition:

Proposition ([23]) Let M be a submanifold of an almost Hermitian manifoldﬂ. ThenV P = Oif and only if M
is locally the Riemannian productM; X ... x My, where eachM;is either a complex submanifold, a totally real

submanifold, or a Kaehlerian slant submanifold ofM.

Also, the following result holds.

Proposition ([23]) Let M be an irreducible submanifold of an almost Hermitian manifolde.IfM is neither
invariant nor totally real, then M is a Kaehlerian slant submanifold if and only if the endomorphism P is
parallel, i.e,VP = 0.

Lemma ([23]) For submanifolds M of a Kaehler manifold]\’Z, the conditionV P = Qis equivalent to
ApxY = Apy X for any vectors X and Y tangent to M, where A denotes the shape operator.

The following proposition gives a characterization of submanifolds with VQ = 0.

Proposition ([23]) Let M be a submanifold of an almost Hermitian manifoldﬁ Then the self-adjoint
endomorphism@Q = PZis parallel (i.e,VQ = 0)if and only if:

@

Each eigenvalue\;of Q is constant on M.
(ii .

Each distribution D" associated with the eigenvalue);is completely integrable.
(iii)

M is locally the Riemannian productM; X ... X Myofthe leaves of the distributions.

B.Y. Chen [32] proved the following sharp estimate of the squared mean curvature in terms of the scalar
curvature for Kaehlerian slant submanifolds in complex space forms.

Theorem 2.3 ([32]) Let M be an n-dimensional(n > 2)Kaehlerian slant submanifold of an n-dimensional
complex spaceformM(4c)ofconstant holomorphic sectional curvature 4c. Then
15| > 2ty a2 (1 + 3—?5219)6, (2.3)

= n?(n-1) n

wheredis the slant angle of M.

In particular, for Lagrangian submanifolds, one derives the following:

Corollary ([32]) Let M be a Lagrangian submanifold of an n-dimensional(n > 1)complex space formM (4c)
of constant holomorphic sectional curvature 4c. Then
|H|? > ZT — 2. (24)

— n?(n-1) n

The inequality (2.4) was first obtained in [25].



On the other hand, it is known that any proper slant surface is Kaehlerian slant. Thus, the previous
theorem implies the following.

Corollary ([32]) Let M be a proper slant surface in a complex spaceformM(élc)ofcomplex dimension 2.
Then the squared mean curvatureHHH2and the Gaussian curvature G of M satisfy
|H|*> > 2[G — (1 + 3 cos? §)c], (2.5)
at each pointp € M, wherefdenotes the slant angle of the slant surface.

The above inequality was obtained by B.Y. Chen in [27] and as a corollary of a result from [39].

Theorem 2.4 ([27]) Let M be a purely real surface in a complex SpaceformM(4c)ofc0mplex dimension 2.
Then

|H||*> > 2[G — |Val? = (1 + 3 cos? 0)c| + 4g(Va, Jh(e1, e2))csca,
with respect to any orthonormal frame{e1, ez }satisfyingg(Vea, e2) = O(ais the Wirtinger angle, i.e.,
cos a = g(Je, e3), andVais the gradient ofc).

We first present the results obtained in [80]. More precisely, we generalized Theorem 2.3 for purely real
submanifolds with P parallel with respect to the Levi-Civita connection.

Theorem 2.5 ([80]) Let M be a purely real n-dimensional(n > 2)submanifold withV P = Qof an n-
dimensional complex SpaceformM(4c)ofconstant holomorphic sectional curvature 4c. Then

2 2(n+2) 1P|
IH|" > ey — 52 [1 + 3D } c. (2.6)
Proof Letp € M and{ey,ey,...,e,} beanorthonormal basis of the tangent space T,, M such thatall e;’s
are eigenvectors of P2. An orthonormal basis {ef, e}, ..., e} } of the normal space Tle is defined by
% Fei .
€, = m, 1= ]., n.
7

For a purely real submanifold with VP = 0, one has
AFXY:AFy'X, VX,YEFTM,
or equivalently,
hfj = h?k = ijv

where A means the shape operator and hfj = g(h(e;,ej),e5), 0,5,k =1,...,n.

From the Gauss equation, it follows that

2r = n?|H|* - [|B]* + c[n(n—1) + 3| P|*].
By the definition, the squared mean curvature is given by

2 i )2 i i
n?||H|? = g {g j(hjj) +2 g j<khjjhkk].
We derive
_ n(n-1)+3||P|* i pi i \2 k)2
= > c+ g i E j<khjjhkk— g #j(hjj) -3 g i<]_<k(hij).

If we denote m = Z—f%, we get

n?||H|* — m[21 — n(n—1)c—3||P| ]

i )? )2 2 o
=D em) D () om Y () 2 Y D ke
i 2 § § . SN2
- Zz (h;i)z +6m Zi<]’<k(h?j) +(m-1) i j<k(h;j B hik)



+[1+2m—(n—2)(m—1)]§ i (h55) )?—2(m—1) g L5 hish3;
g i i )2
_6mZz<]<k IJ (m_l) Z#j,k j<k(hjj_ kk)
2
1 i “Dail >0,
+2ls E s [Pl = (=D (m=1)hs; ] = 0

n?||H||> — m[21 — n(n—1)c—3||P|*c] >0
Using the definition of the real number m, the previous relation becomes
n’||H||* — 7 27 — n(n—1)c-3||P||%] >
which is equivalent to the inequality to prove.

In [104] we proved Chen inequalities for slant submanifolds M in complex space forms M(c) of constant
holomorphic sectional curvature c.
We considered 2-plane sections 7 invariant by P and defined

o (p) = 7(p) — inf {K(7)| # C T,M, dim w = 2,invariant by P},
where, as usual, we denoted by K () the sectional curvature associated with the 2-plane section 7 and by
7(p) the scalar curvature atp € M, 7(p) = >, <, K(e; A e;), with {e}, €,...,e,} an orthonormal
basis of T), M.
The Chen first inequality has the following form.

It follows that

Theorem 2.6 ([104]) Given an m-dimensional complex spaceformM(élc)and a6-slant submanifold
M, dim M = n, n > 3, we have

1i(p) < ;{n 1 |H||* + (n + 1+ 3 cos® 0)0}. (2.7)
The equality case of the inequality holds at a pointp € Mif and only if there exist an orthonormal basis
{e1,€2,...,e,}ofT,Mand an orthonormal basis{e, 1, . . ., ezm}oﬂ'pLMsuch that the shape operators of M
inM (4c)at p have the following forms:
a 00 0
0b 0 . 0
An+1 = 0 K- 0 , a+ b= Ky
\0 00 ... ,u/
B By 0 ... 0
B, <k 0 ... 0
A =10 O 0 0

o o 0. 0/
where one denotesA, = Ae,,7 =n+1,...,2m, andh}; = g(h(ez, ej),er), t,j=1,.
r=n+1,...,2m.

Remark The equality case implies the minimality for Kaehlerian slant submanifolds with n = m [95].

In [80] we extended the above inequality to purely real submanifolds M in complex space forms M (4¢).
For a 2-plane section m C T, M,p € M, we denoted

®%(m) = g*(Jey, e2),



where {e1, e} is an orthonormal basis of 7 (see [20]). Then ®2() is a real number in [0, 1], which is
independent of the choice of the orthonormal basis {e1, ez} of 7.
We proved the following optimal inequality.

Theorem 2.7 ([80]) Let M be an n-dimensional(n > 3)purely real submanifold of an m-dimensional
complex spaceformM(4c) p € M, andw C T\,Ma 2-plane section. Then

7(p) ~ K(m) < BEDYH|? + [(n+ 1)(n-2) + 3| P|*-62%(m)] 5. 28)
Moreover, the equality case of the inequality holds at a pointp € Mif and only if there exist an orthonormal
basis{e1, ez, . .., en yofTyMand an orthonormal basis{en+1, - . ., eQW}oﬂ’lesuch that the shape operators
take the following forms:
a 00 0
0b 0 0
An+1: 00 p...00 ’ (1—|—b:p,,
\0 00 ... p,}
hi; A, 0 ... 0
his —hi; 0 ... 0
A,=|0 O 0 ... 0 , re{n+1,...,2m}.

b o 0. o
Proof Letp € M and 7 C T, M be a 2-plane section and {e1, e2} an orthonormal basis of 7. We construct

{e1,€e2,¢€3,...,e,} an orthonormal basis of T}, M.
The Gauss equation implies

21 = n?|H||*> — ||&||* + [n(n—1) + 3| P||*]c.
We put

2) 2
e=27— ") H|® - [n(n—1) + 3| P||’]c.
From the above two equations, we get
2 2
n?|H|* = (n—1)(e + [[R]*). (29)

We take e,,;1 parallel with H and construct {€n+1, RN egm} an orthonormal basis of TpLM. Equation

(2.9) becomes
n n
n+1 r\2
<Zi1 hii > (n—1) (Zr n+1 Zi,jl (hif) + 6)’
or equivalently,
n 2
<Zi1 hZ_H) = (TL—].) lz hn+1 + Z hn+1 ZT n+2 Zz] 1 (h ) e

By applying Chen'’s lemma, we obtain

2R > E (R g . g m,zl(h;j)z—ks

The Gauss equation gives

K = [1 4382 me s Do, [ty — (k)]




> [1+3%%(m)|c +3 Z# R L ZT M?Z;1(h§j)2+%
1 DA NS,
N D DU D MZgW(h:f
+7 Zr:n+2(h{1 +hiy Z'r n+1 Z] 3 h;J) ] +3

> [1+38%(n)]c + §,
which implies the inequality to prove.
We have an equality at a point p € M if and only if all the above inequalities become equalities and the
equality case of Chen’s lemma holds. Thus the shape operators take the desired forms.

For n-dimensional Kaehlerian slant submanifolds a particular case of purely real submanifolds in n-
dimensional complex space form M (4c), we proved an improved Chen first inequality.

Theorem 2.8 ([80]) Let M be an n-dimensional(n > 3)Kaehlerian slant submanifold in the complex space
formM (4c), dim¢ M (4c) = n, andp eM,~w C TpMa 2-plane section. Then

m(p) — K(r) < 2 22;;33 + [(n + 1)(n—2) + 3n cos? §—6®%(m)] <. (2.10)
Moreover, the equality case of the inequality (2.10) holds at a pointp € Mif and only if there exists an
orthonormal basis{ey, s, . . . , e, Yat p such that with respect to this basis the second fundamental form takes

the following form:
h(ei,e1) = ae] + 3be; h(e1,es3) = 3be] h(es,e;) = 4be;;
h(es,e2) = —aej + 3be; h(ea, e3) = 3be; h(ej, er) = 4be3d
h(e1,e2) = —aej h(es,e3) = 12bes h(el,ej) = h(ez,e;) =0,

. F .
for some numbersa, bandj, k = 4, . ..,n, wheree; = I\FelH i=1,.

Proof Letp € M and 7w C T, M be a 2-plane section and {ey, €2, . . ., €, } an orthonormal basis of the
tangent space T}, M such that e, e; € 7. An orthonormal basis {e], e3, ..., e} } of the normal space TPLM is

Fe. -
defined by e} = sinezH ,i = 1,n. We denote hfj = g(h(ei, ej), €})-

The Gauss equation implies
n

7(p) = Zr:l Zl§i<j§n hiih; — (h ) ] + [n(n—1) + 3n cos? 6]%, (2.11)

n
2
K(m) = E :T 1[h{1h§2 — (h1,)7] + [1 + 3@%(m)]e, (2.12)
respectively. Since M is a Kaehlerian slant submanifold, we have hk = h hii.
From formulas (2.11) and (2.12), we obtain

m(p) — K(m) = Zr_l{zj_3(h{1 + hiy)hl+ ZBSKM s
) 2.13
B Zj:?,[(h;j)Q + (hgj)Q]} (2.13)

—I—[(n +1)(n—2) + 3n cos? 0—6@2(71')]%_

and

It follows that
7(p) — K(m) <



IN

Zr:l [Zj=3(hgl + h52)h;j - Z3gi<g‘gn h;ihgﬂ}
D) D ) -y )

—l—[(n + 1)(n—2) + 3n cos? 0—6@2(7r)] 5
In order to achieve the proof, we will use some ideas and results from [17].
We point out the following 1nequaht1es (see [17]):

n n 2
—3 (hgl T + Zg<z<]<n “ JJ Zj3 (h;:j) (2.14)

2n—3 2
< oariy (h71"1 et h:m) = m(hh et h;n) ,
for r = 1, 2. The first inequality is equlvalent to

Zj:3(h§1 + hg,~3hT) 13 Zs«m B, — hT ) > 0.

The equality holds if and only if 37, = h7; + hy,, Vj = 3,.
The equality holds in the second 1nequa11ty if and only if A7, + hr .+hl,=0
Also, we have

Zj:3(hgl + h§2)2h§j t Z3§i<j§n hiihg; — ijg(hgj)Q < 2(222133) (hﬁ +oot hzn)Q’

forr =3,...,n, which is equivalent to (see [17])

2
[2(h7, + hr,) 37+ (20 + 3) (R, — Ry,)° (2.15)

3<j<n,j#r

+6 E«M#T By —hr) 42 E J(hn, =)+ 3[hr—2(hy, + my)] > o.
The equality holds if and only if
hi; = hiy = 3X7,
hgj:4)\T,Vj=3,...,n,j7ér, AT eR.
hr. = 12\",
By summing the inequalities (2.14) and (2.15) we obtained the inequality (2.10).
Combining the above equality cases, we get the desired forms of the second fundamental form.

In particular, we derive the following.

Theorem 2.9 ([80]) Let M be an n-dimensional(n > 3)Kaehlerian slant submanifold in the complex space
formM (4c), dim¢ M(4c) = n,p € M,z C T,Ma 2-plane section. Then

W) < SELH|? + (n-2)[n + 1+ 3 cos® 6] 5. (2.16)

The equality case of the inequality holds at a pointp € Mif and only if, with respect to a suitable
orthonormal basis{e1, es, . . ., e, }of T, Mthe second fundamental form h takes the same form as in
Theorem2.8.

Proof If Mis Kaehlerian slant and 7 is invariant by P, one has ®2(7) =cos? 6.

In contrast with the last remark, the equality case does not imply the minimality of the submanifold.
However we stated the following result.

Theorem 2.10 ([80]) Let M be an n-dimensional Kaehlerian slant submanifold in the complex space form
M(4c), dimc M (4c) = n, andn > 4.If the equality case holds identically in (2.16), then M is a minimal
submanifold.



The proofis similar to that of Theorem 3 from [17].

In the case n = 3 there is an example of non-minimal Lagrangian submanifold in CP? satisfying the
equality case of (2.10) [18].

In [47] we presented a general construction method to obtain the explicit expression of a purely real
submanifold in the complex hyperbolic planeC H™ (—4) via Hopf’s fibration. For the details, see [45] (the
same method applies to CP"(4) with minor modification).

Let C?H denote the complex (n + 1)-space together with the Hermitian inner product:

n
F(z,w) = —zowo + g o1 233
for z = (20, - - -,2n) and w = (wy, . . . ,wy,) in C?*'. We denote
HM' = {2c CM: F(z,2) = —1}. (2.17)
Then Hf““ is a real hypersurface of CTH whose tangent space at z € Hf"H is

T.H™! = {w e C}"': Re F(z,w) = 0}.

The restriction of the real part of F, Re F, on Hf"“ gives rise to a pseudo-Riemannian metric g on Hf"“
. Itis well known that H 12"“ together with g is a Lorentzian manifold of constant sectional curvature —1,
which is known as the anti-de Sitter space.

We put

T! = {u € C" : Re F(u,v) = Re F(u,iz) = 0}

and H{ = {n € C : nfj = 1}. Then we have an H}-action on H2"!, 2+ nz. At z € H?""'(—1), the vector
iz is tangent to the flow of the action. Since F is Hermitian, we have Re F(iz, iz) = —1. Notice that the orbit is
given by z; = e’z with dz; / dt = iz; which lies in the negative-definite plane spanned by z and iz. The
quotient H12"+1/N under the action is the complex hyperbolic n-space CH"(—4) of constant holomorphic
sectional curvature —4.

The complex structure J on CH"(—4) is induced from the complex structure J on C’f“ via the Hopf
fibration:

7 H" — CH™(—4), (2.18)
which is a Riemannian submersion with totally geodesic fibers. If z € Hf”“, we put
V=Jz (2.19)

Then V is a time-like unit vector tangent to the fiber of the submersion at z.
Denote by V and V the Levi-Civita connections of H>"*! and CH"(—4), respectively. Let X * denote the

horizontal lift of a vector X on M. For vector fields X, Y tangent to CH"(—4) and V normal to CH"(—4),
we have

VY =(VxY) + (JX, V)V, (2.20)
VxV=VyX* = (JX)". (2.21)
Let ¢ : M — CH"(—4) be an isometric immersion from a Riemannian m-manifold M into CH" (—4).
Then the pre-image M = 7 (M) is a principal circle bundle over M with totally geodesic fibers. The lift

EE M — Hf”“ of ¢ is an isometric immersion such that the diagram

= ¢
M — HM1(-1)
i bn

, (2.22)
M — CH"(-4)

commutes.
Conversely, if ¢ : M — H""(—1) is an isometric immersion invariant under the action, there is a

unique isometric immersion v, : W(M\) — CH"(—4), called the projection ofi), such that the associated

diagram commutes.
Since V generates the vertical subspaces of the Riemannian submersion (2.18), we have the following
orthogonal decomposition:



T.M = (Ty;)M)* @ Span{V’}.
Let V be the Levi-Civita connection of M. Then we have
VxY* = (VxY)" + (h(X,Y))" + (JX,Y)V, (2.23)
for X,Y tangent to M, where h is the second fundamental form of M in CH"(—4).
If € is a normal vector field of M in CH"(—4), then (2.20) yields

V€= (Vx) +(JX, V. (2.24)

Hence, by the Weingarten formulg, we have
A X* = (AgX)* — (FX,&V, (2.25)
Dx-& = (Dx¢)", (2.26)

where A and 4 are the shape operators of M in CH"(—4) and Min Hf"“, respectively, and D and D are the

corresponding normal connections.
From (2.20) we have

W(X*Y*) = (h(X,Y))", (2.27)
where / denotes the second fundamental form of M in Hf““. By using (2.27) we also have
Vi Y* = (VxY) +(JX,Y)V, (2.28)

where V7 is the Levi-Civita connection of M.
Also, it follows from (2.21) that
KHX*V)=(FX)", Vx.V=V,X*=(FX)" (2.29)
for X tangent to M.
Let z : H) — C3 denote the standard inclusion and V be the Levi-Civita connection of C3.IfMisa
purely real surface of CH?(—4), then it follows from (2.17), (2.19), (2.21), (2.23), (2.27), (2.28), and (2.29)
that

VxY* = (VxY)" + (h(X,Y))" + (JX,Y)V + (X,Y)z,
Vx.V=VyX* = (JX)", (2:30)
6VV = —z,

for X,Y tangent to M.

On H?"*!(—1) C C7*! we consider the induced Sasakian structure (g, ¢, £), where the (1,1)-tensor ¢ is
obtained from the projection of the canonical complex structure J of C?H onto the tangent bundle of Hf"“
and¢ =V,

Now, in [47] we defined the notion of contact purely real submanifolds as follows.

Let (M?™+1 g, ¢, £) be an almost contact metric (2m + 1)-manifold endowed with a Riemannian (or
pseudo-Riemannian) metric g, an almost contact (1, 1)-tensor ¢, and the structure vector field & Then an

immersion f : N — M?™"! of a manifold N into M 2™ is called contact purely real if it satisfies:
(i)

(i)
For any nonzero vector X tangent to f,(7,N) and perpendicular to §, ¢(X) is transversal to f(T,N).

The structure vector field & of M 2™+ is tangent to f, (TN).

The following lemma is easy to verify:

Lemma 2.11 The immersiony : M — CH"(—4)is purely real if and only if the lift ¥ 7 Y (M) — H"Mof
wis contact purely real, wherer : H2"*1 — CH™(—4)is the Hopf fibration.

In principle, the method to obtain the representation of a purely real surface inCH 2 (—4) is by solving
the PDE system (2.30). This procedure goes as follows:
First, we determine both the intrinsic and extrinsic structures of the purely real surface. Next, we

construct a coordinate system on the associated contact purely real surface M = at (M). After that we
solve the PDE system via the coordinate system on M to obtain the explicit solution of the system. Such a
solution gives rise to the desired explicit expression of the contact purely real surface M of H 15 via 7.



The same method also applies to purely surfaces in CP2(4).
The following general optimal inequality was given in [39].

Theorem 2.12 Let M be a purely real surface in a complex spaceformM2(45). Then we have
H?>2{K — ||Val|> - (1 + 3 cos? a)e} + 4(Va, Jh(e1, e2))csca (2.31)
with respect to any orthonormal frame{e1, ez }satisfying(Va, e2) = 0, whereV ais the gradient of the
Wirtinger angleaandH ?and K are the squared mean curvature and the Gauss curvature of M, respectively.
The equality case of (2.31) holds identically if and only if the shape operators take the following forms:

3p 6 o+
Ae:,:(s" ) Ae4=( ac ¥ (232)

d o 7 36+ 3e1a)’
with respect to some suitable adapted orthonormal frame{e1, es, e3, €4}

A purely real surface in a complex space form M2(45) is said to satisfy the basic equality if it satisfies the

equality case of inequality (2.31) identically.
We classified the minimal surfaces in M 2(46) satisfying the basic equality.

Theorem 2.13 ([47]) Let M be a purely real minimal surface of a complex SpaceformM2(4s). If M satisfies
the basic equality, then we have either:

()
€ > 0and M is a totally geodesic Lagrangian surface or

(b)
e <0.

Proof Assume that M is a purely real minimal surface in a complex space form M2(45). We choose an
adapted orthonormal frame {e1, e2, 3, e4} such that the gradient of « is parallel to e; at p. So, we have
Va = (eja)e;. Let us put
h(e1,e1) = Bes + ves, h(e1,ez) = des + pes, h(ez,ez) = Aes + pey. (2.33)
If M satisfies the equality case of (2.31), then Theorem 2.12 implies that the second fundamental form
satisfies
h(ei,e1) =0, h(ei,e2) = —(e1a)es, h(ez,ez) =0. (2.34)
If M is a slant surface, then a is constant. So, it follows from (2.32) that M is a totally geodesic purely real
surface. In this case, M is a totally geodesic Lagrangian surface of constant curvature € (cf. [50, Theorem

3.1]).
Next, assume that M is a non-slant minimal surface, i.e., Va # 0 holds. Then M contains only isolated

totally geodesic points since M is minimal. Therefore, U = {p € M : Va(p) # 0} is a dense open subset of

M.
Because Span {e; } and Span {e2} are one-dimensional distributions, there exists a local coordinate

system {z, y} on U such that 0 / Oz and @ / Oy are parallel to e; and ey, respectively. Thus, the metric tensor
g on U takes the following form:
g = E?dz? + G%dy?, (2.35)
where E and G are positive functions.
The Levi-Civita connection on M satisfies

0 _ E. o _ EE, 9
V%am* E oz G By’
o _E o0 G 0o
V% Ay E o TG oy (2.36)
d _ GG, 8 Gy 9
Vegy=—"FautToy
Let us put
1.9 1.9
e1= Foz> €27 Gay- (2.37)

0
From ey = 0, we have a = a(z). It follows from (2.37) that
(2.38)



Recall the following lemma from [40].

era = hiy —hiy, exa = hi, — h3,,
®; = w; — (h3 + h%,) cot a,
&y = wy — (h3, + h,) cot o,

whereV xe; = w(X)es, Vyes = ®(X)eq, wj = w(e;), and®; = ®(e;)forj = 1,2.

It follows from (2.34), (2.36), (2.37), and the above lemma that

[ i =_E’ D i ZG,\“FOI,()C)GCOta.
o)~ 6 T\ P

Thus, we find from (2.38) and (2.39) that

= 9y _ 200G,
(v.(—:,h)(ih’ ZL\‘) - E €3,
20/ (X)ExG—a"(x)EG
E'.’

(7,0) 8. ) = s
(740)( )

o' (OE,
3+ —p—eq,

20 (0)E,G "xX)G(G "(x)G ¢
a' (x)E, ey — o' (V)G(Gy+a' (x)G cotu)&l.

= 5

s ax* ay E? E?
It follows that
(2 * = 3¢E2G sin « cos aes,
oz
_ i
(R(%, 8%) 8%) = —3¢EG? sin a cos aey,
Q(R(a%, 3%) 3%, %) = (1 + 3 cos? a)eE2G.
Hence, we discover from (2.40), (2.41), and the equation of Codazzi that

E, =0,
20/(z)(EG, — E,G) + a(z) EG = 3¢ E*G sin « cos a,
al(z)G, + ar*(z)G cot a = —3¢E3G sin a cos a.
It follows from (2.42) that E = E(x). Thus, we may choose z, y such that
g = dz? + G%dy’.
From this we see that the Gauss curvature is given by
K=—S=
On the other hand, from (2.32), the last equation in (2.41), and (2.46), we have
Gur = G(a2—3e cos® a —¢).
Since E is assumed to be one, (2.43) and (2.44) reduce to
2a/(z)G, + Gatl(z) = 3eG sin a cos a,
al(z)G; + ar*(z)G cot a = —3¢G sin a cos a.
Summing up the last two relations, we get

S = —3% — ar(z) cot o

After solving the last equation for G, we obtain
_ f(y)csc%a
al‘é‘(ac)

for some nonzero function f(y). Substituting this into (2.49) gives

all= 2al? cot a + 9¢ sin a cos o

Lemma Let M be a purely real surface in a Kaehler surface. Then, with respect to an adapted orthonormal
frame{ey, ez, e3, €4}, we have

(2.39)

(2.40)

(2.41)

(2.42)
(2.43)
(2.44)
(2.45)
(2.46)
(2.47)

(2.48)
(2.49)

(2.50)

(2.51)

(2.52)



Now, by substituting (2.51) into (2.47) we discover
3atal= 4an* + ar*(9e(1 + 3 cos? @) — atlcot a) + art(4 cot® a—6). (2.53)
From the last two relations we obtain e(4a/? + 9¢ sin? 2a) = 0, which is impossible unless & < 0. This
proves the theorem.
In view of Theorem 2.13, we classified purely real minimal surfaces in CHZ(—4) satisfying the basic
equality.

Theorem 2.14 ([47]) Let M be a purely real minimal surface of the complex hyperbolic planeC’HQ(—4).
Then M satisfies the basic equality if and only if it is congruent to an open portion of one of the following two
surfaces:
1.
A real hyperbolic plane H?of constant curvature—1 embedded inCH2(—4)as a totally geodesic
Lagrangian surface.

A surface inC H?(—4)given byt o z wherer : HY(-1) — CH?(—4)is the Hopf fibration and
z:R3 — H} C Clisgiven by

z2(z,u,t) = eizyj{w (37,\3/5 sinh (v/3u) + v/3(V/2 + 2¢%*) cosh (V/3u),

3¢%° cosh(~v/3u) + lﬁ(ZC/ﬁ + ez“‘) sinh(~/3u), %(3/5 — ¥ ))
&3
This purely real surface has the nonconstant Wirtinger anglea. =arctan (e3“'").

Next, we classified purely real surfaces with circular ellipse of curvature in CP?(4) and in CH?(—4) which
satisfy the basic equality.

Theorem 2.15 ([47]) Let M be a purely real surface with circular ellipse of curvature in a complex space
formM2(45), € = =£1. If M satisfies the basic equality, then we have either:

1.
M is a Lagrangian surface satisfying the equality
H? =2K-2¢
identically or
2.
€ = —1, and M is congruent to an open portion of a proper slant surface inCH2(74)given byr o z, where

7 : HY — CH?(—4)is the Hopf fibration andz : M — H? C C3is defined by
2(u,v,t) = e“(% cosh av + fu?e ™ — Ly/6u(l+e @) — 1,
(142 ) u +ivV6(—3 + Te + e V(5 + Hu?)),
%(1 —e ™)u+ zx/g(% + %e‘w + e*‘w(—l—52 + %uﬂ)), a= \/%
Remark Lagrangian surfaces in a complex space form M2(45) with € = 1 or —1 satisfying the equality
have been completely classified in [25, 51]. Such surfaces have circular ellipse of curvature.

A surface M in a Kaehler surface is said to have full second fundamental form if its first normal space Im h
satisfies dim (Im h) = 2 identically. It is said to have degenerate second fundamental form if
dim (Im h) < 2 holds at each point in M.

Theorem 2.16 ([47]) Let M be a purely real surface satisfying the basic equality in a complex space form
M2(4E)With6 = +1. If M has the degenerate second fundamental form, then either:



(i) Mis a totally geodesic Lagrangian surface or

(i)
€ = —1, and M is locally congruent to the surface given byt o z, wherer : H}(—1) — CH?(—4)is the
Hopf fibration andz : R® — H} C C3is

2z, u,t) = Lo (31\/_ 2 sinh (v/3u) + v/3(V/2 + 2€2*) cosh (v/3u),
3¢ cosh(v/3u) + lﬁ(ZC/E + ez"‘) sinh(v/3u), 4(3/5 — ™ ))
e‘lll

By continuing this idea, in [46] we considered purely real surfaces with harmonic Wirtinger function and
purely real surfaces with closed canonical form. In order to do so, first we proved a general formula for the
Laplacian of the Wirtinger function involving the canonical form. Then we provide a necessary and sufficient
condition for non-minimal proper purely real surfaces to have closed canonical form. As applications, we
obtained several classification results for purely real surfaces to have harmonic Wirtinger function or with
closed canonical form.

Let M be a purely real surface in a Kaehler surface M. We recall a 1-form ¥ ;7 on M defined by Chen [23]

Uy (X) = (csc’a)(H, JX), (2.54)

for X € T M, where « is the Wirtinger function of M. Since M is purely real, ¥z is well defined on M. We call
this 1-form ¥ g the canonical form.

For a Lagrangian surface in Cc% o g is a closed form. Moreover, up constants, it represents the Maslov
class of the Lagrangian surface (cf. [L01]). However, when the purely real surface is non-Lagrangian, this
form is non-closed in general.

We established the following general formula for purely real surfaces in a complex space form M2(45).

Theorem 2.17 ([46]) Let M be a purely real surface in a complex SpaceformM2(45)0fconstant
holomorphic sectional curvaturede. Then we have
Aa = {||Val|? + 6 sin® a} cot a + 2(sin @) * d¥ g, (2.55)
whereV ais the gradient ofa, Acv := div(Va)is the Laplacian ofo, andxis the Hodge star operator.

An immediate consequence of Theorem 2.17 is the following.

Corollary 2.18 ([48]) Every slant surface M inC?satisfiesd¥ = 0.

Remark This result is false if the ambient space C? is replaced by a non-flat complex space form M2(45).

Besides minimal surfaces and slant surfaces, there exist many non-minimal, non-slant purely real
surfaces in C? which satisfy Aa = 0 or d¥ ; = 0. For instance, a large family of such surfaces can be
obtained from surfaces of revolution.

Proposition 2.19 ([46]) Letg(s) = (r(s), 2(s))be a unit space curve inE>withr(s) > Oandr/(s) # 1.
Consider the surface of revolution inC >< R C Czdefmed by

5,0) = (r(s)e', 2(s)). (2.56)
Then we have
() o N o . .
The surface of revolution inC*has harmonic Wintinger function if and only ifr(s)satisfies
rin(s) = 71(8)ri(s)[r(s)r1(s)—ri(s)*+1] _ (2.57)

(s)(r1(s)*~1)
(i) The surface of revolution inC?is a non-slant, non-minimal surface withd¥ ; = 0if and only ifr(s)satisfies
r1(s)ri(s)[2r(s)ri(s)—r1(s)2+1]
" =
r (s) 7'(5)[7'/(8)271] I (2.58)
r1(s) # 0, rri+r? £ 1. (2.59)




An immediate consequence of Theorem 2.17 is the following.

Corollary 2.20 ([40]) Let M be a purely real minimal surface in a complex spaceformM2(4s). Then we
have

Aa = {||Val|* + 6¢ sin® a} cot a.
By applying the above corollary one obtains the following.

Corollary 2.21 ([50]) Every slant surface in a complex spaceformM2(4€)with6 = 0is non-minimal unless
it is either Lagrangian or complex.

Corollary 2.22 ([40]) Let M be a purely real minimal surface in the complex Euclidean planeC?. If the
Wirtinger functionais a harmonic function, then M is slant.

Corollary 2.23 ([50]) Let M be a purely real minimal surface in complex projective planeCP2. If the
Wirtinger functionais harmonic, then M is Lagrangian.

For minimal surfaces in CH?, we have the following.

Theorem 2.24 ([46]) A minimal surface in the complex hyperbolic pIaneC’HQhas the harmonic Wirtinger
function if and only if it is either a complex surface or a minimal Lagrangian surface.

Remark Obviously, there exist many complex surfaces in CH2(—4). In fact, every holomorphic curve in
CH?(—4) is such an example.

Remark There exist many minimal Lagrangian surfaces in CHz(—4). The simplest one is the hyperbolic
plane H?(—1) of curvature —1 isometrically immersed into C.H?(—4) as a totally geodesic Lagrangian
surface.

For non-totally geodesic Lagrangian minimal surfaces in CH2(—4), we have the following existence and
uniqueness result from Corollary 3.6 in [28, p. 667] (for ¢ = pu2/3).

Proposition 2.25 ([28]) If M is a minimal Lagrangian surface without totally geodesic points inC’H2(—4),
then, with respect to suitable coordinatesx, y, we have:

(a) The metric tensor of M takes the form ofg = ¢~ (d:r2 + dy2)f0r some positive functionpsatisfying
Poisson’s equation:

a 9%(In 0%(In 2(1+2¢°
(a) () (%f) _ 2 ) (2.60)
(b) The second fundamental form h is given by
9 0 0 9 0
) h( 57 95) =~ (37); h(%’ B_y) = SDJ(a—y)’
(2.61)

m(Z. L) = el ()
Conversely, ifois a positive function defined on a simply connected domain U ofR?satisfying (2.60)
and ifg = ¢! (d:/z:2 + dy2)is the metric tensor on U, then, up to rigid motions 0fCH2(—4), thereisa
unique minimal Lagrangian isometric immersion of U intoCH2(—4)whose second fundamental form is
given by (2.61).

Because (2.60) admits infinitely many solutions, there are abundant examples of minimal Lagrangian
surfaces in CH?(—4).

It follows that each solution of this Poisson equation is nonconstant. Thus, an immediate consequence of
Proposition 2.25 is the following (see also [49, 57]).



Corollary 2.26 Every non-totally geodesic Lagrangian minimal surface inCH? (—4)has nonconstant Gauss
curvatureK = —(1 + 2¢3) < —1(associated with some solutionpof (2.60)).

Trivially, we have ¥z = 0 for minimal purely real surfaces. Moreover, it was proved in [23] that ¥z = 0
holds for every slant surface in C2.

We studied purely real surfaces in a Kaehler surface with closed canonical form.

For a non-minimal purely real surface M in a Kaehler surface M?, we may choose an adapted frame
e1, €, €3, €4 such that H is parallel to e3, H = me3, p = —v, where m = (8 + A) / 2 is the mean curvature
of M. We call such a frame on M a H-adapted frame.

Proposition 2.27 ([46]) Let M be a non-minimal proper purely real surface in a Kaehler surfaceﬂz. Then
the canonical formW gis closed if and only if, with respect to a H-adapted frame, there exists an orthogonal

coordinate system{x, y}such thate; = p_la%andez = q_la%withp = (f(z) sin a) / mfor some function

f(z).

Obviously, every purely real minimal surface in a complex space form M2(4€) satisfies dV gy = DH = 0.
The next theorem determines purely real surfaces in complex space forms M2(4s) satisfying
d¥y =DH =0.

Theorem 2.28 ([46]) Every purely real surface in a complex spaceformM2 (4e)satisfyingd¥ g = DH = 0
is either a minimal surface or a Lagrangian surface.

Recall that Lagrangian surfaces in complex space forms M2(45) satisfy d¥ g = 0 (see, for instance, [118]).

It is known that a Lagrangian surface in C? with a nonzero parallel mean curvature vector is either an
open part of the product two circles S* (r1) x Sl(rz) C C x C or an open part of a circular cylinder
St x E! ¢ C x C (cf.[23], p. 50, Theorem 1.1).

Lagrangian surfaces with a nonzero parallel mean curvature vector in CP?(4) and in CH 2(—4) are
parallel surfaces. Such surfaces have already been classified (cf. [43, Appendix]). In fact, we have the
following:

A Lagrangian surface with a nonzero parallel mean curvature vector in C’P2(4) is a flat surface whose
immersion is congruent to 7 o L, where 7 : $5(1) — CP?(4) is the Hopf fibration and
L: M? — S5(1) C C3is given by

—iz/a i(az+by)
L(z,y) = (af—z Jo s (VIT @ B y),

gilaz+by) (c oS (m y) sin (m y)))

Vita
where a and b are real numbers with a # 0.
A Lagrangian surface with nonzero parallel mean curvature vector in CH 2(—4) is a flat surface whose
immersion is congruent to 7 o L, where w : H?(—1) — CH?(—4) is the Hopf fibration and

L:M? — H}(—1) C C?is one of the following six maps:

\/1+a2+b2

e N

1. | _
L(z,y) = ( (osh (Vi—aT=y) - i Vi by)>,

i(az+by) zz/a
\/1;211172 sinh (\/1—a2—b2 y) )

witha,b € R, G#Oanda LB <1,
L(x,y) = ((% _|_y)ei(\/17b2w+by) ye i(vV1- b2z+by) \/1 b2 Z:c/\/l b2)

I

withb € R, 0 < b? < 1;



ez(az+ ) ———— b sin \/G2+b2—1y
L(a;,y) = ( \/k_by (COS (\/a2 b2—1 y) - %),

1a:c+b'y 3 3 w/a )
oo sin (\/a +b y) Wewrsd

witha,b € R, 0 < a® <1 and a® +b? > 1;

4, )
L(z,y) = ( ae/t (e sin (W y)
cos

6
Va1’ Va1

eilaz+by) SRV B ib sin(\/a2+b2—1 y)
—_— ( VaZ+b ly) "),

witha,b € R, a® > 1;

5. _ |
L($7 y) = g;:z (’L + 8b2(’L + m)_4by, i+ 8b2$—4by, 4be2zby),
withb € R, b # 0;
6.

L(z,y) = ei”’(l + y; —iz,y, y; —im).
The following two propositions follow easily from Theorem 2.17.

Proposition 2.29 ([46]) Let M be a purely real surface in the complex Euclidean planeC?. Then M is a slant
surface if and only if we haveAa = d¥ g = 0.

Proposition 2.30 ([46]) Let M be a purely real surface in the complex projective planeC P?. Then M is a
Lagrangian surface if and only if we haveAa = d¥ i = 0.

In contrast to Corollary 2.18, we have the following consequence of Proposition 2.30.
Corollary 2.31 ([46]) Every proper slant surface M inC Psatisfiesd¥ g # 0.
For purely real surfaces in CH 2 we also have the following.

Theorem 2.32 ([46]) A purely real surface M in a complex hyperbolic pIaneC’HQSatisﬁesAa =d¥ g = 0if
and only if M is a Lagrangian surface.

Next, we consider again Kaehlerian slant submanifolds in complex space forms.

B.Y. Chen proved in [31] an optimal inequality for Lagrangian submanifolds (a particular case of purely
real submanifolds) in complex space forms in terms of the Ricci curvature and the squared mean curvature,
well known as the Chen-Ricci inequality. Recently, the Chen-Ricci inequality was improved in [55] for
Lagrangian submanifolds in complex space forms.

We extended the improved Chen-Ricci inequality to Kaehlerian slant submanifolds in complex space
forms. We also investigated the equality case of the inequality.

Definition A slant H-umbilical submanifold of a Kaehler manifold M™" is a slant submanifold for which the
second fundamental form takes the following forms:

h(ehel) = )‘691‘7 h(62,62) == h(emen) = NGL
h(ei,e;) = pe;, hlejex) =0, 2<j#k<n,
where e], . . ., e}, are defined as before.

Recall some known results.
In [29], B.Y. Chen established a sharp relationship between the Ricci curvature and the squared mean

curvature for any n-dimensional Riemannian submanifold of a real space form M (c) of constant sectional
curvature ¢, namely

Ric(X) < (n—1)c+ & || H]|P?,



which is well known as the Chen-Ricci inequality. The same inequality holds for Lagrangian submanifolds in
a complex space form M(4c) as well (see [31]).

I. Mihai proved a similar inequality in [93] for certain submanifolds of Sasakian space forms.

In [73], Matsumoto, Mihai, and Oiaga extended the Chen-Ricci inequality to the following inequality for
submanifolds in complex space forms.

Theorem ([73]) Let M be an n-dimensional submanifold of a complex m-dimensional complex space form
M (4c). Denote by ] the complex structure of M (4c). Then:
@

For each vectorX € T, M, we have

Ric(X) < (n—1)c + 2| H||” + 3¢| PX] %,

where PX is the tangential component of JX.

(i)

IfH (p) = 0, then a unit tangent vector X at p satisfies the equality case if and only if X € kerh,,.
(iii)

The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic
point orn = 2and p is a totally umbilical point.

In particular, for -slant submanifolds, the following result holds.
Corollary ([73]) Let M be an n-dimensional@-slant submanifold of a complex spaceformM(4c). Then,
(i)
For each vectorX € T, M, we have
Ric(X) < (n—1)e + % | H|* + 3¢ cos? 6.
(ii)
(iii)

IfH (p) = 0, then a unit tangent vector X at p satisfies the equality case if and only ifX € kerh,,.

The equality case holds identically for all unit tangent vectors at p if and only if p is a totally geodesic
point orn = 2and p is a totally umbilical point.

The Chen-Ricci inequality was further improved to the following for Lagrangian submanifolds (cf. [55]).

Theorem ([55]) Let M be a Lagrangian submanifold of dimensionn > 2in a complex spaceformﬂ(4c)0f
constant holomorphic sectional curvature 4c and X a unit tangent vector inT, M, p € M. Then, we have
Rie(X) < (n-1) (e + | H|).
The equality sign holds for any unit tangent vector at p if and only if either:

®

p is a totally geodesic point or

(i)
n = 2and p is a H-umbilical point with\A = 3 p.

Lagrangian submanifolds in complex space forms satisfying the equality case of the inequality were
determined by Deng in [55]. More precisely, he proved the following.

Corollary ([55]) Let M be a Lagrangian submanifold of real dimensionn > 2in a complex space form
M (4c).If

Ric(X) = (n—1) (c+ 3| H),
for any unit tangent vector X of M ,then either:



@
(i)

M is a totally geodesic submanifold in]Vf(4c)or
n = 2, and M is a Lagrangian H-umbilical submanifold of M (4c)with\ = 3p.

We extended the last theorem to Kaehlerian slant submanifolds in complex space forms, by applying the
following two lemmas from [55].

Lemma 2.33 Letfi(z1,z2,...,Z,)be a function inR"defined by

n n
E E 2
fi(z1, e, ... zn) = 21 jzzmj— j=2:vj.

Ifr;+z2+ ...+ x4 = 2na,then we have
fl(xlvxb--'amn) < 71—;1(&31 —|—(I}2+...—|—.’En)2,

with the equality sign holding if and only ifﬁlwl =Ty =...=2Tp =a.

Lemma 2.34 Letfy(zy, 2o, ..., x,)be afunction inR"defined by

n
fz(wl,mg,...,mn):g;l E j:2$j_w%'

Ifx1 + x2 + ... + x, = 4a,then we have
fo(z1,z2,.. ., 2,) < %(901 +T24+... .+ xn)27
with the equality sign holding if and only ifry = aandxy + ...+ z, = 3a.

Our main result is the following theorem.

Theorem 2.35 ([89]) Let M be an n-dimensional Kaehlerian@-slant submanifold in a complex n-dimensional
complex space formM (4c)of constant holomorphic sectional curvature 4c. Then for any unit tangent vector X
to M we have

Ric(X) < (n—1) (c + 2 \|H||2) + 3¢ cos? 6. (2.62)
The equality sign of (2.62) holds identically if and only if either:
Q] . .
¢ = Oand M is totally geodesic or
(i)

n = 2,c¢ < 0, and M is a slant H-umbilical surface withA = 3 .

Proof For a given point p € M and a given unit vector X € T}, M, we choose an orthonormal basis
{e1=X,e3,...,e,} C T,M and

x __ Fey x _ Fey L
{61_sin0""’en_sin0}CTpM'
Now we put in the Gauss equation X = Z = e;andY = W = e, for j = 2,...,n. Then the Gauss

equation gives

R(ela €j,€1, ej) = R(ela €j,€1, ej) - g(h(ela 61), h(ej7 ej))
+g(h(e1,€;)), h(e1,€5)),
or equivalently,

n
~ 9 —
R(ei,ej,e1,ej) = R(e1,ej,e1,€j) — E Tzl(h’ilh;fj — (hy;) ), Vj € 2,n.
Since the Riemannian curvature tensor of M is given by

R(X,Y,Z,W) = c{g(X, Z)g(Y,W) — g(X,W)g(Y, Z)
+9(JX, Z)g(JY , W) — g(JX,W)g(JY, Z) +29(JX,Y)g(JZ, W)},



we find
R(ey,ej,e1,€;) = c[1 +3g°(Jey, ;).
By summing after j = 2, n, we get

(n—1 + 3||PX]||%)e = Ric(X) — Z Z h{lh" th)z],

(n—1 + 3 cos? B)c = Ric(X g _ g hglh" hr)]
It follows that

Ric(X) — (n—1 + 3 cos? f)c = ZT . Z hglhr th)ﬂ
Zr 1 Z] 2 hilhr ijz (hlj) - Zj:2 (h{j)2'

Since M is a Kaehlerian slant submanlfold we have hi ;= h{l and h{ i= h;j, and then

or,

. ropr " i \2 " 2
Ric(X) — (n—1+ 3 cos? f)c < E o g Pk — g i (R — g i hjl.j).

Now we put

Fi(his hygy -y han) = hiy Z] 2 JJ Z] 5 (

n

fr(hiy, Ry, .oy R = BT, g i (hi))?, Vr € 2,n.

SincenH! = hl; + hl, + ... + hl,, we obtain by usmg Lemma 2.33 that
1

fl(h%l’h%QV' nn) < = 1(TLH1) nln )(Hl)

By applying Lemma 2.34 for 2 < r < n, we get
2 ~1
Fr(Byy iy, B) < $(nHT)? = 2 (HT)? < 20D (7).

From (2.65), (2.66) and (2.67), we obtain

and

n

Ric(X) — (n—1+ 3 cos? f)c < 21 g (H")? = 2o |2,

r=1
Thus we have

Ric(X) < (n—1 + 3 cos? 0)c+ ||H|| ,
which implies (2.62).

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

Next, we shall study the equality case. For n > 3, we choose F'e; parallel to H. Then we have H" = 0, for

r > 2. Thus, by Lemma 2.34, we get

bl = by = 2 0, v 2
and
hlk—O Vi k>2, j#k.
From Lemma 2.33, we have h}; = (n + 1)aand h}; = a,Vj > 2, witha = 2

In (2.64) we compute Ric(X) = Ric(ey). Similarly, by computing Ric(ez) and using the equality, we get

hgjzh?T:(), Vr7é2, .77&27 ,’"7&]

Then we obtain

hy, 9 _ 312 _ H? _
— =hy=...=h;, =5 =0.

The argument is also true for matrices (h;k) because the equality holds for all unit tangent vectors, so

h3 = hiy =& =0j > 3.



The matrix (h?k) (respectively, the matrix (h;k)) has only two possible nonzero entries
h2, = h2 = hl, = HTl (respectively, hf = h" =hl = H71Vr > 3). Now, after putting X = Z = e, and
Y =W =ej,j=2,...,n,in the Guss equation, we obtain

~ 2
R(eQ,ej,ez,ej) = R(eg,ej,eQ,ej) — (HTI) , V] Z 3
Ifweput X = Z = ey and Y = W = e; in the Guss equation, we get

~ 2 2
R(eg,el,eg,el) = R(e2,61,62,61) — (n—|— 1)(HT1> + <HTl> .

After combining the last two relations, we find

2
Ric(e2) — (n—1+ 3 cos? f)c = 2(n—1) (HTl) )
On the other hand, the equality case of (2.62) implies that

2
Ric(es) — (n-1+ 3 cos? e = ") B[ = n(n-1) (5"
Since n # 1, 2, by equating the last two equations we find H?! = 0. Thus, (h;k) are all zero, i.e., M is a

totally geodesic submanifold in M(4c). In particular, M is a curvature-invariant submanifold of M(4c).
Therefore, when ¢ # 0, it follows from a result of Chen and Ogiue [49] that M is either a complex
submanifold or a Lagrangian submanifold of M(4c). Hence, M is a non-proper #-slant, which is a
contradiction. Consequently, we have either:
1.

¢ = 0 and M is totally geodesic or
2.

n = 2.

If (1) occurs, we obtain (i) of the theorem. Now, let us assume that n = 2. A result of Chen from [27]
states that if M is a proper slant surface in a complex two-dimensional complex space form M2(4c)

satisfying the equality case of (2.62) identically, then M is either totally geodesic or ¢ < 0. In particular, when
M is not totally geodesic, one has

) h(eh 61) = )\6?, h(€2, e2) = #e’f, h(ela 62) = ,LL@;,
withA =3 p= %, i.e.,, M is H-umbilical. This gives case (ii) of the theorem.

Since a proper slant surface is Kaehlerian slant automatically (cf. [23]), we rediscovered the following
result of Chen (see [27]).

Theorem 2.36 If M is a proper slant surface in a complex spaceformM(4c)ofcomplex dimension 2, then the
squared mean curvature and the Gaussian curvature of M satisfy

|H|* > 2[G — (1 + 3 cos? 6)c]
at each pointp € M ,wherebis the slant angle of the slant surface.

Example 2.37 The explicit representation of the slant surface in CHQ(—4) satisfying the equality case of

inequality (2.62) was determined by Chen and Tazawa in [50, Theorem 5.2] as follows:
Let z be the immersion z : R3 — C?l’ defined by

%(14‘267\/%1)) 4 ef\/gv((e\/%vfl)(%\/gv—3) +2u2),

6v6

* (1 — e_\/gv) + (6—156_\/%) + 96\/§U + 26_\/%011,2))

3v2 12v3




It was proved that <z, 2> = —1. Hence, z defines an immersion from R? into the anti-de Sitter space-
time HJ(—1). Moreover, the image z(R?) in H}(—1) is invariant under the action of C* = C — {0}. Let
7 : H}(—1) — CH?(—4) denote the Hopf fibration. It was also shown that the composition

noz:R3 — CHY(—4)
defines a slant surface with slant angle § =cos ! (% ). Also, the authors proved that 7 o z is a H-umbilical
immersion satisfying A = 3u. Consequently, this example of slant H-umbilical surface satisfies the equality
case of inequality (2.62) identically.

The next part of this section presents the work we have done on (generalized) Wintgen inequality.

In [54] the authors obtained a pointwise inequality for submanifolds M ™ in space forms N""2(c) of
dimension n > 2 and codimension 2 relating the main scalar invariants, namely the scalar curvature
(intrinsic invariant) and the squared mean curvature and scalar normal curvature (extrinsic invariant). A
corresponding inequality for dimension n = 3 was proved in [52]. On the other hand, in [74] we gave a
sharp estimate of the normal curvature for totally real surfaces in complex space forms. In [79] we extended
this inequality to three-dimensional Lagrangian submanifolds in complex space forms. We mention that a
corresponding inequality for Kaehler hypersurfaces was obtained in [112].

Let M™ be an n-dimensional submanifold isometrically immersed into the real space form N™(c).

The normalized scalar curvature of the tangent bundle (intrinsic invariant) is defined by

_ 2 E __2
P = ) 1<i<j<n 9(R(es, ej)ej,e:) = ECE R

The normalized scalar curvature of the normal bundle (extrinsic invariant) is given by

E E 2
pL - n(n271) \/ 1<i<j<n n+1<r<s<m [g(RL(ei’ ej)gr’ gs)] ’

where {ey,...,e,} is an orthonormal basis of the tangent space, {£,,,1, - - -, & } is an orthonormal basis of
the normal space at a point p € M, Rand R* are the curvature tensors of the tangent bundle and normal
bundle, respectively, and 7 is the scalar curvature.

In [26] B.Y. Chen proved a pointwise inequality for an n-dimensional submanifold M " isometrically
immersed into the real space form N™(c)

1H|® > p—c. (2.68)

B. Suceava [115] gave another proof of the same inequality.

In [73] we found that for an n-dimensional submanifold M ™ isometrically immersed into the complex
space form M (4c) one has

2 3||P||?
1H|* > p—c— 25,

where | is the complex structure of the ambient space, and JX = PX + F'X, where PX is the tangential
component and FX is the normal component.
Also, in [78], for M'™ a purely real n-dimensional submanifold with VP = 0 isometrically immersed into

the complex space form M (4c), the following inequality was proved

2 n 3||P||?
|HIIP > %2 (p— ¢) - e

We recall the following result from [54].
Theorem 2.38 Leté : M™ — N™"2(c)be an isometric immersion. Then at every point p
1H[* > p+p* —c,

Remark This inequality generalized the Wintgen inequality; it is valid for all submanifolds M ™ of all real
space forms N"*2(c) with n > 2 and codimension 2.

In the same paper, the authors stated the following conjecture, afterward named the DDVV conjecture.

Conjecture Letp : M"™ — N™(c)be an isometric immersion. Then at every point p the inequality occurs:
IH|* > p+p* —c. (DDV V)



The DDVV conjecture was proved first in the following cases:

(a)
(b)

n =2, m =4, c = 0 by P. Wintgen [120].
n = 2, m > 4 by L.V. Guadalupe and L. Rodriguez [63].

Remark In both cases, equality is realized in (DDVV) inequality at a point p if and only if the ellipse of
curvature is a circle. In the case of trivial normal connection, (DDVV) reduces to Chen'’s inequality.

()
n =3, m > 5 by T. Choi and Z. Lu [52]

For a totally real surface M of a complex space form ]T/f(4c) of arbitrary codimension, we obtained an
inequality relating the squared mean curvature || H 2 the holomorphic sectional curvature c, the Gauss
curvature K, and the elliptic curvature K ¥ of the surface. Using the notion of ellipse of curvature, we proved
a characterization of the equality and gave an example of a Lagrangian surface of C? satisfying the equality
case [74].

Let M be a totally real surface of the complex space form M (¢) of constant holomorphic sectional
curvature c and of complex dimension n.

For a pointp € M, let {e1, e2} be an orthonormal basis of the tangent plane T, M and {es, ..., e, } an
orthonormal basis of the normal space Tle.

The ellipse of curvature at a point p € M is the subspace E), of the normal space given by
Ep = {hp(X, X) | X € T, M, || X]| = 1}.
For any vector X =cos 0 - e1+ sin 6 - e3, 6 € [0, 27|, we have
hy(X, X) = H(p) + cos 260 - 2102 4 sin 20 - hy.
The following result [63] holds good:

Proposition Ifthe ellipse of curvature is nondegenerated, then the vectorshi1y — hosandhisare linearly
independent.

Using a similar method as in [62, 63] and the previous proposition, we can define a 2-plane subbundle P of
the normal bundle, with the induced connection.
We will define then the elliptic curvature by the formula

K = g([Aep Ae4]€1, 62)7
where {e1, e2}, {e3, e4} are orthonormal basis of T}, M, respectively of Py, and A is the Weingarten operator.

Remark This definition of the elliptic curvature coincides with the definition of the normal curvature
(given by Wintgen [120] and also Guadalupe and Rodriguez [63] by the formula K~ = g(R*(e1, e2)es, e4))
if the ambient space M (c) is a real space form.
We can choose {e1, e2} such that the vectors u = % and v = hs are perpendicular, in which case
they coincide with the half-axis of the ellipse. Then we will take e3 = HTUII and eq = m
From the equation of Ricci and the definition of KZE, we have
KPP = —||h11 — haa| - [|h12]|- (2.69)
Also, from the Gauss equation we obtain the formula of the Gauss curvature K of the totally real surface
M of the complex space form M (c):
K = g(hu, h22) — ||h12||2 + % (2.70)
By the definition of the mean curvature vector, the above equation, and the relation
1RI* = [|ha1|l* + [|ha2]|* + 2]| 2|, we have

a|H|? = n)? +2(K - £). @271)
Then,

(2.72)



0 < ([lhar — haa|—2[|haz))* = ||h|\2—2(K - f) +4KF

— 4| H|*~4(K - £) + 4K,
which is equivalent to
|H|? > K- KF - <. (2.73)
The equality sign is realized if and only if ||h1; —

curvature is a circle.
Thus, we proved the following:

Theorem 2.39 ([74]) Let M be a totally real surface of the complex spaceformM(c)ofconstant
holomorphic sectional curvature c and of complex dimension n. Then, at any pointp € M, we have

IH|* > K - KP — 4.

Moreover, the equality sign is realized if and only if the ellipse of curvature is a circle.

We will give one example of a Lagrangian surface in C? with the standard almost complex structure Jy, for
which the equality sign is realized (which we call an ideal surface).
Let M be the rotation surface of Vranceanu, given by

X (u,v) = r(u)(cos u cos v, cos u sin v, sin u cos v, sin u sin v),
where ris a C'*°-differentiable function with positive values.
Let {e1, 2} be an orthonormal basis of the tangent plane and {es, e, } an orthonormal basis of the
normal plane.
We have the following expressions for e;,7 € {1,...,4} (see also [109]):

e1 = (— cos u sin v, cos u cos v, — sin u sin v, sin u cos v),
es = 5 (B cos v, B sin v, C cos v, C sin v),
e3 = ( C cos v,—C sin v, B cos v, B sin v),
e4 = (— sin u sin v, sin u cos v, cos u sin v, — cos u cos v),

1

where A = [r2 + (71)*]2, B =1/ cos u — 7 sin u, C = r/ sin u + 7 cos .

M is a totally real surface of maximum dimension, so is a Lagrangian surface of C2. Also, M verifies the
equality sign of the inequality proved in the previous theorem (it is an ideal surface) if and only if

1
r(u) (Jcos2u])?

(the ellipse of curvature at every point of M is a circle).

Moreover M is a minimal surface (see [100]), and X = ¢; ® cs is the tensor product immersion of

ci(u) = ﬁ (cos u, cos v) (an orthogonal hyperbola) and ¢2(u) = (cos v, sin v) (a circle).
cos2

Later, in [79] we established a generalized Wintgen inequality for three-dimensional Lagrangian
submanifolds in complex space forms.

Let M ™ be an n-dimensional Lagrangian submanifold isometrically immersed into the complex space
form M (4c). Let {e1, ..., e,} be an orthonormal frame on M. Then a normal frame is given by
{1 = Jel,.. -7£n = Jen.

Following [122], the scalar normal curvatureK y is defined by

_ 1
Ky =3 Z (Tr [Ar, A,]) ZE : 9([4,, Aesre)))’.

The normalized scalar normal curvature is given by

PN = ey VEN-
In particular, for n = 2 the above definition agrees with the definition of the squared elliptic curvature

which we considered in [74].
For n = 3 we proved a sharp estimate of py, in terms of p and || H||%.



Theorem 2.40 ([79]) Let M be a three-dimensional Lagrangian submanifold isometrically immersed into
the complex space formM (4c). Then we have

IH|* > p+ pn —c.

Proof Let{e1,es,e3} be an orthonormal frame on M and {&; = Jei, {a-Jea, E3—Jes} the corresponding
normal frame. With respect to these frames, we have

3 3 2 3 3 3 3
2 _ r _ 1 r o pr ryr
9 H|" = Zr:l (Zi_l hii) T2 Zr:l Zl§i<j§3 hii h 43 Zr:l Zl§i<j§3 hiihﬂ‘

From the Gauss equation it follows that
2r = 9| H|>~ || h ||> +6c. (2.75)

Then

3 3 3 3
2 _ r_pr)? - r )2 2.76
18”HH Zr 1 Zl<z<]<3 h” hJJ) + 6(T 36) +6 Zr:l Zl<i<j<3 (h” ’ ( )

Choi and Lu [52] proved that

E : E : 16 E E tﬂ
r=1 1<i<j<3 “ r=1 1<2<]<3 l]
%

{Zl<r<s<3 Zl<z<]<3 le 1(hlkh hzkh;k)] } .

2
Ky = ZISKSQ ZISMSB {Z(fihﬂc hlkhjk)] : (2.78)

Combining the last three equations, we find

18(|H|* — p +¢) > 18py,

(2.77)

Obviously,

ie.,

p+pn < |IH|? +ec.

Remark The same inequality can be obtained for three-dimensional totally real submanifold with
arbitrary codimension (with the corresponding definition of K ).

F. Dillen, . Fastenakels, and J. Van der Veken obtained in [56] an estimate of p* for invariant (Kaehler)
submanifolds in complex space forms of arbitrary dimension and codimension.

We have obtained the following estimation.

Proposition 2.41 ([79]) For an n-dimensional Lagrangian submanifold in a complex space form, we have
n*(n—-1)% , 1\2 _ n*(n-1) n( 1) 2 2.79
() ==k + S+l (2.79)

Proof From the Ricci equation it follows that
g(RL(eia ej)grv gs) = c[g(JeZ-, gr), g(Jej, gs) - g(‘]eia fs)g(‘]eja 57-)]
+g([Ara As]? €y ej)
= c((sir(sjs - (5i56j1‘) + g([Ara As]a €is ej)~

_ n(n—1)

Thus 7+ p™ is given by

( = Zl§r<s§n Zl§i<j§n gz(RL(ei, ej)ér’ gs)
Zl<r<s<n ZlﬁKjgn [c(8ir8js — 8isbjr) + 9([Ar, As], €4, €5))
nm-1)’ o ZE E §8i — 8:.8:)2

o 4 pN +c 1<r<s<n 1§i<j§n( weIs t8 ]T)



+2C E 1<r<s<n E 1§i<j§n(6"5js — 51‘35]‘1")9([141*, As], €;, 6]')

n2(n—1)* n(n—1 c
e e S L1

Remark In particular, in the case of three-dimensional Lagrangian submanifold in complex space form:
9p)" =9k +3 + 5 [ |
Corollary 2.42 ([79]) For a three-dimensional Lagrangian submanifold of a complex space form,
W <UHIP —p+e +5(1H[*~5p) + 5
Proof It follows from Theorem 2.40, the above remark, and the Gauss equation.

Remark 2.43 We want to mention that the above result was discovered before the DDVV conjecture was
solved in the most general setting by Lu [72] and Ge and Tang [60], independently, for submanifolds in
Riemannian space forms.

Remark 2.44 Recently, the generalized Wintgen inequality for Lagrangian submanifolds of arbitrary
dimension in complex space forms was established by I. Mihai [96].

2.2 Submanifolds in Sasakian Manifolds

In [53] we established Chen inequalities for contact slant submanifolds in Sasakian space forms, by using
subspaces orthogonal to the Reeb vector field &.

We proved the Chen first inequality for contact slant submanifolds in a Sasakian space form. We give the
whole proof for illustrating the techniques and the particular choice of the orthonormal basis of the tangent
space. We pointed out that we considered plane sections 7 orthogonal to &. It is known that the sectional
curvature of a plane section tangent to £ is 1.

Theorem 2.45 ([53]) Let M be an(n = 2k + 1)-dimensional contactf-slant submanifold in a(2m + 1)-
dimensional Sasakian spaceformM(c). Then we have

n— n2 c+3)(n+1
Sy < TQ{mHHHQJr%}

+%[3(n—3) cos? —2(n—1)].
The equality case of the inequality(2.80)holds at a pointp € Mif and only if there exists an orthonormal

(2.80)

basis{es, ..., en, = £}ofT,Mand an orthonormal basis{ey 1, - . . , €2m, 62m+1}0ﬁleSuCh that the shape
operators of M inM (c)at p have the following forms:
a 00 . . .0
Apr=]010b 0 . . 0], at+b=np, (2.81)
00 72 P
Ko, R, 0 .. .0
A, =|hly, —h}j; 0 . . .0, re{n+2,...,2m+1}. (2.82)
0 0 0,2

Proof Since M(c) is a Sasakian space form, then we have
R(X,Y,2,W) = <2{-g(Y, 2)9(X, W) + g(X, Z)g(Y, W)} (283)

+H{=n(X)n(2)9(Y, W) + n(Y)n(2)g(X, W) — g(X, Z)n(Y)g(¢, W)
+9(Y, Z2)n(X)g(&, W) — g(8Y, 2)g(¢ X, W) + g(¢X, Z)g(¢Y, W)
+29(¢X,Y)g(62, W)},

forany X,Y,Z, W € I'(TM).



Letp € M and {e,...,e, = £} be an orthonormal basis of T, M and {en1, ..., €2m, €2m+1} an
orthonormal basis oprLM. ForX=7=¢e;,Y =W =e;,Vi,j € {1,...,n}. From Eq. (2.83), it follows
that

Blewsejener) = 5 (ntnd)+ {2148 ) #oeney) | @280

Let M C M(c) be a contact §-slant submanifold, dim M = n = 2k + 1.
For X € I'(T' M), we put

$X =PX +FX, PXel(TM), FX eT(T+M).
Letp € M and {e,...,e, = £} be an orthonormal basis of T,, M, with

1
e, ez = Pey, ... e = g Peax1,e:1 =&

0050

We have

g(¢61762) = g(¢617 ﬁpel) = ﬁg(ﬁbehpel)
L g(Pey, Pe;) =cos 6

~ cosf

and, in the same way,

g (dei, eir1) =cos® 6,

Z, __g*(¢ei e;) = (n—1) cos? 0.

3,j=1
The relation (2.84) implies that

then

R(e; ej eirej) = <3 (n? — n) + <1 [3(n—1) cos? 6—2(n—1)). (2.85)
Denoting N
[R1P= D . alh(enes)hlesrey)) (286)
the relation (2.85) implies that
Dp(n—1)+ L [B3(n—1) cos? 0-2n+2] =2r—n? | H|> + | b |?, (2.87)
or equivalently,
2r=n? | H > - || b ||?> +<En(n—1) + 2 [3(n—1) cos® 6—2n + 2]. (2.88)
If we put
=21 — —(n 2) | H||? —<2n(n—-1) — <2 [3(n—1) cos? 6—2n + 2], (2.89)
we obtain
n? | H|>= (n—1)(e+ || A [|*). (2.90)

Letp € M, m C T,M,dim m = 2,m = sp{e1,e2}. We take e, 1 = . The relation (2.90) becomes

H
=]

2m+1
(Z n+1> = (n—1) {Z e 1Zr n+1 i]- 5},
or equivalently,
n 2 2m+1 n
OIS I D DI ED DIT D DI DI S

By using the algebraic Chen’s lemma, we derive from (2 91)

2m+1
n+1ly n+1 E +1 E 2
2hiy hyy 2 i hn + i,j=1 Zr n+2 j) Te (2:92)

From the Gauss equation for X = Z =e1,Y = W = ey, we obtain

2m+1
K(m) =<2 +3cos? 9. <L + (k7 kg, — (R7,)7]

4 r= n+1

2m+1
4 + 2 : : h ) T3 Zz] 1 r= n+2

2%3—1-300520- e

—_




2m+1 2m+1

E r LT E r \2

+ r=n+2 h11h22 o r=n+1 (hlz)
2m+1
n+1 2

Z h ) + Zr n+2 Zz]>2 ”

2m+1
E : , (A + hy) “+ § : >2 (thr:l + (h3; ]+ 7

13
> 2 4 3cos’ 6 C4 + 5,

=%3+3c0s29-

or equivalently,

K(m) > <2 +3cos? 0. <L + £ (2.93)
Then
inf K > <% + 3 cos? 0 - <1 (2.94)
{2 (n? —n) + SLB(n—1) cos> §—2n + 2]} — 2| H||
The last relation implies that
n—2 [ n? s (c+3)(n+1)
oy < —<—||H A TRAR TS
wos TR D
c—1 2
+ ( 5 ) [3(n—3) cos 6—2(n—1)],
where §)y is the Chen first invariant.
This relation represents the inequality to prove.
The case of equality at a point p € M holds if and only if it achieves the equality in the previous
inequality, and we have the equality in the lemma, i.e,,

hif ™t =0, Vi jii>2,

h;]:o, Vi # 4,4, >2,r=n+1,...,2m+1,

hi,+hl, =0, Vr=n+2,...,2m+1,

Wit =hyt =0, Vj>2,

R+ h"+1 Ryt =...=hml
We may choose {e1, e2} such that A, * = 0,and we denote a = h7,,b = hh,, u = hig ™t = ... = AL

It follows that the shape operators take the desired forms.

Corollary 2.46 ([53]) Let M be an(n = 2k + 1)-dimensional invariant submanifold in a(2m + 1)-
dimensional Sasakian spaceformM(c). Then we have:
(c+3)(n—2)(n+1) (c— 1)(n 7)
ou < 3 + .

Corollary 2.47 ([53]) Let M be an n-dimensional anti-invariant submanifold in a(2m + 1)-dimensional
Sasakian space formM (c). Then we have

n— 2 c+3)(n+1 c—1)(n—1
SMS%{%HHHQ—F(JFZ(JF)}—( )4( L.

We generalized Theorem 2.45, using Chen invariants é(n1, . . ., ng).
We notice that we consider only subspaces orthogonal to &.

Theorem 2.48 ([53]) Let M be an(n = 2k + 1)-dimensional contactf-slant submanifold in a(2m + 1)-

dimensional Sasakian spaceform]Tf(c). Then we have
8(n1,...,nx) <d(ny,...,n) | H|? +b(n4,..., ny) < (2.95)



k
+ed {B(n—l) cos? 6—6 E ™ cos? 0},

wherem ; = [%},Vj e{1,...,k}.

The proof is based on the following:

Lemma 2.49 ([53]) Let M be an(n = 2k + 1)-dimensional contact-slant submanifold in a(2m + 1)-

dimensional Sasakian spaceformM(c). Letni, . ..,nibe integers> 2satisfyingn, < nandni + ...+ ng < n.
Forp € M, letL; C T,Mbe a subspace of I, M ,dim L; = n;,Yj € {1,..., k}.Then we have

k
e D) < o, ) |

(2.96)
+{2n(n-1) + L BIPI*-2n +2)}

k
- E :jzl{%?’"j("j—l)ﬂL TH3¥(Ly)},

where¥(L) =32, e, g*(Pu;,uj)and{uy, ..., u,}is an orthonormal basis of the r-dimensional
subspace L of T, M.

This lemma is a contact version of a lemma from [30].

Corollary 2.50 ([53]) Let M be an(n = 2k + 1)-dimensional invariant submanifold in a(2m + 1)-
dimensional Sasakian space formM (c). Then we have

k
8(ni,...,nk) < b(ny,... )2 + < {3(n1)6 E i mj},

wheren; = 2m; + ¢, ¢; € {0,1},Vj € {1,...,k}.

Corollary 2.51 ([53]) Let M be an(n = 2k + 1)-dimensional anti-invariant submanifold in a(2m + 1)-
dimensional Sasakian spaceform]Tf(c). Then we have

8(n1,...,ny) <d(nq,...,n) | H|? +b(ng,...,ng) <2

Next we present the inequalities obtained for the new defined Chen-type invariants for invariant
submanifolds in Sasakian space forms.

In [34], B.Y. Chen introduced a series of Riemannian invariants on Kaehler manifolds and proved sharp
estimates of these invariants for Kaehler submanifolds in complex space forms in terms of the main extrinsic
invariant, namely the squared mean curvature.

It is well known that the Sasakian manifolds are the odd version of Kaehler manifolds, and the geometry
studying Sasakian manifolds, i.e., contact geometry, is an important field of differential geometry.

In [90] we defined analogous Chen invariants for Sasakian manifolds and obtained inequalities involving
these invariants for invariant submanifolds in Sasakian space forms.

It is known that any invariant submanifold of a Sasakian manifold is Sasakian. In this respect, we
considered that is interesting to study the behavior of invariant submanifolds of Sasakian manifolds from
this point of view, of Riemannian invariants, and, more precisely, corresponding Chen-like invariants to
those introduced by B.Y. Chen in [34].

In this study of such submanifolds (we must observe that the dimension of the submanifold should be >
5) in Sasakian space forms, we dealt with the notion of totally real plane section (similar to that defined by
Chen in Kaehler geometry); we need to impose the condition that the plane section must be orthogonal to
the Reeb vector field .

We estimated the sectional curvature of totally real plane sections of an invariant submanifold in terms
of the ¢-sectional curvature of the embedding Sasakian space form; the characterization of the equality case
is given.



We defined a series of Chen-like invariants §;, on any Sasakian manifold. By using the above estimate of

the sectional curvature of totally real plane sections, we obtained sharp inequalities for these invariants for
invariant submanifolds of a Sasakian space form.

Also, we derived characterizations of the equality cases in terms of the shape operators and give one
example which shows that the inequality fails for k& > 4.

We recall important results about invariant submanifolds in Sasakian manifolds [122].

Proposition 2.52 Every invariant submanifold of a Sasakian manifold is a Sasakian manifold.
Proposition 2.53 Every invariant submanifold of a Sasakian manifold is minimal.

Proposition 2.54 [fthe second fundamental form of an invariant submanifold M " of a Sasakian space form
M*™*(¢)is parallel, thenM"is totally geodesic.

Proposition 2.55 LetM "be an invariant submanifold of a Sasakian spaceform]Téfzm+1(c)withqb-sectional
curvature c. Then M "is totally geodesic if and only if M ™has constantg-sectional curvature c.

We put 2g = 2m + 1 — n and choose {€,11, . . -, €ntg; Entgil = Pnil,- -, E2mi1 = Peniq}an
orthonormal normal frame. Then the shape operators A, = A, and A« = A, ,a,a" =1,g ofan
invariant submanifold M" in a Sasakian manifold M >™*! take the forms:
! n n !
A, A, O —-A, A, O
Al —Al 0 A A0
Ag=]" ¢ “ y Ag = S ; (2.97)
0 0 O 0 0 0

where A, and A} are n x n matrices.
We recall now two important examples of invariant submanifolds.

Example 2.56 Let S?™*! be a unit sphere with a standard Sasakian structure. An odd-dimensional unit
sphere §27+! (n < m) with induced structure is a totally geodesic Sasakian submanifold of §2mtl,
Obviously the Sasakian space form R?"+1(—3) in R?™1(—3) is a totally geodesic Sasakian submanifold.

Example 2.57 The circle bundle (Q", S!) over a hyperquadric in CP™*! is a Sasakian submanifold of
S§27+3 which is an 7)-Einstein manifold.

Let M?"*! be a Sasakian manifold. For each real number k and p € M?"™!, we define an invariant 67, by
8% (p) = 7(p) — k inf K"(p), where inf K"(p) =infr» {K(7")} and 7" runs over all totally real plane
sections in T, M 2" (i.e,, ¢(n") is perpendicular to 7").

The next theorem gives an inequality between the infimum of K" (intrinsic invariant) of an invariant
submanifold and the ¢-sectional curvature of the Sasakian space form (extrinsic invariant), i.e., the
embedding space; the characterization of the equality case is given.

Theorem 2.58 ([90]) For any invariant submanifold M "in a Sasakian spaceform]f\\/[/2er1 (c),we have
inf K7 < <3, (2.98)
The equality case holds if and only if M "is a totally geodesic submanifold.
Proof By a ¢-sectional curvature H(X) of M™ with respect to a unit tangent vector X orthogonal to &, we
mean the sectional curvature K (X, ¢X) spanned by the vectors X and ¢.X. Let K(X,Y') be the sectional

curvature determined by orthonormal vectors X and Y, with X,Y orthogonal to £,g(X, ¢Y) = 0. Then we
have (see [13], p- 111)

K(X,Y)+ K(X,$Y) = L[(H(X + ¢Y) + H(X — ¢Y)
+HX+Y)+H(X-Y) - H(X) - HY) +6].



Let T1M™ denote the unit sphere bundle of M " consisting of all unit tangent vectors on M ™. For each

x € M", we put
W, ={(X,Y); X,Y € T;M", g(X,€) = g(Y,) = g(X,Y) = g(X, ¢Y) = 0}.

Then W, is a closed subset of T} M™ x T} M", and it is easy to verify that if { X, Y’} spans a totally real
plane section, then both {X + ¢Y, X — ¢Y } and {X + Y, X — Y} also span totally real plane sections. We
define a function  : W, — R by

HX,Y)=H(X)+H®Y), (X,Y) € W,.

Suppose that (X,,,Y;,) is a point in W, such that A attains an absolute maximum value, say m,, at

(Xm, Y. It follows that

K(X, Yy) + K(Xp, ¢Y,n) < $[H(X,,,Y,,) + 6]
On the other hand, it is known that H(X) < c (as in the Kaehler case, see [38]). Thus, from the previous
relation, we obtain
K(Xm, Ym) + K(Xp, dYm) < 2,

2
which implies the inequality (2.98).
For the equality case the proof is similar to the proof of Theorem 1 from [34].

Remark It is well known that the sectional curvature of a plane section which contains the vector £ is
equal to 1, i.e, K(X, &) = 1; thus we have considered only the case when X and Y are both orthogonal to &.

Also we obtained an inequality for &}, of an invariant submanifold of a Sasakian space form and characterize

the equality case for k < 4 (the submanifold is then totally geodesic) and k = 4 (in terms of the shape
operator). For k£ > 4 the inequality fails.

Theorem 2.59 ([90]) For any invariant submanifold M "in a Sasakian spaceform]\’;fz”“r1 (¢), the following
statements hold:

1.
For eachk € (—o0, 4],0} satisfies

& < [n(n—1)—2k] <2 + (n—1)<t. (2.99)

2.
Inequality (2.99) fails for everyk > 4.

3.
&7 = [n(n—1)—2k] <2 + (n—1) <L holds for somek € (—o0, 4)if and only ifM"is a totally geodesic
submanifold of M>™*1(c).

4.
The invariant submanifold M "satisfies

& = [n(n—1)—8] <2 + (n—1) <t
at a pointp € M"if and only if there exists an orthonormal basis

{e1,e2 = ge1,e3,e1a = des, ..., e 1, €% = Pean_1,

€2k+1 = 67 Entlye--y e2m+1}
of M ¥m+1 (c)such that, with respect to this basis, the shape operator of M "takes the forms (2.97), with
aq by O a, b, 0
ba —as 0 " b, —a. 0

Al = , Al= « -,
““lo o o] T lo o o0

\ )\ /

whereag, by, aq+, by+are real numbers.

In [91] we proved a Chen inequality involving the scalar curvature and a Chen-Ricci inequality for special
contact slant submanifolds of Sasakian space forms, as the contact versions of the inequalities obtained by
the first author in [80] and by both authors in [89], respectively.



The class of slant submanifolds of almost contact metric manifolds was introduced by A. Lotta [71] and
studied by many authors [19]. In [98] the authors defined special contact slant submanifolds of Sasakian
space forms and proved the minimality of such submanifolds satisfying the equality case of a Chen-Ricci
inequality, identically.

A submanifold M tangent to £ in a Sasakian manifold is called a contactf-slant submanifold [19] if for any
p € M and any X € T, M linearly independent on ¢, the angle between ¢ X and T}, M is a constant 6, called
the slant angle of M.

A proper contact@-slant submanifold is a contact slant submanifold which is neither invariant nor anti-
invariant, i.e, 6 # O and 0 # 7.

A proper contact 6-slant submanifold is a special contactf-slant submanifold [98] if

(VxT)Y =cos? 6[g(X,Y)é — n(Y)é], VX, Y € TTM,
where TX is the tangential component of ¢ X for any vector field X tangent to M.

We denote ||T||* = i1 g*(Tei, e;), where {e1, ..., e,} is an orthonormal basis of T, M,p € M.

We remark that any three-dimensional proper contact slant submanifold of a Sasakian manifold is a
special contact slant submanifold [19]. Other examples can be found in [19].

B.Y. Chen [32] proved a sharp estimate of the squared mean curvature in terms of the scalar curvature
for Kaehlerian slant submanifolds in complex space forms.

In [80] we generalized the abovementioned inequality for purely real submanifolds with P parallel with
respect to the Levi-Civita connection (as usual, we denote by J the standard complex structure on the
ambient complex space form and by PX the tangential component of /X, for any tangent vector field X to M)
(see Sect. 2.1, Theorem 2.5).

On the other hand, B.Y. Chen [29] proved an estimate of the squared mean curvature of an n-dimensional
submanifold M in a real space form M| (¢) of constant sectional curvature ¢ in terms of its Ricci curvature.
For any unit tangent vector X at p € M, one has

Ric(X) < (n—1)c+ 5 | H][.
The above inequality is known as the Chen-Ricci inequality.
The same inequality holds for Lagrangian submanifolds in a complex space form M (4c) as well (see

[31]).

S. Deng [55] improved the Chen-Ricci inequality for Lagrangian submanifolds in complex space forms
(see Sect. 2.1).

The Whitney 2-sphere in C? is a nontrivial example of a Lagrangian submanifold which satisfies the
equality case of the improved Chen-Ricci inequality identically.

Recall that in [89] we extended Deng’s inequality to Kaehlerian slant submanifolds in complex space
forms (see Sect. 2.1, Theorem 2.35).

A nontrivial example of a slant surface satisfying the equality case identically is given in the same paper
[89)].

We obtained corresponding results for special contact slant submanifolds in Sasakian space forms, more
precisely the following Chen inequality for the scalar curvature.

Theorem 2.60 ([91]) Let M be an(n + 1)-dimensional special contact slant submanifold of a(2n + 1)-
dimensional Sasakian space formM c).Then

2 _2nt2) n(nt?)  cis
IHI® > e ™~ ey (2.100)

n(n+2) 2 9_9)c=1 n 12
D) (3 cos” 6 2) T+ 1) sin” 6.
The equality holds at any pointp € Mif and only if there exists a real functionpon M such that the second

fundamental form satisfies the relations

h(e1,e1) = 3uei, h(ez,e2) =...,= h(en,e,) = pej,
h(eiaej) = :u’e:a h(ejaek) =0 (2 <JjFk# TL),
with respect to a suitable orthonormal frame{eq = &, e1, . .., e, }on M, where

e; = == Nex, k€ {1,...,n}.

sinf



A submanifold M whose second fundamental form satisfies the above relations is called a H-umbilical
submanifold.

Remark In particular, forc = —3 and § = 5 (i.e., M is anti-invariant submanifold) we find a result from
[15].

Corollary ([15]) Let M be an(n + 1)-dimensional anti-invariant submanifold of the Sasakian space form
R2"*1, Then, at any pointp € M, the squared mean curvature and the scalar curvature satisfy the inequality
2 2(n+2)
L e
Moreover, the equality holds at any pointp € Mif and only if there exists a real functionpon M such that the
second fundamental form satisfies the relations

h(ei1,e1) = 3upei, h(ez,e2) =...,= h(en,en) = ppe1,
h(ei7ej) = Upe;, h(ej7ek) =0 (2 S .7 7& k 7é TL),
with respect to a suitable orthonormal frame{ey =, ey, ..., e, YofT,M.

A nontrivial example of an anti-invariant submanifold in the Sasakian space form R?"*! which satisfies the
equality case of the above inequality identically is the Riemannian product of the Whitney n-sphere and the
real line R.

On the other hand, I. Mihai [93] proved Chen-Ricci inequalities for submanifolds in Sasakian space forms.

Theorem 2.61 ([93]) Let M be an n-dimensional C-totally real submanifold of a(2m + 1)-dimensional
Sasakian spaceformM(c). Then, for each unit vectorX € T, M, we have

Ric(X) < §[(n—1)(c+3) +n® [ H |]?].

Theorem 2.62 ([93]) LetM(c)be a(2m + 1)-dimensional Sasakian space form and M an n-dimensional
submanifold tangent to€. Then, for each unit vectorX € T, Morthogonal to§, we have

Ric(X) < ¢[(n—1)(c+3) + 3(||TX|]*~2)(c—1) +n | H |]*].

I. Mihai and I.N. Radulescu [99] improved the inequality from Theorem 2.61 for Legendrian submanifolds in
Sasakian space forms.

Theorem 2.63 ([99]) LetM"be an n-dimensional Legendrian submanifold in a Sasakian space form
ML (c)of constantp-sectional curvature c. Then, for any unit tangent vector X toM™, we have

Ric(X) < 2 (c+ 3 +n|[H||?).
The equality sign holds identically if and only if either:
@ , ,
M™"is totally geodesic or
(i)

n = 2andM ?is a H-umbilical Legendrian surface withA = 3.

In the following we improved the inequality from Theorem 2.62 for special contact slant submanifolds in
Sasakian space forms.
Let M be an (n 4 1)-dimensional special contact slant submanifold of a (2n + 1)-dimensional Sasakian

space form M(C) We will take an orthonormal basis of T}, M, respectively TPLM, in the same manner as in
the previous section. For a contact f-slant submanifold » 7, g*(Tey,e;) = cos?d.
Bytaking X = Z =€, Y =W =ej,j = 2,...,n,in the expression of the curvature tensor R of the

Sasakian space form M (c), we obtain

c+3
4

R(elvejvelaej) = [g(elael)g(ej)ej) _g(ejael)g(ehej” (2.101)



+E5t [=nen)n(en)g(ej, e5) + nlej)n(er)g(er, ;)]
—g(e1, e1)n(e;)n(e;) + g(ej, er)n(er)n(e;)
—g(gej,e1)g(ger, ;) + g(de1, e1)g(gej, e;) + 2g(deq, e;)g(der, €5)
= 2+ Lg% (ger, e5) (c—1).

Then
E _ R(e1,ej,e1,e;) + R(e1,en, e1,e0)
=n4d3d 3 g .9 2(ger,ej)(c—1) +1=n=2 + 3(c—1) cos? 6+ 1.

We consider e; = X From the Gauss equation

Ric(X) = n<2 + 3 (c—1) cos? 6 + 1+

+ Z hh 00— hgo) + Z [hﬁhr (hr ) ]

h60 - g(h(eg, 60)’ 6:) = g(h(év 5)7 e:) = 9(65& 6:) =0,
because 655 =—¢£=0.

Also,
: :r=1 (h;())2 :: :Tzlgz(h(el,eo),e:)zz :r=192<65160,6:>

n
- Zr,l g*(ger, e}) =sin? 6.
The relation (2.101) implies

Ric(X) =n<3 + 3(c—1) cos® 6 + 1— sin® § (2.102)

+ E g hglhr (h1,) ] .
r=1
Using the same arguments as in the proof of Theorem 3.3 from [89], we obtain from (2.102)

Ric(X) —n<2 — 3(c—1) cos? 6— cos® < ("71)4ﬂ||1-1|12
Therefore we proved the following improved Chen-Ricci inequality.

Buteg = £ and

Theorem 2.64 ([91]) Let M be an(n + 1)-dimensional special contact slant submanifold of a(2n + 1)-
dimensional Sasakian spaceformM(c).Then,for any unit tangent vector X to M, we have
Ric(X) < %| n<3 4+ 3 (c—1) cos? 6+ cos? 6. (2.103)
The equality holds at every pointp € Mif and only if either:

@
M is a totally contact geodesic submanifold, i.e.,
h(X,Y) = n(X)h(Y, ) + n(Y)h(X, ),
foranyX,Y € I'T Mor
(i)

n = 2and M is a three-dimensional H-umbilical contact slant submanifold, i.e.,

h(e1,e1) = 3uel, h(ez,e2) = pej, hle,e2) = pes,
with respect to an orthonormal frame{ey = &, e1, ea}.

Remark The inequality (2.103) is also true for anti-invariant submanifolds in Sasakian space forms.

2.3 Submanifolds with Semi-symmetric Metric (Nonmetric) Connections



In [64], H.A. Hayden introduced the notion of a semi-symmetric metric connection on a Riemannian
manifold. K. Yano studied in [121] some properties of a Riemannian manifold endowed with a semi-
symmetric metric connection. In [65] and [66], T. Imai found some properties of a Riemannian manifold and
a hypersurface of a Riemannian manifold with a semi-symmetric metric connection. Z. Nakao [102] studied
submanifolds of a Riemannian manifold with semi-symmetric connections. In [86, 87] we proved Chen
inequalities for submanifolds of real space forms endowed with a semi-symmetric metric connection, i.e.,
relations between the mean curvature associated with the semi-symmetric metric connection, scalar and
sectional curvatures, Ricci curvatures, and the sectional curvature of the ambient space. The equality cases
are considered.

Let NP be an (n + p)-dimensional Riemannian manifold and V alinear connection on N"*?, If the
torsion tensor T’ of ?, defined by

T(X,7)=V;7 - ¢
for any vector fields X and Y on N7 satisfies

:’ﬁ()? Yf) — ()X - 97,

=X — [X,Y],

for a 1-form ¢, then the connection Vis called a semi-symmetric connection.

Let g be a Riemannian metric on N2, If ﬁg = 0, then V is called a semi-symmetric metric connection
on N™*P,

Following [121], a semi-symmetric metric connection ¥V on N™P is given by
ViY =V Y +¢(Y)X - g(X,Y)P,
for any vector fields X and ¥ on N7, where V denotes the Levi-Civita connection with respect to the

Riemannian metric g and P is a vector field defined by g(P, )~() = ¢(X'), for any vector field X.
We will consider a Riemannian manifold N™*? endowed with a semi-symmetric metric connection V

and the Levi-Civita connection denoted by v.
Let M™ be an n-dimensional submanifold of an (n + p)-dimensional Riemannian manifold N"*?. On the
submanifold M ™ we consider the induced semi-symmetric metric connection denoted by V and the induced

o
Levi-Civita connection denoted by V.

o]

Let R be the curvature tensor of NP with respect to V and R the curvature tensor of N™*? with

respect to V. We also denote by R and R the curvature tensors of V and V, respectively, on M".

o
The Gauss formulas with respect to V and, respectively, V can be written as

VxY =VxY + h(X,Y), X,Y € x(M),

VxY =VxY +1(X,)Y), X,Y €x(M),
where h is the second fundamental form of M™ in N"? and h is a (0, 2)-tensor on M ™. According to the
formula (7) from [102] h is also symmetric.

One denotes by H the mean curvature vector of M ™ in N™*P,
Let N™*?(c) be a real space form of constant sectional curvature c endowed with a semi-symmetric

metric connection V.
The curvature tensor R with respect to the Levi-Civita connection V on N™P(c) is expressed by
R(X,Y,Z,W) = c{g(X,W)g(Y, Z) — g(X, Z)g(Y,W)}.

Then the curvature tensor R with respect to the semi-symmetric metric connection ¥ on N™7P(c) can
be written as [66]



[e]

R(X,Y,Z,W) = R(X,Y,Z,W)—a(Y,Z)g(X,W)
+a(X7 Z)g(Y7 W) - Oé(X, W)g(Ya Z) + Oé(Y, W)Q(X7 Z)7
for any vector fields X, Y, Z, W € x(M™), where a is a (0, 2) -tensor field defined by

a(X,Y) = <%X¢)Y _B(X)(Y) + LH(P)g(X,Y), VX, € x(M).

From the last relations it follows that the curvature tensor R can be expressed as

R(X,Y,Z,W) = c{g(X,W)g(Y,2) - g(X, Z)g(Y,W)}
_a(Ya Z)g(X7 W) + Ot(X, Z)g(Y7 W)
—Oé(X, W)g(Ya Z) + OZ(Y, W)Q(X, Z)
Denote by ) the trace of a.

For submanifolds of real space forms endowed with a semi-symmetric metric connection, we established
the following optimal inequality, which we will call the Chen first inequality:

Theorem 2.65 ([86]) LetM"™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real space
formN"™*P(c)of constant sectional curvaturec,endowed with a semi-symmetric metric connectionV. We have

7(z) — K(m) < (n—2) [2(:—:)”}[”2 +(n+1)5 — )\} — trace (am), (2.104)

whereris a 2-plane section of T, M",x € M™ .
Recall the following important result (Proposition 1.2) from [65].

Proposition The mean curvature H of M "with respect to the semi-symmetric metric connection coincides
o]

with the mean curvature HofM ™with respect to the Levi-Civita connection if and only if the vector field P is
tangent toM ™.

Remark According to the formula (7) from [102] it follows that h = h if P is tangent to M ™.
For P tangent to M ™ the inequality (2.104) is written as in the following

Corollary 2.66 ([86]) Under the same assumptions as in Theorem2.72, if the vector field P is tangent toM ™,
then we have

2 o 2
7(z) — K(m) < (n—2) ﬁHHH + (n+1)§ — X| —trace(e ). (2.105)
Theorem 2.67 ([86]) If the vector field P is tangent toM ™, then the equality case of inequality (2.104) holds
at a pointz € M"if and only if there exist an orthonormal basis{ey, es, . . ., e, }of T, M ™and an orthonormal
basis{€ni1, - - -, enp}ofT;- M™such that the shape operators of M"inN™"?(c)at x have the following forms:
a 00 --- 0
0b 0 --- 0
A€n+l = 00 p -0 , at+b=p,

bso )



hi; hi, O 0
hiy —h{; 0 --- 0

A, = 0 0 0 0 , 2<i<p,
0 0 0 --- 0

Wherehfj = g(h(ei,ej),e,), 1 <i,5<mnandn+1<r<n+p.

We also established a sharp relation between the Ricci curvature in the direction of a unit tangent vector X
and the mean curvature H with respect to the semi-symmetric metric connection V.
We denote

N(z) ={X € T,M" | (X,Y) =0, VY € T,M"}.

Theorem 2.68 ([87]) LetM™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real space
formN"™*P(c)of constant sectional curvature c endowed with a semi-symmetric metric connectionV. Then:
Q] _ ,

For each unit vector X inT, Mwe have

|H|?> > 24 [Ric(X) — (n—1)e + A + (n—2)a( X, X)]. (2.106)

(i)

IfH(x) = 0, then a unit tangent vector X at x satisfies the equality case of (2.106) if and only if

X € N(z).

Corollary 2.69 ([86]) Ifthe vector field P is tangent toM ", then the equality case of inequality (2.106) holds
identically for all unit tangent vectors at x if and only if either x is a totally geodesic point orn = 2and x is a
totally umbilical point.

We stated a relationship between the sectional curvature of a submanifold M " of a real space form N"?(c)
of constant sectional curvature c endowed with a semi-symmetric metric connection V and the associated
squared mean curvature || H||%. Using this inequality, we proved a relationship between the k-Ricci
curvature of M™ (intrinsic invariant) and the squared mean curvature || H|| 2 (extrinsic invariant). We
assume that the vector field P is tangent to M ™.

Theorem 2.70 ([86]) LetM"™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real space

formN"™P(c)of constant sectional curvature c endowed with a semi-symmetric metric connectionVsuch that
the vector field P is tangent toM ™. Then we have

2 2r 2
Using Theorem 2.70, we obtain the following:

Theorem 2.71 ([86]) LetM",n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real space
formN"™"P(c)of constant sectional curvature ¢ endowed with a semi-symmetric metric connectionV, such that
the vector field P is tangent toM". Then, for any integerk,2 < k < n, and any pointp € M"™, we have
IH|[*(p) > Ok(p) — c+ 2, (2.108)
where©y(p) = ﬁ infx 7+ Riczi(X), L*runs over all k-plane sections inT, M, and X runs over all unit
vectors inL*.

In [88] we continued the study of Chen inequalities for submanifolds in space forms with semi-symmetric
metric connections, more precisely Chen inequalities for submanifolds in complex, respectively, Sasakian
space forms endowed with semi-symmetric metric connection.

Let N 2™ be a Kaehler manifold and J the canonical almost complex structure. The sectional curvature of
N?™ in the direction of an invariant 2-plane section by J is called the holomorphic sectional curvature. If the
holomorphic sectional curvature is constant 4c for all plane sections 7 of T, N >™ invariant by J for any



]

& € N2, then N2™ is called a complex space form and is denoted by N 2™ (4c). The curvature tensor R with

respect to the Levi-Civita connection V on N2m(4c) is given by
R(X,Y,2,W) = clg(X,W)g(Y, Z) - (X, Z)g(Y, W) — g(JX, Z)g(JY, W) (2.109)
+9(JX, W)g(JY, Z2)—29(X, JY)g(Z, IW)].
If N2™(4c) is a complex space form of constant holomorphic sectional curvature 4c¢ with a semi-
symmetric metric connection V, then the curvature tensor R of N?™(4c) can be expressed as

R(Xa Y; Z7 W) = c[g(X, W)g(Ya Z) - g(Xa Z)g(Ya W) - g(JX7 Z)g(JY’ W) [2110)
+06(X, Z)g(Ya W) - Oé(X, W)g(Y7 Z) + Oé(Y, W)g(X’ Z)
Let M™,n > 3, be an n-dimensional submanifold of a 2m -dimensional complex space form N?™(4c) of

constant holomorphic sectional curvature 4c. For any tangent vector field X to M ", we put
JX = PX + F X, where PX and FX are the tangential and normal components of /X, respectively. We define

2
IPIP= ), ey,

Following [3], we denoted ©2(7) = g*(Pey, e2) = g*(Je1, e2), where {e1, 2} is an orthonormal basis
of a 2-plane section 7. ©2(r) is a real number in [0, 1], independent of the choice of ey, es.
We proved the following:

Theorem 2.72 ([88]) LetM™,n > 3,be an n-dimensional submanifold of a 2m-dimensional complex space
formNQm(4c)ofconstant holomorphic sectional curvaturedc,endowed with a semi-symmetric metric

connectionV. We have
r(@) ~ K(m) < 222 [Z5HI + (n+ 1e-22] - [60%(m)-3)1PI]
—trace (am) )

wherermis a 2-plane section of T, M", x € M™.

Remark Because h = hif Uis tangent to M™ (according to the formula (7) from [102]; see also
Proposition 1.2 from [65]), the inequality proved in Theorem 2.72 becomes

o)~ ) < 222 [+ oo+ e-22] - [o0r(m) a2 5

— trace(a ).

Theorem 2.73 ([88]) Under the same assumptions as in Theorem?2.72, if the vector field U is tangent toM ",
then the equality case of inequality from Theorem?2.72holds at a pointx € M"if and only if there exist an

orthonormal basis{ey, e, . . ., e, yofT- M™and an orthonormal basis{en 1, - . - , €am yofT,;- M "such that the
shape operators of M™inN ™ (4c)at x have the following forms:
a 00 --- 0
0b 0 ---0
a =00 w0 i,



hi; hi, O 0
hiy —hi; O -0

A, =0 0 0 - 0] nit2<i<om,
0 0 0 ---0

where we denoteh;; = g(h(ei,€;),e;),1 <4,j <mn,andn +2 <r < 2m.

We proved relationships between the Ricci curvature of a submanifold M ™ of a complex space form
N2m(4c) of constant holomorphic sectional curvature, endowed with a semi-symmetric metric connection,

and the squared mean curvature || H 2 under the assumption that the vector field U is tangent to M ™.

Theorem 2.74 ([88]) LetM™,n > 3,be an n-dimensional submanifold of a 2m-dimensional complex space
formN2m(4c)ofconstant holomorphic sectional curvature 4c endowed with a semi-symmetric metric
connectionVsuch that the vector field U is tangent toM ™. Then we have

HHH2 2 n(fLZl) + %)‘ —Cc— n(jil) ||P||2 (2.111)

Using the above theorem, we obtain the following:

Theorem 2.75 ([88]) LetM™,n > 3,be an n-dimensional submanifold of a 2m-dimensional complex space
formsz(4c)ofconstant holomorphic sectional curvature 4c endowed with a semi-symmetric metric
connection¥V, such that the vector field U is tangent toM ™. Then, for any integerk,2 < k < n, and any point
x € M™, we have

1H]*(2) 2 Ok(p) + 2A — ¢ — 2y || PII™.

n(n—1)

We considered also submanifolds of Sasakian space forms.
Recall that a (2m + 1)-dimensional Riemannian manifold (N 2™*!, g) is a Sasakian manifold if it admits a

(1,1)-tensor field ¢, a vector field &, and a 1-form 7 satisfying
P’ X = —X +n(X)E, n(¢) =1,
9(pX, 9Y) = g(X,Y) —n(X)n(Y), 9(X, &) = n(X),
9(X; ¢Y) = dn(X,Y),
for any vector fields X,Y on TN, and
(¢, 6] +2dn®E =0,

where [¢, @] is the Nijenhuis torsion of ¢.
A Sasakian manifold with constant ¢-sectional curvature c is said to be a Sasakian space form and is
[e] o

denoted by N2™*1(c). The curvature tensor R with respect to the Levi-Civita connection V on N2™*1(c) is
expressed by

o

R(X,Y,Z,W) = <2[g(X,W)g(Y, Z) — 9(X, Z)g(Y, W)]
+<7 (X)n(2)g(Y, W) — n(Y)n(Z)g(X, W) (2.112)
+n(Y)n(W)g(X, Z) — n(X)n(W)g(Y, Z)

+9(X, 02)g(Y, W) — g(Y,0Z)g(0 X, W) + 29(X, ¢Y)g(0Z, W)],

for vector fields X, Y, Z, W on N2™*1(c).
If N>™1(c) is a (2m + 1)-dimensional Sasakian space form of constant ¢-sectional curvature ¢

endowed with a semi-symmetric metric connection V, it follows that the curvature tensor R of N 2mtl(c)

can be expressed as
(2.113)



R(X,Y,Z,W) = <2 [g(X,W)g(Y, Z) — 9(X, Z)g(Y, W)

A X)n(2)g(Y, W) —n(Y)n(2)g(X, W)
+n(Y)n(W)g(X, Z) — n(X)n(W)g(Y, Z)

+9(X, 02)g(Y, W) — g(Y,0Z)g(0 X, W) + 29(X, 9Y)g(9Z, W)]

_a(Ya Z)g(Xa W) + Oé(X, Z)g(Y7 W) - a(X7 W)g(Ya Z) + a(Ya W)Q(Xa Z)

Let M™,n > 3, be an n-dimensional submanifold of a (2m + 1) -dimensional Sasakian space form of
constant g-sectional curvature N2 (c) of constant sectional curvature c. For any tangent vector field X to
M™, we put pX = PX + FX, where PX and FX are tangential and normal components of ¢ X, respectively,
and we decompose £ = £ + &4, where ¢ T and £ denote the tangential and normal parts of &.

Recall that ©2(7) = g?(Pey, e2) = g*(Je1, e2), where {e1, e2} is an orthonormal basis of a 2-plane
section m, is a real number in [0, 1], independent of the choice of e, 2.

For submanifolds of Sasakian space forms endowed with a semi-symmetric metric connection, we
established the following optimal inequality.

Theorem 2.76 ([88]) LetM",n > 3,be an n-dimensional submanifold of a(2m + 1)-dimensional Sasakian

space formN 2m+1 (¢)of constante-sectional curvature endowed with a semi-symmetric metric connectionV.
We have

(@) — K(m) < (n=2) [ 5257 [H]* + (n + 1) <52 — A+ (2114)
T+ 31 P2 602 (m)—2(n-1) || €7 |12 +2]*| — trace(ay,),
wherermis a 2-plane section of T, M",x € M™ .

Corollary 2.77 ([88]) Under the same assumptions as in Theorem2.76, if€is tangent toM ", we have

(@) = K(m) < (n-2) |55 | HI* + (n+ 1) 52 — A

+Cgl [3 | P|* —60%(m)—2(n—1) + 2||£7rH2:| — trace(am).

If€is normal toM ™, we have

() — K(m) < (n—2) | 72~

(n+1)<2 — )\} - trace(am).

Remark Because h = h,if Uistangentto M ™ [102], the inequality (2.114) becomes

r(a) — K(m) < (n— 2)[ S| +<n+1>c+3—x]

+45H 31 P2 602 (m)—2(n—1) | €7 |12 +2]¢xl*| — trace(a ).

Theorem 2.78 ([88]) If the vector field U is tangent toM ", then the equality case of inequality(2.114)holds

at a pointz € M"if and only if there exist an orthonormal basis{e1, ea, . . ., e, }of T, M ™and an orthonormal
basis{en i1, - - -, entp}ofT;-M"such that the shape operators of M ™inN ™ (c)at x have the following forms:
a 00 --- 0
0b0 --- 0
R 00 pu --- 0 . atb=up,



Ry R 0 .- 0
hiy —hy 0 - 0

A, =| 0 0 0 --- 0], n+2<i<2m+1,
0 0 0 --- 0

where we denoteh;'j = g(h(ei,ej),e,),1<i,5<nandn+2 <r <2m+ 1.

We also stated a relationship between the sectional curvature of a submanifold M ™ of a Sasakian space form
N?™¥1(c) of constant ¢-sectional curvature ¢ endowed with a semi-symmetric metric connection V and the
squared mean curvature || H || 2, Using this inequality, we prove a relationship between the k-Ricci curvature
of M™ (intrinsic invariant) and the squared mean curvature || H]|| ? (extrinsic invariant).

Theorem 2.79 ([88]) LetM™,n > 3,be an n-dimensional submanifold of a(2m + 1)-dimensional real

space formN >m+1 (¢)of constante-sectional curvature c endowed with a semi-symmetric metric connectionV
such that the vector field U is tangent toM ™. Then we have

2 T c c— 2
IEI® > sy + 22— =2 - gl [—2(n-1) | €7 12 +1P)1°]- (2115)

From the above theorem we derived the following:

Theorem 2.80 ([88]) LetM™,n > 3,be an n-dimensional submanifold of a(2m + 1)-dimensional Sasakian

space formN >m+1 (¢)of constantp-sectional curvature ¢ endowed with a semi-symmetric metric connectionV,
such that the vector field U is tangent toM ™. Then, for any integerk,2 < k < m, and any pointz € M™, we
have

1H[*(2) = Ox(2) + 21— 2 — ity [ -2n-1) [ €7 12 +]1PI). (2.116)

Motivated by the above studies, in [81] we improved Chen-Ricci inequalities for a Lagrangian submanifold
M™ of dimension n(n > 2) in a complex space form M >"(4c) of constant holomorphic sectional curvature ¢
with a semi-symmetric metric connection and a Legendrian submanifold M " in a Sasakian space form
M (¢) of constant g-sectional curvature ¢ with a semi-symmetric metric connection, respectively.

Let M™,n > 2, be an n-dimensional submanifold of a 2m-dimensional complex space form Mzm(4c) of
constant holomorphic sectional curvature 4c. If J(T, M ™) CTPLM", then M™ is called an anti-invariant

submanifold of M?™, For an anti-invariant submanifold of a Kaehlerian manifold, it is known that (see
[122])

A;jxY = A X, X,YETPM,
] k o] ] o ’L o 2
or equivalently, h;; = h;, = hy, Vi, j,k=1,...,n, where A is the shape operator with respect to V and

Ok o
hi; = g(h(ei,ej),Jex), i,5,k=1,...,n.

Recall that a Lagrangian submanifold is a totally real submanifold of maximum dimension.

Theorem 2.81 ([81]) LetM "be a Lagrangian submanifold of dimension n(n > 2)in a 2n-dimensional
complex spaceformM%(4c)ofconstant holomorphic sectional curvature c with a semi-symmetric metric
connection such that the vector field P is tangent toM ™. Then for any unit tangent vector X toM "we have

Ric(X) + (n—2)a(X, X) + trace a < (n—l)(c 4+ |\H|\2). (2.117)
The equality sign holds identically if and only if either:
Q] , ,
M"is totally geodesic or
(ii) n = 2, andM?is a H-umbilical Lagrangian surface with\ = 3 p.



We improved Chen-Ricci inequality for submanifolds of Sasakian space forms with a semi-symmetric metric
connection.

A submanifold M™ of a Sasakian manifold M >™*! normal to ¢ is called a C-totally real submanifold. On
such a submanifold, ¢ maps any tangent vector to M ™ at p € M ™ into the normal space TPLM”. In
particular, if n = m, i.e, M™ has a maximum dimension, then it is a Legendrian submanifold. For a
Legendrian submanifold M ™ we may choose an orthonormal basis of TPLM” of the form

{ent1 = pe1,...,ea,m = pen, eani1 = £} One has (see [122])

AxY =AyX, XY eT,M",
ok oj X] e}
or equivalently, h;; = h;, = hj, Vi,j,k =1,...,n, where Ais the corresponding shape operator and

h;; = g(h(ei, e;), per), i,4,k=1,...,n.

Theorem 2.82 ([81]) LetM™be an n-dimensional Legendrian submanifold in a Sasakian space form
ML (¢)of constantp-sectional curvature ¢ with a semi-symmetric metric connection such that the vector
field P is tangent toM ™. Then, for any unit tangent vector X toM "™, we have

Ric(X) + (n—2)a(X, X) + tracea < 25+ (c +3+ n||H||2) (2.118)
The equality sign holds identically if and only if either:
U .
M™is totally geodesic or
(i)
n = 2, andM ?is a H-umbilical Legendrian surface withA = 3p.

The notion of a connection is one of the most important in Geometry. Its history is long and interesting, being
written by Christoffel, Ricci, Levi-Civita, Cartan, Darboux, and Koszul (see, e.g., [70]).

There are various physical problems involving the semi-symmetric metric connection. In [111] the
following two examples are given.

If a man is moving on the surface of the earth always facing one definite point, say Jerusalem or Mekka or the
North Pole, then this displacement is semi-symmetric and metric.

During the mathematical congress in Moscow in 1934 one evening mathematicians invented the Moscow
displacement. The streets of Moscow are approximately straight lines through the Kremlin and concentric
circles around it. If a person walks in the street always facing the Kremlin, then this displacement is semi-
symmetric and metric.

In [82], we constructed examples of different types of connections starting from a semi-symmetric
metric connection ¥ on a Riemannian manifold, for example, a connection which is a symmetric metric
connection with respect to a conformally related metric g*, but symmetric nonmetric with respect to the
initial metric g.

We formulated an open problem: find a parallel complex structure on a Kaehler manifold with respect to
such a new connection.

We recall that K. Yano [121] showed that a semi-symmetric metric connection Vis given by

VxY = VY + &(Y)X — g(X,Y)P,
where V° is the Levi-Civita connection on N with respect to g and P is a vector field defined by P = &7,
equivalent to g(P, X) = ®(X), for any vector field X. So, the above relation can be written as
VxY = V%Y 4 g(P,Y)X — g(X,Y)P. (2.119)
Let us consider only a part of formula (2.119) and define
VY =V$Y + (Y)X,
with ® a 1-form.



We proved that V/ is a semi-symmetric connection, but it is not metric.
More precisely we have the following proposition:

Proposition 2.83 ([82]) Let(N, g)be an n-dimensional Riemannian manifold andV °its Levi-Civita
connection with respect to g. Then the connectionV Idefined by

ViY = V5Y + &(Y)X
with®a 1-form onNis a semi-symmetric nonmetric connection onN.

On the other hand, on the Riemannian manifold (¥, g) denote by Q!(N) the space of 1-forms on N.
Following Yano [121], to any 1-form ® corresponds to a metric semi-symmetric connection

VxY = VY +@(Y)X — g(X,Y)".
We shall consider two cases:
(1
P is closed.
(ii)

P is exact.

By direct calculation we have
dq)(XaY) = X(}(Y) - Y‘I’(X) - é([X7YD = Xg(P> Y) - Yg(P7X) - g(P7 [XaY])
= g(vi;(P, Y) + g(P,V}Y) - g(V;Pv X) - g(P7 v()j’X) - g(P7 [Xv Y])
= g(vgfpa Y) - g(V;Pa X) + [Q(Pa VBCY) - g(Pa V()j’X) - g(Pa [Xv YH
= Q(V}P7Y) - g(V;P7X)
Then & is closed if and only if g(V4P,Y) — g(Vy P, X) = 0.
In the case (ii), ® exactly implies that 3f € C°°(N) such that & = df. Then
9(P,X) = ®(X) =df(X) = Xf,P = gradf, and, ® being closed, we have

g(V}gf'ad £, Y) =g(Vygrad f, X).
For an exact 1-form @, i.e., 3f € C*°(N) such that ® = df, we define a conformally related metricg* by
g* = €2/ g (which remains Riemannian metric) and denote by V* its Levi-Civita connection (on (N, g*)).

Proposition 2.84 ([82]) Let(N, g)be an n-dimensional Riemannian manifold andg* = ezfga conformally
related metric to g, withf € C*°(N). LetV*be the Levi-Civita connection with respect tog*. Then:
(@ N
The connectionV *is given by
VY = VY + (V)X — g(X,Y)®" + &(X)Y,
e,
VLY = VxY + &(X)Y,
whereVis the semi-symmetric metric connection with respect to g.

(i)

The connectionV *is a symmetric nonmetric connection with respect to g.

A Kaehler manifold is one of the most interesting manifolds from the class of complex manifolds and is well
determined by its metric g and its almost complex structure J and then is usually denoted by (M, g, J). Itis
known that a Hermitian manifold (M, g, J) is Kaehler if and only if its almost complex structure J is parallel
with respect to the Levi-Civita connection associated with the Riemannian metric g, i.e.,, V°J = 0.

Let V be the semi-symmetric metric connection with respect to g on a Kaehler manifold (M, g, J) and

V° be the Levi-Civita connection associated with g.
We calculate

(VxJ)Y =VxJY — JVxY



= VLJIY + (JY)X — g(X,JY)®” — J(VLY + @(Y)X — g(X,Y)®7)
=V%JY — J(VLY) + @(JY)X — JB(Y)X — g(X,JY)®# + Jg(X,Y)d#
=3(JY)X - JB(Y)X — g(X,JY)®" + Jg(X,Y)®7.

Remark VJ # 0, so J cannot be parallel with respect to the semi-symmetric metric connection v.

Indeed, if X is orthogonal to P and JP, then P, JP, X, and JX are linearly independent; therefore
(VxJ)Y #0.

Starting from the semi-symmetric connection ¥ on the Kaehler manifold (M, g,J), we can derive
another connection V*.

We formulated the following open problem:

Find another almost complex structureJ *on the Kaehler manifold(}/, g, J)such thatJ *is parallel
with respect toV*(i.e., V*J* = 0).

On the other hand, when the real space form is endowed with a semi-symmetric nonmetric connection,
in [107, 108] we proved Chen inequalities for its submanifolds, more precisely relations between the mean
curvature associated with a semi-symmetric nonmetric connection, scalar and sectional curvatures, Ricci
curvatures, and the sectional curvature of the ambient space. The equality cases were considered.

Let g be a Riemannian metric on N2, If Vg # 0, where V is a semi- symmetric connection, then Vis
called a semi-symmetric nonmetric connection on N™*P,

Following [1], a semi-symmetric nonmetric connection Von N™P s given by
for any vector fields X andY on N™P where V denotes the Levi-Civita connection with respect to the
Riemannian metric g and ¢ is a 1 -form. Denote P = ¢, i.e., the vector field P is defined by g(P, X) = #(X),
for any vector field X on N7,

We will consider a Riemannian manifold N™"? endowed with a semi-symmetric nonmetric connection

V and the Levi-Civita connection denoted by v.
Let M™ be an n-dimensional submanifold of an (n + p)-dimensional Riemannian manifold N™*?. On the
submanifold M ™ we consider the induced semi-symmetric nonmetric connection denoted by V and the

induced Levi-Civita connection denoted by V.

]

Let R be the curvature tensor of N™*? with respect to V and R the curvature tensor of N™? with

o]

respect to V. We also denote by R and R the curvature tensors of V and V, respectively, on M ".

The Gauss formulas with respect to V and, respectively, V can be written as

VxY = VxY +h(X,Y), X,Y € T(TM"),

VxY = VxY +h(X,Y), X,Y € T(TM"),
where h is the second fundamental form of M in N™*? and h is a (0, 2)-tensor on M ™. According to the
formula (3.4) in [2],
h = h (2.120)

One denotes by H the mean curvature vector of M™ in N™*P,
Let N™"?(c) be a real space form of constant sectional curvature ¢ endowed with a semi-symmetric

nonmetric connection V.

[e] ]

The curvature tensor R with respect to the Levi-Civita connection V on N™*?(c) is expressed by

R(X,Y,Z,W) = c{g(X,W)g(Y, 2) - g(X, Z2)g(Y,W)}.
Then the curvature tensor R with respect to the semi-symmetric nonmetric connection V on N™*?(c)
can be written as (see [1])



R(X,Y,Z,W)=R(X,Y,Z,W) +s(X, Z)g(Y,W) — s(Y, Z)g(X, W),
for any vector fields X, Y, Z, W € x(M™"), where sis a (0, 2) -tensor field defined by

S(X,Y) = (%m)y — $(X)B(Y), VXY € x(M").

It follows that the curvature tensor R can be expressed as

R(X,Y,Z,W) = c{g(X,W)g(Y, Z) — g(X, Z)g(Y, W)} (2.121)
+5(Xa Z)g(Ya W) - S(Ya Z)Q(Xa W)
Denote by A the trace of s.
Using (2.120), the Gauss equation for the submanifold M ™ into the real space form N"*?(c) is

R(X,Y,Z,W)=R(X,Y,Z,W)+ g(h(X, Z),h(Y,W)) — g(h(X,W),h(Y, Z)). (2.122)

Decomposing the vector field P on M uniquely into its tangent and normal components PT and P+,
respectively, we have P = PT 4+ P+,

Denote

Q(X) = s(X, X) + g(P*, h(X, X)), (2123)
for a unit vector X tangent to M ™ at a point x.

In general for submanifolds M™ of a real space form endowed with a semi-symmetric nonmetric
connection, the sectional curvature K (7) of a plane section (and consequently the Chen invariants) cannot
be defined by the standard definition because it depends on the choice of the orthonormal basis of . For
this reason we put the condition (X)) = constant for all unit vectors tangent to M ™.

For submanifolds of real space forms endowed with a semi-symmetric nonmetric connection, we
establish the following optimal inequality, which will call Chen first inequality:

Theorem 2.85 ([107]) LetM™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real

space formN™"P(c)of constant sectional curvaturec,endowed with a semi-symmetric nonmetric connectionV.
We have

Sun(@) <O+ (n=2) |52 [HI® + (n+ 1) 5 | — $(n—1)A = Tn2g(H),

n—1)
whereTis a 2-plane section of I, M", x € M™". Equality holds at a pointx € M™"if and only if there exist an
orthonormal basis{ey, e, . . . , e, yof T M ™and an orthonormal basis{en 1, - . . , €n+p }ofT;- M "such that the
shape operators of M "inN""P(c)at x have the following forms:
a 00 --- 0
0b 0 0
A, = 00 pu -~ 0 . a+b=p,
0 00 I
RY R 0 .- 0
R —RYT 0 .- 0

=]

= 0 0 - 0 2<i<np.

€nti ?

Lo o 0.

Proof From [2], the Gauss equation with respect to the semi-symmetric nonmetric connection is

R(X,Y,Z,W) = R(X,Y,Z,W) + g(h(X, 2), (Y, W)) - g(h(Y, Z), h(X, W)) (2.124)
+g(PL7 h(Ya Z))g(Xa W) - g(PLa h(X7 Z))g(Y7 W)



Letz € M™and {ey,ez,...,e,}and {esi1,- - -, enip} be orthonormal basis of T, M ™ and T,;- M ",
respectively. For X = W =e;,Y = Z = ej, i # j, from Eq. (2.121) it follows that
R(e;, ej,¢ej,€e;) = c— s(ej, €5). (2.125)
From the last two equations we get
c—s(ejej) = Rlei ej ej ei) +g(hlei,e)), hlei, e;))
—9g(h(ei, €i), h(ej; €5)) + B(h(e; €;)).
By summation after 1 < 7, j < n, it follows from the above relation that
(n? —n)c — (n—1)A = 27 + [|h]|> — n?| H|? + n?¢(H), (2.126)
where we recall that A is the trace of s and denote

B2 =Y glhlerres) (e )

i,j=1

H = Ltraceh, ¢(H)=1 Z;l #(h(ej e;)) = g(P+, H).

One takes

(n—1)A — (n? — n)c + n¢(H). (2.127)
Then (2.123) becomes
w2 [H|]” = (n=1)(|[B]]* + ¢). (2.128)
Letz € M", 7 C T,M",dim m = 2, = sp{e1, e2}. We define e, 41 = ﬁ, and from the relation
(2.128) we obtain

n n+p
(Dotum) =320, 300 0 e,
or equivalently,
n 2 n n+p 9
(Zil n+l> (n 1){2 hN+l + Z (hn+1 + Zi,j:1 Zr:n+2(h:j) + 5}_(2.121

By using the Chen lemma we derive

n+1lypn+1l n+1 2.130
2h11 h22 = Zi#] ) + Zz] 121- n+2 ZJ T e ( )

The Gauss equation for X = W = ey, Y Z = ey gives

K(Tl') = R(€1,€2,62,61) =C— 5(62,62)

—g(P+,h 62762))+§ : h§1h72"2 (h{2)2]

n+1
Do D D e

n—+p n—+p
> - (W) = e seaen) — dlhlenses)
n+p n+p
D N LD D DI T S ¥ A SN 5
n+p
= e sles,en) — o(P hlen en) + 3 Z ICRRED DI DN
n+p
T DN T ) S (OO u P

> ¢ — s(ez, e3) — g(P*, h(ez, €2)) + £,

> c— s(ez,e2) — ¢(h(ea,e2)) + %

which implies



K(m) > c— s(ea, e2) — g(P*, h(ez, e2)) + 5.
Let {e1,es,...,e,} be an orthonormal basis of T, M ™ with m = sp{e1, e2}. The formula (2.123) implies
that

Qer) = Nez) = ... = Qey).
Denote it simply by . By using (2.127) we get
K(m) > 7 - Q- (n-2)[525 |HI* + (n+ D] + F(n-DA+ $n26(H),

which represents the inequality to prove.
The equality case holds at a point x € M ™ if and only if it achieves the equality in all the previous
inequalities and, we have the equality in the lemma.

R =0, Vi# 5> 2,
hgj:O) Vi #j,i,5>2,r=n+1,...,n+p,
hi;+hi =0, Vr=n+2,...,n+p,
Wit =hpH =0, Vj>2,

n+1 nt+l _ pn+l __ _ +1
hiy " +hy =hi =...=h".
We may choose {e1, es} such that A7y = 0,and we denote a = h7,,b = hh,, u = hif' = ... = %L

It follows that the shape operators take the desired forms.
We also established a sharp relation between the Ricci curvature in the direction of a unit tangent vector

X and the mean curvature H with respect to the semi-symmetric nonmetric connection V.
Denote the relative null subspace of the tangent space by

N(z) ={X e T,M" | h(X,Y)=0, VY € T,M"}.

Theorem 2.86 ([108]) LetM™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real

space formN ™P(c)of constant sectional curvature ¢ endowed with a semi-symmetric nonmetric connectionV.
Then:

@
For each unit vector X inT,, Mwe have
|H|? > 4 [Ric(X) — (n—1)(c — Q)]. (2.131)
(i)
IfH(x) = 0, then a unit tangent vector X at x satisfies the equality case of (2.131) if and only if
X € N(z).
(iii)

The equality case of inequality (2.131) holds identically for all unit tangent vectors at x if and only if
either x is a totally geodesic point orn = 2and x is a totally umbilical point.

A relationship between the sectional curvature of a submanifold M™ of a real space form N"*?(c) of

constant sectional curvature ¢ endowed with a semi-symmetric nonmetric connection V and the associated
squared mean curvature || H || ? was established in [107]. Using this inequality, we proved a relationship

between the k-Ricci curvature of M™ (intrinsic invariant) and the squared mean curvature | H||* (extrinsic
invariant).

Theorem 2.87 ([107]) LetM™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real

space formN "P(c)of constant sectional curvature ¢ endowed with a semi-symmetric nonmetric connectionV.
Then we have

IH|* > 7255 — e+ 7oA + 37 6(H). (2132)

Using the above theorem, we obtain the following:



Corollary 2.88 ([107]) LetM™,n > 3,be an n-dimensional submanifold of an(n + p)-dimensional real

space formN ™ *?(c)of constant sectional curvature c endowed with a semi-symmetric nonmetric connectionV .
Then, for any integerk,2 < k < n, and any pointr € M", we have

IH|*(p) = Ok(p) — ¢+ £A+ 2y o(H). (2.133)

Recently, in [85] we have proposed a definition of the sectional curvature of the semi-symmetric nonmetric
connection, which does not depend on the orthonormal basis of a 2-plane section, i.e., is well defined.

More precisely, let (M, g) be a Riemannian manifold endowed with a semi-symmetric nonmetric
connection V. Recall that

VxY = Vg(Y +w()X,

where V' is the Levi-Civita connection on (M, g).

We remarked in the previous section that one cannot define the sectional curvature of a plane section
m = span {ej,es} C Tp,M,p € M,by g(R(e1,e2)e2,e1).

This is the reason for which a well-defined sectional curvature is necessary; the steps to get there are
below (see [85]).

First we consider the linear connection

VY =V%Y — g(X,Y)P.
Then we prove the first result.

Proposition 2.89 ([85]) Let(M, g)be a Riemannian manifold,V a semi-symmetric nonmetric connection
given by

VxY = V%Y +w(Y)X,
andV!a linear connection defined by

ViY =V%Y — g(X,Y)P.
ThenVandV lare conjugate connections, i.e.,

Zg(X,Y)=9(VzX,Y)+g(X,V,Y), VXY, Z € T(TM).
Proof LetX,Y,Z € I'(TM).Then
g(vZX7 Y) + g(X7 VIZY) = g(VOZX + w(X)Za Y) +g(XaVOZY - g(Za Y)P)
=Z9(X,Y) +w(X)g(Z,Y) — 9(Z,Y)9(X, P) = Zg(X,Y).

The basic properties of the connection V/ are given in the following.

Proposition 2.90 ([85]) Let(M, g)be a Riemannian manifold andV Ithe connection defined by
VyY = VSY — g(X,Y)P, whereV'is the Levi-Civita connection. Then:

®

V'is symmetric, i.e., its torsionT! = 0.

(i)

V'is nonmetric.

Proof LetX,Y,Z € I'(TM). We have:

(1)
TIX,Y) = VY — V, X — [X,Y]

=V5%Y —g(X,)Y)P - VX +g(X,Y)P - [X,Y]=0.

O (0¥, 2) = Xg(¥,2) - o(VOY - g(X,Y)P,Z) — g(Y, V%2 — g(X, Z)P)

=—9(X,Y)w(Z)+ g(X, Z)w(Y) # 0.

Next, we prove an important relation between the curvatures of the conjugate connections V and V.



Theorem 2.91 ([85]) Let(M, g)be a Riemannian manifold,V a semi-symmetric nonmetric connection, and
V'its conjugate connection defined by

VxY =V}Y +w(Y)X,
VLY = Vg(Y —g9(X,Y)P.
Then
J(RI(X,Y)Z,W) = —g(R(X, Y)W, Z).

Proof LetX,Y,Z,W € I'(TM). Then,
9(R(X,Y)Z,W) =g(VxVyZ ~VyVxZ —V xy|Z,W)
= Xg(VyZ,W) — g(VyZ,V5W) - Yg(VxZ,W)
+9(VxZ, VW) — [X, Y]g(Z, W) + ¢(Z, Vix V)
= XYg(Z,W) - Xg(Z,VyW) —Yg(Z,VxW) + g(Z,VyV'x W)
~YXg(Z,W)+Yg(Z,V'\W)+ Xg(Z,V\ W) — g(Z,V'\V{, W)
—[X,Y]g(Z,W) + g(Z, VEX’Y]W) =—9(Z,RI(X,Y)W).
Inspired by an idea of B. Opozda [106], we then define a (0, 4)-tensor field S by
S(X,Y,Z,W) = %[g(R(X, Y'YW,Z)+ g(RI(X, Y)W, Z)].
Theorem 2.91 implies
S(X,Y,Z,W)=-S(X,Y,W,2)
and
S(X,Y,Z,W) = %[g(R(X, Y)W, Z) - g(R(X,Y)Z,W)|.

Letp € M and w C T, M a plane section. For an orthonormal basis {e1, e2} of m, we derive

S(el’ €2,€1, 62) - %[Q(R(ela 62)627 61) - g(R(eh 62)617 62)]'
By the formula of the curvature tensor of a semi-symmetric nonmetric connection, it follows that
S(eh €2,€1, 62) = Ro(el’ €2,€1, 62) - %[8(627 62) + 8(61, el)]a
which does not depend on the orthonormal basis {e1, e2} of .

Therefore, we are now able to introduce the following definition of a sectional curvature of the semi-
symmetric nonmetric connection V.

Definition The sectional curvature of the plane section w C T}, M spanned by the orthonormal basis
{e1, e2} is defined by

K(m) = §[9(R(e1, e2)ea, e1) + g(R(es, e1)en, €2)].

Using the above definition, we can compute the scalar curvature and the Ricci curvature of a Riemannian
space form admitting a semi-symmetric nonmetric connection.

Let M (c) be an n-dimensional Riemannian space form (the sectional curvature associated with the Levi-
Civita connection is a constant ¢) admitting a semi-symmetric nonmetric connection V. Let p € M(c) and
{e1,...,en} be an orthonormal basis of T), M.

The scalar curvature with respect to V is

T= Zl§i<j§n K(ei Nej),

where e; A e; is the plane section spanned by e; and e;.
By using the definition of the sectional curvature K, we have

T=3 E :1§i<j§n[g(R(€i,6j)€ja€z') + 9(R(ej; €i)eis €5)] = E :ngn 9(R(ei, €))ej, €i)-

By the formula of the curvature tensor of a semi-symmetric nonmetric connection, it follows that



7= 1+n(n—1)c+ +(n—1)trace s.
Letp € M(c), X € T, M unit, and {e; = X, ey, ..., e} be an orthonormal basis of T, M. It is known
that
Ric(X) = i K(XNej) =5 g j:2[g(R(X, ej)e;, X) + g(R(ej, X)X, ej)]
= (n—1)c+ +[(n—2)s(X, X) + trace s|.

On the other hand, recall that B.Y. Chen [29] established an estimate of the mean curvature in terms of the

Ricci curvature for any Riemannian submanifold of dimension n in a Riemannian space form M (c) of
constant sectional curvature c:

Ric(X) < (n-D)e+ 4 | H |,
known as the Chen-Ricci inequality.
As an application of the new definition, we established in [85] the Chen-Ricci inequality for submanifolds
in a Riemannian space form admitting a semi-symmetric nonmetric connection by using the sectional
curvature defined in the previous section.

Let M(c) be an m-dimensional Riemannian space form, Va semi-symmetric nonmetric connection on
M(c), and M an n-dimensional (n > 2) submanifold of M (c).

The Gauss formulae for the semi-symmetric connection V and the Levi-Civita connection V°,
respectively, are written as

VxY = VxY + h(X,Y),

V&Y = V&Y 4+ h'(X,Y),

for all vector fields X, Y on the submanifold M. In the above formulae, KO is the second fundamental form of
M, and his a (0, 2)-tensor on M. In [2], it is proven that h? = h.

We decompose the vector field P on M uniquely into its tangent and normal components P " and P+,
respectively; we have P = P+ Pt

The Gauss equation with respect to the semi-symmetric nonmetric connection is given by (see also [2])

JR(X,Y)Z,W) =g(R(X,Y)Z,W) + g(h(X, Z), h(Y, W)
—"_g(PLa h(Y7 Z))g(X7 W) - g(Pla h(Xa Z))g(Y, W)a

for any vector fields X, Y, Z, and W on M.

Theorem 2.92 ([85]) LetM(c)be an m-dimensional Riemannian spaceform,%a semi-symmetric nonmetric
connection on it, and M an n-dimensional(n > 2)submanifold of M (c). Then we have the following:

1.
For each unit vectorX € T,M,

Ric(X) < 2 | H || +(n—1)c — L[trace s + (n—2)s(X, X)] (2.134)
— % [nw(H) + (n—2)g(P*, h(X, X))].

IfH(p) = 0, then a unit tangent vector X at p satisfies the equality case of the inequality (2.134) if and only
ifX € Ny, whereN, = {X € T,M|h(X,Y) =0,VY € T,M}.

The equality case of the inequality (2.134) holds identically for all unit tangent vectors at p if and only if
either:

(D
p is a totally geodesic point or

(i)

n = 2and p is a totally umbilical point.



Proof 1.Letp € M and X € T, M be a unit tangent vector. Consider an orthonormal basis
{e1,---,€ens€ni1,...,€n}in TPM(C), withe; = X, es, ..., e, tangent to M at p.
As usual, one denotes hj; = g(h(ei, €j),e;),4,j € {1,...,n}, r € {n+1,...,m}. We have

Ric(X) = 2:22 K(e; Nej).

Ifwetake X = W =e; andY = Z = e; in the Gauss equation, we have

9(R(e1, ej)ej,e1) = c — s(ej, e5) + E :T:nﬂ (R, k7 = (B3)°] — 9(P, h(ejye))),

respectively, and from the Gauss equation if we put X = Z = e1,Y = W = ¢;, we obtain

9(R(ej,e1)er, e;) = c — s(er, e1) + § :T=n+1[h§1h;j - (h{j)Z] - Q(Pl»h(ehel))'

Because

K(e1 Nej) = 51g(R(e1,e))ej e1) + g(R(ej, e1)er, €;)],
from the previous two relations, we have

K(e1Aej) = c— g[s(ejrej) + s(er,en)] + E :T:nﬂ [R1,R; — (h7,)7]

—519(P*, h(ejse))) + g(P*, h(er,er))].
By substitution we find

Ric(X) = (n—1)c — 3 [trace s + (n—2)s(X, X)]
— 3 [nw(H) + (n—2)g(P*, h(X, X))]

n m
E E 2
+ =2 r=n+1 [h{lh;] - (hgj) ]'
The last equation implies

Ric(X) < (n—1)c — 3 [trace s + (n—2)s(X, X)]

— 2 [nw(H) + (n—2)g(P*, h(X, X))] + ZH ZT:M hirhy;-

Obviously one has
n n 2
T r 1 r
hix (Zj=2 hjj) ST (Zi:l hii) ’

hiy = hiy + -+ + hip.

with equality if and only if

It follows that
Ric(X) < "TZ | H ||> +(n—1)c — 3 [trace s + (n—2)s(X, X)]
—3 [nw(H) + (n—2)g(P*, (X, X))].
2. If a unit vector X at p satisfies the equality case in (2.134), we get
hi;=0,2<i<n,Vre{n+1,...,m},
Ry, =hiy+...4+h ,Vre{n+1,...,m}.
Therefore, because H(p) = 0, we have h’{j =0, forallje {1,...,n},r € {n+1,...,m}, thatis,
X € N,.
3. The equality case of the inequality (2.134) holds for all unit tangent vectors at p if and only if
hi;=0, 1<i#j<n, re{n+1,...,m},
hiy+...+h;,—2hR;, =0, iec{l,...,n}, re{n+1,...,m},
which imply h(e;,e;) =0, 1 <1 # j <n,and (n—2)H(p) = 0.



We distinguish two cases:
@ . . .
n # 2; h(ei,ej) =0,Vi,5 € {1,...,n}, ie, hy, vanishes on T, M.
(i)
n = 2; then h(e;, e;) = g(e;, e;)H(p), forany i, j € {1,2},1i.e, p is a totally umbilical point.

Remark This definition of the sectional curvature of the semi-symmetric nonmetric connection was used
in the very recent work of M.E. Aydin, R. Lopez, and A. Mihai (see [6, 9]) for the study of constant sectional
curvature surfaces with a semi-symmetric nonmetric connection, respectively, in the classification of
translation surfaces in R? with constant sectional curvature.

2.4 Statistical Submanifolds

In this subsection, we study the behavior of submanifolds in statistical manifolds of constant curvature. We
investigate curvature properties of such submanifolds. Some inequalities for submanifolds with any
codimension and hypersurfaces of statistical manifolds of constant curvature are also established.

Statistical manifolds introduced, in 1985, by Amari have been studied in terms of information geometry.
Since the geometry of such manifolds includes the notion of dual connections, also called conjugate
connections in affine geometry, it is closely related to affine differential geometry. Also, a statistical structure
is a generalization of a Hessian structure [114].

Let (]\7, g) be a Riemannian manifold and M a submanifold of M. If (M, V, g) is a statistical manifold,

then we call (M, V, g) a statistical submanifold of (M, g) , where V is an affine connection on M and g is

the metric tensor on M induced from the Riemannian metric g on M. Let V¥ be an affine connection on M. If
(M, g, 6) is a statistical manifold and M a submanifold of M, then (M, V, g) is also a statistical manifold

by induced connection V and metric g. In the case that (H, g) is a semi-Riemannian manifold, the induced

metric g has to be nondegenerate. For details, see [116, 119].

In the geometry of submanifolds, Gauss formula, Weingarten formula, and the equations of Gauss,
Codazzi, and Ricci are known as fundamental equations. Corresponding fundamental equations on statistical
submanifolds were obtained in [119]. A condition for the curvature of a statistical manifold to admit a kind
of standard hypersurface was given by H. Furuhata [58, 59], and he introduced a complex version of the
notion of statistical structures as well.

On the other hand, B.Y. Chen [24] established basic inequalities for submanifolds in real space forms,
well known as Chen inequalities. In particular, a sharp relationship between the Ricci curvature and the
squared mean curvature for any n-dimensional Riemannian submanifold of a real space form was proved in
[29], which is known as the Chen-Ricci inequality. Moreover, Chen’s inequalities for submanifolds of real
space forms endowed with a semi-symmetric metric connection were obtained in [86, 87].

In [7] we obtained some inequalities for submanifolds with any codimension and hypersurfaces of
statistical manifolds.

We first introduce the statistical submanifolds.

Let <]T/f, g) be a Riemannian manifold of dimension (n + k) and V an affine connection on M. One

denotes the set of sections of a vector bundle E — M by I'(E). Thus, the set of tensor fields of type (p, ¢) on
M is denoted by T (TM(M)>.

Definition ([58]) Let Tel (TM(1’2)) be the torsion tensor field of V. Then a pair (6, g) is called a
statistical structure on M if
(9x3)(v,2) - (¥v3) (X, 2) = 3(T(x, V), 2) (2.135)
holdsfor X,Y,Z €T (TM), and
T=0. (2.136)



A statistical manifold is a Riemannian manifold (]Tf, g) of dimension (n + k), endowed with a pair of

torsion-free affine connections V and V* satisfying
Z§(X,Y) = g(?ZX, Y) n g(X, WY), (2.137)
forany X,Y,and Z € T (TM) . One denotes a statistical manifold by (H, g, 6) The connections V and

~ * ~ ~
V* are called dual connections, and it is easily shown that (V*) =V.If (V, g) is a statistical structure on
M, then (%*, f]) is also a statistical structure [4, 119].
On the other hand, any torsion-free affine connection v always has a dual connection given by
V 4+ V* =2V, (2.138)
where V? is Levi-Civita connection on M.
Denote by R and R* the curvature tensor fields of V and V*, respectively.
A statistical structure (6, g) is said to be of constant curvaturec € R if
R(X,Y)Z =c{3(Y,2)X — §(X, Z)Y}. (2.139)
A statistical structure (6, g) of constant curvature 0 is called a Hessian structure.

The curvature tensor fields R and R* of dual connections satisfy

g(R*(X, Y)Z, W) ——5 (z, R(X, Y)W) : (2.140)
from which it follows immediately that if (6, g) is a statistical structure of constant structure c, then

(6*, g) is also a statistical structure of constant c. In particular, if (6, f}) is Hessian, so is <§*, g).

Let M be an n-dimensional submanifold of M. Then, for any X,Y € I'(T'M), according to [119], the
corresponding Gauss formulas are

VxY =VxY + h(X,Y), (2.141)
VY = V%Y + h*(X,Y), (2.142)
where h and h*are symmetric and bilinear, called the imbedding curvature tensor of M in M for V and the

imbedding curvature tensor of M in M for v, respectively.
In [119], itis also proved that (V, g) and (V*, g) are dual statistical structures on M, where g is induced

metric on I'(T'M) from the Riemannian metric g on M.
Since h and h*are bilinear, we have the linear transformations A¢ and Az defined by

g(Afxa Y) = g(h(Xa Y)7£)7 (2.143)

9(4:%,Y) = g(h*(X,7),9), (2.144)

forany £ € T’ (TML) and X,Y € I'(T'M). Further, in [119], the corresponding Weingarten formulas are as
follows:

Vx€=—A;X + V%, (2.145)
Vi€ =—AcX + Ve, (2.146)

forany £ € T(TM*') and X € T(TM). The connections V% and V*} given by (2.145) and (2.146) are
Riemannian dual connections with respect to induced metric on I‘(TML).
The corresponding Gauss, Codazzi, and Ricci equations are given by the following:

Proposition 2.93 ([119]) LetVbe a dual connection onMandV the induced connection onM.LetRand R be
the Riemannian curvature tensors ofVandV ,respectively. Then

§(ROXY)Z,W) = g(R(X,Y)Z, W) + §(h(X, 2), b*(Y, W) (2.147)
i _g(h*(Xa W)vh(Ya Z))v
(E(X, Y)Z) = VLh(Y, Z) — (VxY, Z) — (Y, VxZ) (2.148)



—Vsh(Y,Z) + h(VyX, Z) + h(X,VyZ),
(R Y)Em) = 3(RX, V)g ) +9(|4: 4, X, Y), (2.149)
whereR"is the Riemannian curvature tensor onTM™*, &,m € I‘(TML)and[AZ, An] = AEA,] — AnAz.

For the equations of Gauss, Codazzi, and Ricci with respect to the dual connection V* on M we have the
following proposition:

Proposition 2.94 ([119]) LetV*be a dual connection onMandV* the induced connection onM.LetR*and
R*be the Riemannian curvature tensors forV*andV * ;respectively. Then

§(R'(X,7)2,W) = g(R*(X,Y)Z,W) + §(h* (X, Z), (Y, W) (2.150)
. —§(h(X,W),h*(Y, 2)),
(R*(X, Y)Z) = Vi h* (Y, Z) — (VLY Z) — (Y, V5 2) (2.151)
~V#h*(Y, Z) + h*(Vy X, Z) + h*(X, V3 Z),
IR (X,Y)En) = Q(R*(X, Y)¢, n) +9([4, 45 X,Y), (2.152)
whereR** is the Riemannian curvature tensor forV-*onTM*,&,n €T (TML) and
[Ag, A7) = AcA; — AT A

Let (M, g, 6) be a statistical manifold and f : M — M be an immersion. We define a pairg and V on M by

9=1"3, 9(VxY,2) = §(Vx,.Y, 1.2), (2.153)
forany X,Y, Z € T'(T'M), where the connection induced from V by fon the induced bundle f*TM — M
is denoted by the same symbol V. Then the pair (V, g) is a statistical structure on M, which is called the
statistical structure induced by ffrom (6, g) (cf. [38]).

Definition ([58]) Let (M, g, V) and (M, g, ?) be two statistical manifolds. An immersion f : M — M is

called a statistical immersion if (V, g) coincides with the induced statistical structure, i.e., if (2.153) holds.

Letf: (M,g,V) — (M, g, 6) be a statistical immersion of codimension one,and §{ € T (f*T]T/f) be a unit

normal vector field of f. Also we denote the dual connection of V with respect to § by V*. Thus, from [58],
we have the following Gauss and Weingarten formulas:

Vxf.Y = £.VxY + h(X,Y)E, (2.154)
Vx€ = —f.A* X + m*(X)E, (2.155)
Vi Y = f.V5Y + h* (X, Y)E, (2.156)
Vit = —f. AX + 7(X)E, (2.157)
where h, h* € I‘(TM(O’Z)),A,A* € F(TM(I’I)), and 7, 7* € T'(T'M*) satisfy
h(X,Y) = g(AX,Y); h*(X,Y)=g(A*X,Y), (2.158)
7(X)+7%(X) =0, (2.159)

forany X,Y € I'(TM).
Denote by ﬁ, ﬁ*, R, and R* the curvature tensor fields of the connections 6, 6*, V,and V*,
respectively. Then, for the Gauss equation of a statistical hypersurface, we calculate
R(X,Y)Z = R(X,Y)Z — WY, Z)A*X + h(X, Z)A*Y + (Vxh)(Y, Z)¢ (2.160)
The normal component of R(X,Y)Z is
(2.161)



(Rxv)2)" = (Vxh)(v, 2)¢

—(Vyh)(X, 2)¢+ 7 (X)M(Y, Z2)§ — 7" (Y)I(X, Z)¢,
which is known as the Codazzi equation. Similarly we get the Ricci equation of a statistical hypersurface as
follows:
R(X,Y)t = —(VxA*)Y + (VyA")X — (V) A*X 4 7% (X)A*Y (2.162)
—h(X,A*Y)E+ h(A*X,Y)E+ dr* (X, Y)E.
The equations of Gauss, Codazzi, and Ricci with respect to the dual connection V*on M are

R*(X,Y)Z = R*(X,Y)Z — h*(Y,Z2)AX + h*(X, Z)AY + (Vih*)(Y, 2)¢ (2.163)
_(v;’h*)(X, Z)§ i‘ T(X)h*(ya Z)§ - T(Y)h*(Xa Z)év
(R’*(X, Y)Z) = (Vih*)(Y, Z)¢ (2.164)

~ —(Vyh")(X, 2)§ + 7(X)R* (Y, 2)€ — 1(Y)h* (X, Z)¢,
R (X, V)¢ = —(VXA)Y + (VyA)X — 1(Y)AX + 7(X)AY (2.165)
—h*(X,AY)¢ + h*(AX,Y )+ dr(X,Y)E.
In the case when the ambient space is of constant curvature c, the equations of Gauss, Codazzi, and Ricci
reduce to

RX,Y)Z=c{g(Y,2)X —9(X,Z2)Y} +{h(Y,2)A*X — h(X,Z)A*Y }, (2.166)
(Vxh)(Y,Z2)+ *(X)h(Y,Z) = (Vyh)(X, Z2) + 7*(Y)h(X, Z), (2.167)
(VxA")Y —%(X)A*Y = (VyAH)X —*(YV)A* X, (2.168)
h(X,A*Y) — h(A*X,Y) =dr*(X,Y), (2.169)

and the dual ones reduce to
R (X, Y)Z=c{9(Y,2)X —g(X,2)Y}+{h*(Y,Z2)AX — h*(X, Z)AY}, (2.170)
(VXh)(Y,Z) + 1(X)h*(Y, Z) = (Vyh*)(X, Z) + 7(Y)h* (X, 2), (2.171)
(VxA)Y — 7(X)AY = (V;A)X — 7(Y)AX, (2.172)
h*(X,AY) - h*(AX,Y) =dr(X,Y). (2.173)

In [7] we obtained general inequalities for statistical submanifolds.
Let M be an (n + k)-dimensional statistical manifold of constant curvature ¢ € R, denoted by M (c),

and M be an n-dimensional statistical submanifold of M(c).
We use the notation
R(X,Y,Z,W) = g(R(X,Y)W, 2)
and, similarly,
RY(X,Y,Z,W) =g(R*(X, Y)W, Z),
where R and R* are the curvature tensor fields of V and V*.

Let{e1,...,en}and {eni1,...,entr} be orthonormal tangent and normal frames, respectively, on M.
The mean curvature vector fields are given by

n k n
H=1 g . h(e;,e;) =+ g a1< g i hg) entas B = G(h(eis €5) €nta) (2.174)
and
n k n
H* = % : :i:l h*(eiaei) = % : :al( : :i:l h:la) €ntas h;]‘a = g(h*(eivej)aen+a)' (2175)

Then we have the following.

Proposition 2.95 ([7Z]) Let M be an n-dimensional submanifold of an(n + k)-dimensional statistical
manifoldM(c)ofconstant curvaturec € R. Assume that the imbedding curvature tensors h andh*satisfy
h(X,Y) :g(X,Y)H, h*(X,Y) :g(XaY)H*a
foranyX,Y € I'(TM).Then M is also a statistical manifold of constant curvaturec + g(H, H*), whenever
g(H, H*)is constant.



Definition ([103]) Let M be an (n + k)-dimensional statistical manifold. Then the Ricci tensorS (of type
(0,2)) is defined by

S(Y,2) = trace{X = R(X, Y)Z},
where R is the curvature tensor field of the affine connection V on M.

Thus we have the following result.

Theorem 2.96 ([7]) LetM(c)be an(n + k)-dimensional statistical manifold of constant curvaturec € Rand

M an n-dimensional statistical submanifold of M (c). Also let{e1, . . ., e, }and{n,, . .., n;} be orthonormal
tangent and normal frames, respectively, on M .Then Ricci tensor S and dual Ricci tensorS™*of M satisfy

k
S(X,Y) =c(n—1)g9(X,Y) + E  19(An X, Y)tr AT — g(AnY, A} X)], (2.176)
k
S*(X,Y) =c(n—1)g(X,Y) + g 1 g(A;';iX, Y)tr A, — g(AnZ.X, A;‘LiY). (2.177)

The proof is technical.

Definition ([L03]) LetV be a torsion-free affine connection on a Riemannian manifold M that admits a
parallel volume element w. If w is a volume element on M such that Vw = 0, then (V, w) is called an
equiaffine structure on M.

Proposition ([103]) An affine connectionV with zero torsion has symmetric Ricci tensor if and only if it is
locally equiaffine.

Thus we have the following result for statistical manifolds having equiaffine connection.

Lemma 2.97 ([Z]) LetM(c)be an(n + k)-dimensional statistical manifold of constant curvaturec € Rand
M an n-dimensional submanifold ofM(c) Assume that the affine connectionVof M is equiaffine. Then one

verifies
k
> [Au Az 0.

Corollary 2.98 ([7]) LetM(c)be an(n + k)-dimensional statistical manifold of constant curvaturec € Rand

M an n-dimensional equiaffine submanifold M ofM(c).LetS andS*denote the dual Ricci tensors of M. Then we
have

k
(5—8Y) = D o((An, — 45) X, V)er(45, — A).

We established an estimate of the scalar curvature of a statistical submanifold in terms of its mean curvature
vectors and the lengths of the imbedding curvature tensors.

Proposition 2.99 ([7]) LetM(c)be an(n + k)-dimensional statistical manifold of constant curvaturec € R
and M an n-dimensional statistical submanifold of M (c).We have

27 > n(n—1)c+n*g(H, H*) — |[h[|||p*], (2.178)
whereTis the scalar curvature of M.
Proof From (2.147), we have the Gauss equation as follows:
R(Xa Y, Z, W) = C[g(X, Z)g(Y7 W) - g(X7 W)g(Y, Z)}

+g(h* (X, 2),h(Y,W)) — g(h(X,W),h*(Y, Z)),
where X,Y, Z,and W € T'(TM).Putting X = Z = e;andY = W =e;,4,j = 1,...,n, we write



R(ei, ej,ei,ej) = C[Q(ei: ei)g(ej, e;) — g(es, ej)Q} + g(h*(ei, ei), h(ej, ej))

—g(h(ei, €5), h*(ejs €:))-
By summing over 1 < %, j < n, it follows that

n k
27 = (n® —n)c+ng(H,H*) — E . E W (2.179)

> n(n—1)c +n’g(H, H*) — ||h]|||R*],
which gives (2.178).

Remark On any statistical submanifold M of M(c) the equality 7 = 7* holds.

Let VO be the Levi-Civita connection of an n-dimensional submanifold M in an (n + k)-dimensional

statistical manifold M (c) of constant curvature c. Denote by H° the mean curvature vector field. Then a
sharp relationship between the Ricci curvature and the squared mean curvature obtained by B.Y. Chen [29]
is the following:
Ric’(X) < Z(|HO|* + (n—1)c, (2.180)
which is known as the Chen-Ricci inequality.
From (2.138) we get 2H® = H + H* and thus

2 * *
1P = 3 (1B + 5| + 29(H, H)). (2181)
Therefore, from the last two equations we derive
. n? 2 n? %2 n? ~ *
Ric’(X) < % | H||* + & | H*||* + & §(H,H*) + (n—1)c. (2.182)

For statistical hypersurfaces we also obtained some inequalities.
By analogy with Proposition 2.99, we have an inequality for statistical hypersurfaces as follows:

Proposition 2.100 ([Z]) Let M be a statistical hypersurface of an(n + 1)-dimensional statistical manifold

M (c)of constant curvaturec € R.We have
27 > n(n—1)c +n?|H|| H*|| — [[h][||*] (2.183)

The proof uses the well-known Cauchy-Buniakowski-Schwarz inequality.

Proposition 2.101 ([Z]) Let M be a statistical hypersurface of an(n + 1)-dimensional statistical manifold
M (c).For eachX € T,(M)we have

Ric(X) = (n—1)c + ng(h*(X, X), H) — E :izl hirhiy,

Ric*(X) = (n—1)c+ng(h(X, X),H*) — E . hahjy

Example Recall Example 5.4 from [58]. Let (H, g) be the upper half space of constant curvature —1
n+1

R _ n n n ~ . n -2 k 1,k
H:={y=(y',...,y""") e R""|y"" > 0}, := (y"*) Zk:l dy*dy*.

An affine connection V on Hl is given by

Q

a  _ (,mtl\"1 8
ay"% ayn+1 - (y ) 3yn+1 9

Q

0 _ (a1 _1L
3%1' oy 2511 (y ) Oyt

Vis2:=V_ 2 =0,

0T 7
oyt ayn+1 ayn+1 ay]

where i, j = 1,...,n. The curvature tensor field RofVis identically zero, i.e, ¢ = 0. Thus (H, 6, §) isa

Hessian manifold of constant Hessian curvature 4.
For a constant yy > 0, we get the following immersion by f:



fo:R* = H, fo(yh ... 9") = (v ..., ¥ wo)-

Let (V, g) be the statistical structure on R" induced by fj from (%, §) . We then get that (V, g) is a
Hessian structure and K (V:9) = 0. In other words, fy is a statistical immersion of the trivial Hessian
manifold (R", V, g) into the upper half Hessian space (H, v, g). It is easy to calculate that

£=yogam, h=29, B*=0, |H*| =0, (2.184)
which means that the equality case of (2.183) is satisfied for (R", V, g) and (H, v, g).

On the other hand this example can be generalized by using Lemma 5.3 of [58]. Let <H, 6, g) be a

Hessian manifold of constant Hessian curvature é # 0,(M, V, g) a trivial Hessian manifold, and f : M — H
a statistical immersion of codimension one. Then the following expressions hold:

A*=0, h* =0, ||[H*||=0;
thus the immersion fhas codimension one and satisfies the equality case of (2.183).

Next, we give the complete proof of the Chen-Ricci inequalities for statistical submanifolds (of arbitrary
codimension) in statistical manifold of constant curvature.

Let M(c) be an (n + k)-dimensional statistical manifold of constant curvature ¢ € R and M an n-
dimensional statistical submanifold of M (c). Recall the Gauss equation:

R(Xa Y, Z: W) = R(X7Ya Z7 W) +g(h’(X7 Z)ah*(Y7 W))
_g(h*(Xv W)ah(Y7 Z))
By setting X = Z = e;andY = W =e;,t,5 = 1,...,n and summing over 1 < ¢, j < n, then we have

(n 1)6_27__" g(H H + § : g(h*(em ]) h( €y ]))
where H and H* are the mean curvature vector fields deflned by (2.174) and (2.175).
From this, we get

n(n— 1)0—27'——[(H—|—H* H+H*)—g(H,H)—g(H*,H")]

+3 Z g(h ez7ej)+h(ezae]) h*(ei7ej)+h(ei’ej))

_g(h(ezv ]) h(eia ej)) - g(h*(eia ej)’ h*(eia ej))]'
From 2H® = H + H* it follows that
2 2
n(n—1)c = 27—2ng(H°, H®) + % g(H, H) + 5 g(H*,H*) (2.185)

2 a0ene) Ko ene) — (1A + 11°]7).

On the other hand we can write

k 2
2 (e 2 o le% 2 o
e =3, fonr o eng 2 )0 ()
k
N Za:l Z2<i7éj<n hiihgs
:;Z {(h?1+h§2+ 4+ he )2+ (RS — RSy — ... — RS, 2}
apo 2 2
+2 Za IZI<1<]<TL U Za 1 Z2<z;&j<n huh]] = Tl HH”
Za 122<1#]<n[ Zh%— a ]

We similarly derive




k
2.186)
()2 1.2 *||2 _ xap*a _ (pra)2 (
[h*]]" > o | H| § :a:1§ :2<#].<n[hn‘ hjj (hij ]

Thus we have the following inequality:

k
2 2 2 2
B2 + IR0 = A2 B+ Sn2 B - Y ) :Wm hg + i) (hgy 4+ b)) (2187)

k k
a1 ko a2 *a) 2
+2 Za:l Zzgiyéjgn "hJJ + Zazl Zzgiyéjgn[(hij) + (hij ]

Substituting (2.187) into (2.185), we obtain
n(n—1)c < 2r—2n2§(H, H®) + 2 §(H, H) + "72~(H* H*) + 2||h°|2

O, 0 n? ~ " E § : oo
+2Za 1 ZK%#KH ” B TQ(H’ H) = g(H", H") - a=1 2<i#j<n hii ]J
_1 *a) 2
2 Za 1 ZZ<@;E]<n ( (hij) ]

Since

apxa a1, *ka
22<l7‘5]<n (61,6],61,67) - (n 1 TL 2 C+ Z a=1 ZZ<1#]<n ” -7] h”h”)

the previous inequality becomes
n(n—1)c < 2r—2n2§(H®, H®) + X §(H,H) + 2 §(H*, H*) + 2 || |n°||?

+2 Za 1 ZQ<176]<7’L ?f 3]0‘ - Z2§i7§j§n R(ei’ €js> €i, e]) + (n_l)(n_2)c
1 a *a) 2
2 Za:l Z2Si#j§n (hij T hz’j )"

Then we get
Ric(X) > n?g(H®, H) — %-g(H,H) + £ g(H*,H*) + (n—1)c (2.188)

02 Oa j, 0 0a)2
_||h || Za 1Z2<z7é]<n[ h - h] ]

By the Gauss equation with respect to the Levi-Civita connection, we have

me Ro(ei,ej,ei,e5) = 270 — n2g(HO, HO) + |02,

and, respectively,

g ROe;, eq eie; zg RO(e;,eq e e;
2<iAi<n (ei, ej, i) 2<i;éj<n (ei, €5 i)

E E Oa Oa (hOa) ]
a=1 2<17é_7<n ’
Substituting in (2.188) it follows that

Ric(X) > 270 — E Lizien R'(ei,ej, eirej) — %-G(H, H) — =-g(H*, H*)

+(n—1)c — g 29#@1%0(61-,6]-,6,-,6]-)—4— g 2Si#§nR0(ei,ej,ei,ej).

Finally we obtain
n
: : 2 2 * * 72
Ric(X) > 2Ric*(X) — Z-§(H,H) — L§(H*,H*) + (n—1)c—2 g KU (X Ae).
We denote by max K °(X A -) the maximum of the sectional curvature function of M (c) with respect to

V restricted to 2-plane sections of the tangent space T, M which are tangent to X.
Summing up, we can state the following Chen-Ricci inequality:



Theorem 2.102 ([7]) Let M be an n-dimensional statistical submanifold of an(n + k)-dimensional
statistical manifold M (c).For eachX € T,(M)unit, we have

Ric(X) > 2Ric’(X) — Y g(H, H) — ~ §(H*,H*)
+(n—1)c—2(n—1) max K°(X A -).

Particular Case M is a minimal submanifold. Because H® = 0, we have H + H* = 0. Then the previous
inequality implies the following:

Corollary 2.103 ([Z]) Let M be a minimal n-dimensional statistical submanifold of an(n + k)-dimensional
statistical manifold M (c).For eachX € T,(M)unit, we have

Ric(X) > 2Ric"(X) + 2 §(H, H*) + (n—1)c—2(n—1) max K°(X A -).
Remark Similar inequalities can be stated for the Ricci curvature Ric*.

In 2017, in [8], we proved the generalized Wintgen inequality for statistical submanifolds in statistical
manifolds of constants curvature. The Wintgen inequality is a sharp geometric inequality for surfaces in the
four-dimensional Euclidean space involving the Gauss curvature (intrinsic invariant) and the normal
curvature and squared mean curvature (extrinsic invariants), respectively.

Recall that De Smet, Dillen, Verstraelen, and Vrancken [54] conjectured a generalized Wintgen inequality
for submanifolds of arbitrary dimension and codimension in Riemannian space forms. This conjecture was
proved by Lu [72] and by Ge and Tang [60], independently.

For surfaces M? of the Euclidean space [E3, the Euler inequality G <|| H ||? is fulfilled, where G is the
(intrinsic) Gauss curvature of M2 and || H ||? is the (extrinsic) squared mean curvature of M 2.

Furthermore, G =|| H ||? everywhere on M? if and only if M? is totally umbilical, or still, by a theorem
of Meusnier, if and only if M2 is (a part of) a plane E? or, it is (a part of) a round sphere S? in E3.

In 1979, P. Wintgen [120] proved that the Gauss curvature G, the squared mean curvature || H
normal curvature G of any surface M? in E* always satisfy the inequality

G < |H|* - |G");
the equality holds if and only if the ellipse of curvature of M2 in E* is a circle.
The Whitney 2-sphere satisfies the equality case of the Wintgen inequality identically.
A survey containing recent results on surfaces satisfying identically the equality case of Wintgen
inequality can be read in [41].
Later, the Wintgen inequality was extended by B. Rouxel [110] and by I.V. Guadalupe and L. Rodriguez
[63] independently, for surfaces M ? of arbitrary codimension m in real space forms M2+m(c), namely

G < |H|? - |G| +e.

2, and the

The equality case was also investigated.

A corresponding inequality for totally real surfaces in n-dimensional complex space forms was obtained
in [74]. The equality case was studied, and a nontrivial example of a totally real surface satisfying the
equality case identically was given.

In 1999, PJ. De Smet, F. Dillen, L. Verstraelen, and L. Vrancken [54] formulated the conjecture on Wintgen
inequality for submanifolds of real space forms, which is also known as the DDVV conjecture.

This conjecture was proven by the authors for submanifolds M ™ of arbitrary dimension n > 2 and
codimension 2 in real space forms ]T/f"”(c) of constant sectional curvature c. The DDVV conjecture was
finally settled for the general case by Z. Lu [72] and independently by ]J. Ge and Z. Tang [60].

Generalized Wintgen inequalities for Lagrangian submanifolds in complex space forms [96] and
Legendrian submanifolds in Sasakian space forms [97] were obtained, respectively. Moreover, in [5] a
version of the Euler inequality and the Wintgen inequality for statistical surfaces in statistical manifolds of
constant curvature was stated.

By using the sectional curvature K on M " defined in [5] and also in [105]:

K(XAY) = 3[9(R(X,Y)X,Y) + g(R*(X,Y)X,Y)],



for any orthonormal vectors X,Y € T, M",p € M", we derive a generalized Wintgen inequality for
statistical submanifolds in statistical manifolds of constant curvature:

Theorem 2.104 ([8]) LetM ™be a submanifold in a statistical manifold (M"*m, c) of constant curvaturec.
Then
2 2
pt+3p < B|H|* + L H*|* + 129(H, H*)—3c + 30(7° — p°).

3 Warped Product Submanifolds

We recall the results obtained in [75-77] on warped product submanifolds in complex space forms,
generalized complex space forms, and quaternion space forms, respectively.

B.Y. Chen [37] established a sharp inequality for the warping function of a warped product submanifold
in a Riemannian space form in terms of the squared mean curvature. In [36], he studied warped product
submanifolds in complex hyperbolic spaces.

The notion of warped product plays some important role in Differential Geometry and physics [35]. For
instance, the best relativistic model of the Schwarzschild space-time that describes the out space around a
massive star or a black hole is given as a warped product.

One of the fundamental problems in the theory of submanifolds is the immersibility (or non-
immersibility) of a Riemannian manifold in a Euclidean space (or, more generally, in a space form).
According to a well-known theorem on Nash, every Riemannian manifold can be isometrically immersed in
some Euclidean spaces with sufficiently high codimension.

Nash’s theorem implies, in particular, that every warped product My x y M5 can be immersed as a
Riemannian submanifold in some Euclidean space. Moreover, many important submanifolds in real and
complex space forms are expressed as a warped product submanifold.

Every Riemannian manifold of constant curvature c can be locally expressed as a warped product whose
warping function satisfies A f = cf. For example, S™(1) is locally isometric to (0, 7) X cost S™ (1), E™ is
locally isometric to (0, 00) X, S 1(1),and H"(—1) is locally isometric to R x .. E"~! (see [35]).

Let (M1, g1) and (M3, g2) be two Riemannian manifolds and fa positive differentiable function on Mj.
The warped product of M7 and M3 is the Riemannian manifold

M1 Xf M2 = (M1 X Mz,g),
where g = g1 + f2gs (see, for instance, [37]).

Letx : My x ¢ My — M (c) be an isometric immersion of a warped product M; x # M, into a complex
space form M(c) We denote by h the second fundamental form of x and H; = n%trace h;, where trace h; is
the trace of h restricted to M; and n; =dim M,(i = 1, 2).

Recall that for a warped product M; x y Ms, we denote by &, and 2, the distributions given by the

vectors tangent to leaves and fibers, respectively. Thus, 2 is obtained from the tangent vectors of M; via
the horizontal lift and 2 by tangent vectors of M via the vertical lift.

In [75] we established an inequality between the warping function f (intrinsic structure) and the squared
mean curvature || H ||? and the holomorphic sectional curvature ¢ (extrinsic structures) for warped product
submanifolds M; x y M, with J2, L 9, (in particular, CR-warped product submanifolds and CR-
Riemannian products) in any complex space form M(c) Examples of such submanifolds which satisfy the
equality case are given.

Recall that a submanifold N in a Kaehler manifold M is called a CR-submanifold (see [83]) if there exists
on N a holomorphic distribution 2 whose orthogonal complementary distribution 2 is a totally real
distribution, i.e., J@j C TpJ‘N. A CR-submanifold of a Kaehler manifold M is called a CR- product ifitis a
Riemannian product of a Kaehler submanifold and a totally real submanifold. There do not exist warped
product CR-submanifolds of the form M x ; M+, with M, a totally real submanifold and M+ a complex

submanifold, other than CR-products. A CR-warped product is a warped product CR-submanifold of the form
M+ x; M, by reversing the two factors [33].

As applications we will give some non-immersions theorems.



Theorem 3.1 ([75]) Letx : My x; My — M(c)be an isometric immersion of an n-dimensional warped

product withJ 9, 1. Dsinto a 2m-dimensional complex spaceformﬂ(c). Then,

A
< HI?+ms, (3.1)

wheren; =dim M;, 1 = 1, 2, andAis the Laplacian operator of M. Moreover, the equality case of holds
identically if and only if x is a mixed totally geodesic immersion andniH, = noHy, whereH;,i = 1, 2,are the
partial mean curvature vectors.

Proof Let My Xy M5 be a warped product submanifold into a complex space form M(c) of constant
holomorphic sectional curvature c.
Since M x y M> is a warped product, it is known that
VxZ =VzX = +(Xf)Z, (3.2)
for any vector fields X, Z tangent to M7, Ms, respectively.
If X and Z are unit vector fields, it follows that the sectional curvature K (X A Z) of the plane section
spanned by X and Z is given by
K(X/\Z) —g(VZVXX VxVzX, Z) f{(VXX)f X2f} (3.3)
We choose a local orthonormal frame {ey, ..., €,,€,.1,...,€2,}, such thatey,...,e,, aretangentto
M, en 41, - - ., ey, are tangent to My, and e, is parallel to the mean curvature vector H.
Then, using (3.3), we get

n

A
F =2, Klejne), (34)

foreachs € {n1 +1,...,n}.
From the equation of Gauss, we have

n? || H[*=2r+ | h|* —n(n=1)§ -3 | P|? {. (3.5)
We set
§=27—-n(n-1)7-3 ||P||2f—”7 | H|?. (3.6)
Then, (3.5) can be written as
n? || H ||>=2(d+ || b [|?). (3.7)

With respect to the above orthonormal frame, (3.7) takes the following form:

n 2 n n
ntl) _ n+1)2 Z n+1 Z Z r\2
(Zz h” ) - 2{5 + Zi:l (h” ) + i#j (h” ) T r=n+2 1,j=1 (h” }

Ifweputa; = hi5 ! ae = Y1, b and a3 = > it hJ;"!, the above equation becomes

3 2 3 n
. — 2 71+1 T 2
(Zil al) 2{6 + Zi:l aj + Z1<i;éj<n U Zr n+2 Zi,jl (hw)
_ n+1 n+1 n+lzn+l
Z2§j;&k§nl hJJ h Zn1+1<s;ﬁt<n hes Py }

Thus a1, ay, as satisfy the lemma of Chen (for n = 3), i.e,,

(Zfl ) - 2(b+ > )

Then 2a;a, > b, with equality holding if and only if a; + a5 = as.
In the case under consideration, this means

n+1hn+1 E n+1hn+1 3.8
1<j<k<n; JJ + ni+1<s<t<n 85 ( )

n
n+1 r )2
+ Zl<a<5<n ( ) + Zr n+2 Za,ﬂ:l (haﬁ)

The equality holds if and only if
(3.9)



ni n
1 n+1
g Rt = g hy .
i w t=ni+1 t

=1

Using again the Gauss equation, we have
no AL e: Aep) — Kl(e. Ne 3.10
277 1<j<k<n, (e Mex) nit+l<s<t<n (es er) ( )
=7 LAY nl ( g E —3£ g 2(Jej, ex)
r=n+1 1<j<k<ny 7-7 kk 4 <]<k<n1 3> Ck
malms1)(e) E E — (R g 2(Jes, €r).
r=n+1 n1+1<s<t<n ss tt n1+1<s<t<n 8 &t
(3.11)

Combmlng (3.8) and (3.10) and taking account of (3.4), we obtam
A ~1
n27f <7-— M +ningt — -3¢ \<ihen, g*(Jej, er)
2
L (Pgg)

1 1
—37 E : 2(Jes,eq) — E W — % E E
4 n1+1<s<t§ng( s> €t) 1<j<n1;n1+1<t<n 2 r=n+2 a,f=1
2 2
h' )" — hT- g E h.)" — h’_hj
Zr n+2 Zl§j<k§n1(( Jk) k) + r=n+2 n1+1§s<t§n(( st) ss'btt
(n=1)(c) E E 2
ninNg~ — + — h"
e r=n+1 1§j§n1;n1+1§t§n( Jt)

— . nnm){e)
—-3< g 2(Jei e
4 1§j<k§n1‘q( Jj» €k)
ni 2m n 2
Zr:n+2 (Ztn1+1 tt)

2m 2
€s,€t) — 5 .| — =5
Zn1+1§s<t§n‘g ( 8 t) 2 r=n+2 j=1 3 2

-3¢
(n=1)(c) é
<7 SR e g — 3% E \<ickem g*(Jej, er)
c 2
_3z Zn1+1§s<t§n 9 (Jes’ et).
Since we assume that J2; | %, the last relation implies the inequality (3.1)
We see that the equality sign of (3.11) holds if and only if
R =0, 1<j<n;,m+1<t<nn+1<r<2m, (3.12)
(3.13)

and
ni n
[ —
g ilhii_ E t=n1+1htt_0’ n+2<r<2m.

Obviously (3.12) is equivalent to the mixed totally geodesics of the warped product My x y M (i.e
h(X,Z) =0, forany Xin 2 and Z in 95), and (3.9) and (3.13) imply n1 H; = naHo.
The converse statement is straightforward. O

Remark For ¢ < 0 the inequality is true, without the condition J2; 1 D- (see [36])

As applications, we derive certain obstructions to the existence of minimal warped product submanifolds in

complex hyperbolic spaces [36].
Letz : My x y My — M(c) be an isometric minimal immersion. Then the above theorem implies
A7 <nig.

f
Thus, if ¢ < 0, fcannot be a harmonic function or an eigenfunction of Laplacian with positive eigenvalue

One resumes this remark into the following
Proposition 3.2 ([36]) Iffis a harmonic function, thenM; X ; Madoes not admit any isometric minimal

immersion into a complex hyperbolic space.



Proposition 3.3 ([36]) Iffis an eigenfunction of Laplacian on Mywith corresponding eigenvalue\ > 0, then
M x y Modoes not admit any isometric minimal immersion into a complex hyperbolic space or a complex

Euclidean space.

Next, we will give some examples that satisfy the equality case of the inequality (3.1).
Recall that the Hopf submersion is the canonical projection of C**1 — {0} — P"(C), restricted to §2"+1

(where S?"™1 is regarded as the set {z € C™'; Z?ill 29|12 = 1}).

Example 3.4 Let us consider the following immersion: ¢ : M — S”, where
M= (—7/2,7/2) Xcost N2, with N2 a minimal C-totally real submanifold in S7, defined by

P(t,p) = (cos t)p + (sin t)v,
where v is a vector tangent to S, but normal to S°.
Letw: S7 — P3(C) be the Hopf submersion. Then o ¢ : M — P3(C) is a Lagrangian minimal

immersion which satisfies the equality case.

Example 3.5 Let : S™ — S?"! be an immersion defined by
P(xl,. .. 2" = (21,0,2%0,...,2"",0)
and 7 : $?2*1 — P"(C) the Hopf submersion.
Then o1 : S™ — P"(C) satisfies the equality case.

Example 3.6 On S™ "™ let us consider the spherical coordinates u1, . . . , U, 1n, and on S™ the function

f(u,...up,)) =cos uj ... cCOS Up,
(fis an eigenfunction of A).
Then S+ = §™ x ¢ §™,
Leti: §™M*m2 — §mitnatl he the standard immersion and 7 the Hopf submersion.
Then 7o : §™ 1" — P™Tm2(C) satisfies the equality case.

Moreover, the examples given by B.Y. Chen in [37] for ¢ = 0 in the real case are true in the complex case too,
forc = 0.

In [76] we established an inequality between the warping function f (intrinsic structure) and the squared
mean curvature || H H2 and the holomorphic sectional curvature c (extrinsic structures) for warped product

submanifolds M7 X ; M in any generalized complex space form M(c, Q).

We shall consider a class of almost Hermitian manifolds, called RK-manifolds, which contains nearly
Kaehler manifolds.

Definition ([117]) An RK-manifoId(M, J, g) is an almost Hermitian manifold for which the curvature
tensor R is invariant by J, ie.,

R(JX,JY,JZ,JW) = R(X,Y,Z,W),

forany X, Y, Z, W € T M.

An almost Hermitian manifold M is of pointwise constant type if for any p € Mand X € TI,M we have
AMX,Y) = A\(X, Z), where

AX,Y) = R(X,Y,JX,JY) - R(X,Y,X,Y),

and Y and Z are unit tangent vectors on M at p, orthogonal to X and JX, i.e., g(Z, Z) = g(Y,Y) = 1,
9(X,Y) = g(JX,Y) = g(X, Z) = g(J X, Z) = 0. ~

The manifold M is said to be of constant type if for any unit X,Y € I'T'M with
9(X,Y) =g¢(JX,Y) =0, A\(X,Y) is a constant function.

Recall the following result.



Theorem ([117]) LetMbe an RK-manifold. ThenMis of pointwise constant type if and only if there exists a
functionaonMsuch that

)‘(X’ Y) = Oé[g(X, X)g(Y, Y) - (g(X, Y))2 - (g(X, JY))2],

foranyX,)Y € I'T'M .Moreover,Mis of constant type if and only if the above equality holds good for a
constanto.

In this case, a is the constant type of M.

Definition A generalized complex space form is an RK -manifold of constant holomorphic sectional
curvature and of constant type.

We denote a generalized complex space form by 1\7(0, a) , where c is the constant holomorphic sectional

curvature and « the constant type, respectively.

Each complex space form is a generalized complex space form. The converse statement is not true. The
sphere S endowed with the standard nearly-Kaehler structure is an example of generalized complex space
form which is not a complex space form.

Let H(c, «) be a generalized complex space form of constant holomorphic sectional curvature ¢ and of
constant type cv. Then the curvature tensor R of M(c, a) has the following expression [117]:
R(X,Y)Z: %[Q(Yv Z)X_g(X7 Z)Y} (3-14)

calg(X,JZ)JY — g(Y,JZ)JX + 29(X, JY)J Z|.

Let M be an n-dimensional submanifold of a 2m-dimensional generalized complex space form M(c, a) of
constant holomorphic sectional curvature c and constant type «.. One denotes by K (7) the sectional
curvature of M associated with a plane section m C T, M, p € M, and V the Riemannian connection of M,
respectively. Also, let h be the second fundamental form and R the Riemann curvature tensor of M.

Lemma 3.7 ([7Z6]) Letx : My x; My — ]T/f(c, a)be an isometric immersion of an n-dimensional warped
product into a 2m-dimensionalgeneralized complex spaceformM(c, «). Then

Af 2 +3 2
7 < 4n2 | H ||? 4n <532 +3< o E . g nist<sen (Jei,es), (3.15)
wheren; =dim M;,1 =1, 2, andAls the Laplacian operator of M.

From the above lemma, it follows the theorem:

Theorem 3.8 ([76]) Letx : My x; My — 1\7(0, a)be an isometric immersion of an n-dimensional warped
product into a 2m-dimensional generalized complex space formM (c, o). Then:

()
Ifc < o, then A _
3
F < 4n2 | H ||? +nq <522 (3.16)
Moreover, the equality case of(3.16) holds identically lfand only if x is a mixed totally geodesic
immersion,ny Hy = nyHy, whereH;, i = 1, 2,are the partial mean curvature vectors andJ 9, | 9.
(ii)
Ifc = o, then A
3
Sl < 2| H |2 g i (3.17)

Moreover, the equality case of (3.17) holds identically lfand only if x is a mixed totally geodesic
immersion andni H, = nsHy, whereH;, 1 = 1, 2,are the partial mean curvature vectors.
(iii) Ifc > o, then
F < IH P 4mfe +352 | P2, (318)
Moreover, the equality case of (3.18) holds Identlcally if and only if x is a mixed totally geodesic
immersion,ny Hy = noHy, whereH;, i = 1, 2,are the partial mean curvature vectors and bothMiand
Mare totally real submanifolds.



Corollary 3.9 ([76]) Let M be an n-dimensional CR-warped product submanifold of a 2m-dimensional

generalized complex spaceformM(c, ). Then,
AF 2 3
F < | H P +ns2 (3.19)
Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion,
n1H, = noHy, whereH;, i = 1, 2,are the partial mean curvature vectors.

We derive the following nonexistence results.

Corollary 3.10 ([Z6]) LetM(c, a)be a generalized complex space form, Myann,-dimensional Riemannian
manifold, and f a differentiable function onMj. If there is a pointp € Mjsuch that(Af)(p) > nq %f(p),

then there does not exist any minimal CR-warped product submanifold My X ¢ MginM(c, Q).

Corollary 3.11 ([Z6]) LetM(c, a)be a generalized complex space form, withc > «, Myann,-dimensional
totally real submanifold ofM(c, ), and f a differentiable function onMy. If there is a pointp € Msuch that
(Af)(p) > n1<532 f(p), then there does not exist any totally real submanifoldMsinM (c, ot)such that

M x § Msis a minimal warped product submanifold inM (c, o).
In [77] we studied warped product submanifolds in quaternion space forms.

Definition Let M ™ be a 4m-dimensional Riemannian manifold with metric g. M™ is called a quaternion
Kaehlerian manifold if there exists a three-dimensional vector space E of tensors of type (1, 1) with local
basis of almost Hermitian structures ¢1, ¢9, and ¢3, such that:

Q]

192 = —P201 = ¢3,0203 = —P3d2 = P1,9301 = —P1¢3 = Po.
(ii) .
For any local cross-section ¢ of E and any vector X tangent to M, WV x¢ is also a cross-section in E

(where Y/ denotes the Riemannian connection in M), or, equivalently, there exist local 1-forms p, g, 7
such that

Vx¢1 = r(X)d2 — q(X)¢s,
Vxp2 = —r(X)¢1 + p(X) s,
Vx¢s = q(X)¢1 — p(X)gps.

If X is a unit vector in M, then X,¢1 X ,¢2X, and ¢3 X form an orthonormal set on M, and one denotes
by Q(X) the 4-plane spanned by them. For any orthonormal vectors X, Y on M, if Q(X) and Q(Y") are
orthogonal, the 2-plane 7(X,Y’) spanned by X, Y is called a totally real plane. Any 2-plane in Q(X) is called
a quaternionic plane. The sectional curvature of a quaternionic plane 7 is called a quaternionic sectional

curvature. A quaternion Kaehler manifold M is a quaternion space form if its quaternionic sectional
curvatures are constant.

It is well known that a quaternion Kaehlerian manifold Misa quaternion space form M(c) if and only if

its curvature tensor R has the following form (see [67]):
R(X,Y)Z = ¢{9(Y,2)X — g(X, Z2)Y (3.20)

+9(1Y, 2)p1 X — g(1 X, Z)p1Y + 29(X, :Y)$1 Z
+9(p2Y, Z)p2 X — g(h2X, Z)$p2Y + 29(X, p2Y )2 Z
+9(¢3Y, Z)p3 X — g(p3X, Z)p3Y + 29(X, ¢3Y) 32},

for vectors X,Y,Z tangent to M.

A submanifold M of a quaternion Kaehler manifold M is called quaternion (respectively, totally real)
submanifold if each tangent space of M is carried into itself (respectively, the normal space) by each section
in E.



The curvature tensor R of M is related to the curvature tensor R of M by the Gauss equation

R(X,Y,Z,W)=R(X,Y,Z,W)

where h is the second fundamental form of M.

Definition ([10]) A submanifold M of a quaternion Kaehler manifold M is called a quaternion CR-
submanifold if there exist two orthogonal complementary distributions D and D such that D is invariant
under quaternion structures, that is, ¢;(D,) C D,,i = 1,2,3,Vz € M, and D" is totally real, that is,
¢i(DE) CT+M,i=1,2,3,Vz € M.

A submanifold M of a quaternion Kaehler manifold Misa quaternion submanifold (resp. totally real
submanifold) if dim D+ = 0 (respectively, dim D = 0).
In this context, the following results were proved.

Lemma 3.12 ([77]) Letxr : My x s My — M(c)be an isometric immersion of an n-dimensional warped
product into a 4m-dimensional quaternion spaceformﬂ(c). Then

3 n n
A 2
n27f < I H |2 +nane g + 34 : :azl Zi:1 an1+1g2(¢aei’es)'

Theorem 3.13 ([77]) Letx : My x 7 My — M(c)be an isometric immersion of an n-dimensional warped

product into a 4m-dimensional quaternion spaceformM(c)withc < 0. Then

A 2
A< 2 H|? +m .

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion,
ni1Hy = noHyandpr Dy L. Do, for anyk = 1,2, 3.

As applications, one derives certain obstructions to the existence of minimal warped product submanifolds
in quaternion hyperbolic space.

Corollary 3.14 ([7Z7]) Iffis a harmonic function onM, then the warped productM, x y Madoes not admit
any isometric minimal immersion into a quaternion hyperbolic space.

Corollary 3.15 ([Z7]) There do not exist minimal warped product submanifolds in a quaternion hyperbolic
space withMjcompact.

Theorem 3.16 ([77]) Letx : My X My — M(c)be an isometric immersion of an n-dimensional warped
product into a 4m-dimensional flat quaternion space form. Then

A 2
F<a =2

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion and
anl = n2H2.

Corollary 3.17 ([Z7]) Iffis an eigenfunction of Laplacian onM;with corresponding eigenvalue\ > 0, then
the warped productMy x y Madoes not admit any isometric minimal immersion into a quaternion hyperbolic

space or a quaternion Euclidean space.
A warped product is said to be proper if the warping function is nonconstant.

Corollary 3.18 ([7Z7]) There does not exist minimal proper warped product submanifold in the quaternion
Euclidean spaceQ™withMcompact.

Theorem 3.19 ([77]) Letx : My x; Mo — M(c)be an isometric immersion of an n-dimensional warped
product into a 4m-dimensional quaternion space form M (c)withc > 0. Then



< E NH P +mg +35 min {21},

Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion,
n1Hy = nogHyandpr 21 1. Do, for anyk = 1,2, 3.

Also, Lemma 3.12 implies another inequality for certain submanifolds (in particular quaternion CR-
submanifolds) in quaternion space forms with ¢ > 0.

Theorem 3.20 ([77]) Letx : My x5 My — M (c)be an isometric immersion of an n-dimensional warped
product into a 4m-dimensional quaternion space form M (c)withc > 0, such thatpr D1 L Do, for any
k=1,2,3. Then

A 2

< I H [ g

4n2
Moreover, the equality case holds identically if and only if x is a mixed totally geodesic immersion and
n1H1 = n2H2.

Next, we will give some examples which satisfy identically the equality case of the inequality given in
Theorem 3.20.

Example 3.21 Let : S® — S§%*3 be an immersion defined by

Y(z!,...,2""1) = (21,0,0,0,2%0,0,0,...,2"",0,0,0),
and 7 : "3 — P"(Q) the Hopf submersion.
Then o) : S™ — P"(Q) satisfies the equality case.

Example 3.22 On S™ " ]et us consider the spherical coordinates uy, . . ., u,, ,, and on S™ the function

flui, ... up, ) =COS Uj ... COS Up,
(fis an eigenfunction of A).
Then §™ %72 = §™ x ; 8™,
Lettp : S™tm2 —5 §4(m+72)+3 e the above standard immersion and 7 the Hopf submersion
7 S4nitng)+3 Pn1+ﬂ2(Q)_
Then 7o) : S — P™MT™(Q) satisfies the equality case.

For a comprehensive study on the differential geometry of warped product manifolds and submanifolds see
the book by B.Y. Chen [42].

4 Curvature Symmetries Characterizing Einstein Spaces
We recall the well-known definition of an Einstein space:

A Riemannian manifold (M, g) of dimension n > 3 is called an Einstein space if Zic = X - id, where
trivially A = k; in this case one easily proves that A = k = const.

We recall the fact that any two-dimensional Riemannian n-manifold satisfies the relation Zic = X - id,
but for n = 2 the function A = & is not necessarily a constant. It is well known that any three-dimensional
Einstein space is of constant curvature. Thus the interest in Einstein spaces starts with dimension n = 4.

We give three concrete examples of Einstein spaces:

Example 4.1 Any Riemannian space form of arbitrary dimension n > 2 is an Einstein manifold. In
particular, certain warped product manifolds are

(_%7%) X cosz Sn_la c=1,
(0,00) x, S"1, ¢ =0,
Rxem Enil, C:—]..



Example 4.2 The Schwarzschild space-time is an example of Einstein manifold (Zic = 0), which has no
constant sectional curvature.

Example 4.3 Let le(a), N7 (b) (k,p > 2) be Riemannian space forms;

M = N[(a) x NJ(b)
and {ej, ..., €k, €1, ., €k p} orthonormal frame on M, such thatey, . . ., ej, tangent to N(a),
€k+1s-- -, €kiptangentto Ny (b). Then Vi = 1,... k, Ric(e;) = (k—1)a;Vj=1,...,p,
Ric(er+j) = (p—1)b. Then M is Einstein space if and only if (k—1)a = (p—1)b.
In particular:

e a = 0 < b = 0trivial (Euclidean space, of null sectional curvature).
e k= p < a = b (Einstein space of even dimension and nonconstant sectional curvature).
ca#0=0b= ’;%}a; remark ab > 0 (Einstein space of arbitrary dimension and nonconstant sectional

curvature).

In their famous paper [113] Singer and Thorpe considered four-dimensional Einstein spaces and started the
study of two interesting topics, more precisely:
U . . " . . . N
The irreducible decomposition of the Riemannian (0, 4) curvature tensor; this study initialized
generalizations first to algebraic curvature tensors, see [12], and later to other types of curvature
tensors, see, e.g,, [16] and [61].
(i)
Symmetry properties of certain curvature functions
Here we are interested in the second topic (ii). We recall the result of Singer and Thorpe. For span(e;, e;)
the orthogonal complement span(e;, ej)L is well defined; for simplicity we denote its sectional curvature by
L
Kij-
Singer and Thorpe proved the following:

Theorem ([113]) Let(M, g)be a Riemannian manifold of dimensionn. = 4.Then the following assertions are
equivalent:
() AR
(M, g)is an Einstein space.
(i)
At any pointp € Mand for every 2-planespan{e;, e;} C T,,M,wherei,j € {1,2,3,4}andi # j, we have
the following equality of sectional curvatures:

T
Kij = Kij-

The result of Singer and Thorpe was generalized to even-dimensional Riemannian manifolds in [44]. For a
precise formulation we adopt some notational conventions from [44].

Let (M, g) be as before, and consider a k-dimensional subspace L C T),M for k > 1.Let {ey,...,e;} be
an orthonormal basis of L. Define

(L) = Zl§a<ﬁ§k k(ea N eg);

in analogy to the above notation we write

Kap = K(eq A eg).
271,(L) is called the scalark-curvature of the subspace L. For k = n we get the scalar curvature of (M, g)
atp:
2m,(L) = R,
while for k = 2 the expression 73 (L) gives the sectional curvature of the plane L = span(eq, eg) C T,(M).
The authors of [44] proved the following:



Theorem ([44]) Letdim M = n = 2kfork > 2. Then the following statements are equivalent:

» (M, g)is an Einstein space.
s For anyp € Mand any subspaceL, C T,Mwithdim(L) = k = dim(L*)andL & L+ = T, M, we have

Tr(L) = T(L1).

It is well known that three-dimensional Einstein spaces are of constant sectional curvature (see [12]). Thus
we consider arbitrary dimensions n > 4.
Our main Theorem 4.4 generalizes the results cited above, being valid in any dimension.

Notations

Let (V, g) be a Euclidean vector space of dimension n > 4 with inner productg. Let L C V be a
subspace of dimension r, where 2 < r = dim L < n—2, and consider the orthogonal decomposition
LeL-=V,
with2 < s =dim L+ < n—2,thusr + s = n.
(i)
Additionally we introduce the following notation:
Set N={1,...,n},andlet 0: N — N with {1,...,n} > {i1,...,%,} be a permutation. We
consider a disjoint decomposition
N=NJUN/?
with N7 = {i1,...,6,}and N7 := {ips1, ..., Grss}-
(iii)
On a Riemannian manifold (M, g) with p € M consider an r-dimensional subspace L C T, M with
orthonormal basis {e;,, . .., €; }; we extend it to an orthonormal basis {e;,, ..., i, €i,.,,...,€;,} of
T,M; thus {e;,.,,...,e;, } is an orthonormal basis of the subspace L+ C T}, M. From the foregoing
sections, the curvature invariants

2r(L) = g - and 27(L*) = g -

are well defined.
Calculations To relate the scalar curvatures of subspaces we add up the Ricci curvatures:

ZpeNrﬂ pp ZpeN;f ZieN por
= Rpi-.
ZpeNsﬂ pp ZPENS” ZieN n
We have

- = Kpi + E g Kpi — g g Kopi
ZpeN,ﬁ’ Pp ZpeNg Pp Zpezvf ZieN,ﬁ’ m peEN? ieNe P peEN? ieNe P
E E - _ ).
_ Jene N Kpi = 2(TT(L) Ts(L )),

to prove the last equality we interchanged some subindices and used the symmetry £, = Kip.

Theorem 4.4 ([92]) Let(M, g)be a Riemannian manifold of dimension n. Using the notations of the
foregoing subsections, we have equivalence of the following two conditions:
U] AR

(M, g)is an Einstein space.

(I) Letr,s € Nsatisfy the relationsr + s = nand2 < r, s < n—2. For anyp € Mthere exists a realc = ¢y,
independent of , such that for any subspaceL C T, Mof dimension r we have



(r = s)ep = 2(7+(L) — 7a(L)).

Proof For an Einstein space all Ricci curvatures have the same value p; = %R, where as before R denotes
the scalar curvature of (M, g). Then ¢, = L+ R, and the preceding calculation shows that (I) implies (II).
Vice versa, for fixed r consider two r-dimensional subspaces
L = span{ey,ey,...,e,} and M = span{e,.1,e2,...,e,}
having the (r—1)-dimensional intersection span{es, . . ., e, }; together with their orthogonal complements
both satisfy (II), respectively. The above calculation gives

(r—s)ep, = (Pl + E :2’...” Pp) - (Pr+1 + Zr+2,...,n pp>,
(r—s)cp = (pT+1 + Zm.wrpp) B (pl + Zrﬁwmpp).

A comparison of both equations gives p; = p,., 1. Analogously we have p; = p,,; thus also
Pr+1 = P1 = pr+2. In the same way we prove that all Ricci curvatures coincide at p, and as p is arbitrary,
(M, g) is Einstein.

and

Remark 4.5 Ifn = 2r = 2s, we get the even-dimensional result from [44]; in the case r = s = 2 we get
the result of Singer and Thorpe.

Remark 4.6
U : . : . .
Recall the fact that, for any Riemannian manifold, the sectional curvature function atp € M
determines the Riemannian curvature tensor at p (see [68], p.198, Proposition 1.2).
ii
) From the preceding Theorem 4.4, for an Einstein space, at any p € M, the scalar (n—2)-curvatures
Tn—2(TpM) and the scalar curvature R = 7, (T, M) together determine the scalar 2-curvatures

T9(Tp M), which means the sectional curvatures at p.

(1) and (ii) together imply the following:

Corollary ([92]) Let(M, g)be an Einstein space of dimensionn > 5.At anyp € M, the scalar (n—2)-
curvatures T,_o(T,M) together with the scalar curvatureR = 7, (T, M )determine the Riemannian
curvature tensor.

Remark 4.7 Let (M, g) be an Einstein space of dimension n = 4. Following the result of Singer and
Thorpe, atany p € M we have six sectional curvatures, which means three pairs as x;; = niij; as three
representatives of the three pairs we can fix an arbitrary index ¢ € {1, 2, 3,4} and consider the three
sectional curvatures k;;, where ¢ # j € {1,2, 3,4}. Thus, for arbitrary ¢ € {1, 2, 3,4}, these three
representatives determine the Riemannian curvature tensor atp € M.

For n = 4 this fact suggests the following procedure:

Choose ¢ = 1 for a curve starting at p with e; as prescribed tangent vector at p. By a parallel
displacement a frame {ej, . . ., €4} moves from p along the curve. The sectional curvatures 1, for j = 2, 3,4
together determine the curvature tensor along the curve.

5 Short Review of the Chapter

Beside the classical Riemannian invariants, as sectional, scalar and Ricci curvatures, a crucial role in this
topic is played by Chen invariants and, of course, by Chen-type inequalities involving them.

The definition of Chen invariants given by Professor B.Y. Chen and their study represented a huge
contribution in Submanifold Theory, opened many interesting directions and new geometrical
interpretations. The author is very indebted to Professor B.Y. Chen for the impact of his work in her research
and for the opportunity to collaborate.



This chapter represents a collection of results from the author’s papers on this topic; remark that the
proofs are given in detail, so the reader can follow the techniques. Results from this chapter were included in
the author’s Habilitation Thesis, which has not been published anywhere.

In the first section the basics of submanifolds in complex space forms and Sasakian space forms are
recalled. We then started to present Chen-type inequalities for different submanifolds in complex and
Sasakian space forms.

In the second section, we first stated the most important Chen inequalities in real space forms. We gave a
general construction method for purely real submanifolds and presented the geometric inequalities for
purely submanifolds in complex space forms. We obtained an improved Chen-Ricci inequality for Kaehlerian
slant submanifolds in complex space forms. Works on DDVV conjecture are also presented. Next subsection
contains results on submanifolds in Sasakian manifolds. We proved first Chen inequality for contact slant
submanifolds in Sasakian space forms. We defined Chen-type Sasakian invariants, obtained sharp
inequalities for these invariants, and derived characterizations of the equality case in terms of the shape
operator. We generalized a result of Chen and obtained a Chen-Ricci inequality for purely real submanifolds
with T parallel with respect to the Levi-Civita connection. The third subsection presented the results
obtained for submanifolds with semi-symmetric metric (respectively, nonmetric) connections. Subsection
2.4 dealt with statistical submanifolds, and their behavior in statistical manifolds of constant curvature is
studied.

Section 3 presented results on warped product submanifolds in complex space form, generalized
complex space forms, and quaternion space forms.

In Sect. 4 we gave a new characterization of Einstein spaces by using their curvatures symmetries.

Proofs were written explicitly. We would like to point out that, even the technique seems similar, each
case has its particularity and geometrical meaning, and for this reason we gave significant proofs to almost
each situation.

We intended to organize this contribution as a monograph, and, having a lot of complete proofs and
examples, we hope it will be useful for the researchers in Submanifold Theory.
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Abstract

This chapter explores Chen-Ricci inequalities for submanifolds of Kenmotsu space
forms endowed with a ¢ — n-connection, a special type of quarter-symmetric metric
connection. The geometric background of Kenmotsu space forms and the properties
of the ¢ — n-connection are briefly introduced, followed by the derivation of relevant
curvature relations. The study proceeds by examining submanifolds within this
framework, focusing on the behavior of curvature tensors and associated Riemannian
invariants. Using the properties of the ambient space and the chosen connection,
several inequalities involving Chen invariants and Ricci curvatures are obtained.

Keywords Chen inequality - Ricci inequality - Kenmotsu manifold - ¢-7-connection

1 Introduction

Structures on manifolds have become a central topic of interest among differential
geometers in recent years. These structures are typically defined on Riemannian or,
more generally, semi-Riemannian manifolds. When associated with a metric, a
structure on a manifold imparts significant geometric properties to the space. The
most fundamental of these is the complex structure. A complex structure is an
endomorphism of the tangent bundle, represented by a (1, 1)-tensor field J. A
manifold endowed with such a structure is called an almost complex manifold. In
contrast, a manifold that is locally homeomorphic to complex Euclidean space is called
a complex manifold. An almost complex manifold becomes a complex manifold when
the complex structure J is integrable, a condition characterized by a specific tensorial
relation. This framework for defining complex structures has been widely adopted in
the development of various geometric structures on manifolds.
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A contact structure on a manifold is a significant geometric framework defined by
a contact form. In the 1960s, the tensorial perspective on contact manifolds greatly
expanded the field and sparked extensive research activity. One of the most influential
contributions came from Sasaki, who introduced the notion of normality by
establishing the integrability conditions for a contact structure on a Riemannian
manifold. Contact manifolds satisfying these conditions are known as Sasakian
manifolds, which are often considered the one-dimensional analogs of Kahler
manifolds. Following these developments, substantial efforts have been made to
classify contact manifolds. In particular, Kenmotsu [20] introduced a new class of
contact manifolds that are normal but not Sasakian—now known as Kenmotsu
manifolds. This class exhibits a rich and distinctive geometry. A notable contribution
to the study of these manifolds is the comprehensive monograph by Pitis [26], which
explores the geometry of Kenmotsu manifolds in depth.

Even though a manifold may be locally similar to Euclidean space, determining
whether it possesses a specific global structure remains a fundamental question in
differential geometry. One of the most powerful tools for investigating the global
geometry of a manifold is its curvature and associated curvature invariants. Certain
manifolds exhibit specific types of curvature that facilitate their classification. Such
manifolds are known as space forms. A Riemannian manifold is considered a space
form if it has constant sectional curvature. If a manifold is equipped with a complex
structure and has constant holomorphic sectional curvature with respect to that
structure, it is referred to as a complex space form. In contrast, a Kenmotsu space
form is a Kenmotsu manifold with constant ¢-sectional curvature, which is
intrinsically linked to its underlying contact structure.

Riemannian curvature invariants, described by Chen as the “DNA” of Riemannian
manifolds [13], are intrinsic quantities that fundamentally influence the geometry and
behavior of manifolds. These invariants establish deep connections between intrinsic
properties—such as scalar curvature—and extrinsic measures, such as mean
curvature. These relationships lead to sharp inequalities and significant insights in
areas like minimal immersions, rigidity theorems, and eigenvalue estimates. Their
applications extend across both mathematics and physics, serving as powerful tools
for analyzing the geometric and physical structures of various spaces.

In submanifold theory, a fundamental question is “what are the simple
relationships between the main extrinsic and intrinsic invariants of a submanifold?” To
address this problem, Chen [10] introduced a novel Riemannian invariant, defined as
0(2) = 7— inf K, where 7 denotes the scalar curvature and K represents the sectional

curvature. Using this invariant, Chen established the following inequality for
submanifolds in a real space form R™(c) with constant sectional curvature c:

5(2) < "T—z{;j | H || +(n + 1)c}, n =dim M > 3, (1.1)

where || H ||? is the squared mean curvature of the submanifold M. This inequality,
known as Chen’s first inequality, has inspired extensive research across various
geometric structures. A comprehensive review on Chen inequalities has been
conducted by Chen and Vilcu [15]. If equality holds in (1.1), the submanifold is called a



d(2)-ideal submanifold [15]. An important classification theorem for such
submanifolds is given below:

Theorem 1.1 ([10]) Let M be an n-dimensional minimal submanifold ofR™. Then M
is6(2)-ideal if and only if, locally, M is one of the following:

1.
A totally geodesic submanifold of[E™

A spherical cylinderR x S™1(c)

A direct product of a Euclidean k-spaceE‘and a Riemannian(n — £)-manifold P"~*
satisfyingd(2) = 0, such thatM = E* x P"~* C E™is minimally immersed as a
direct product submanifold.

Furthermore, in [11, 12], Chen proposed another approach for n-dimensional
submanifolds within a real space form R™(c), leading to the following inequality:
Ric(X) < % || H > +(n—1)c, n>2, (1.2)
where Ric(X) denotes the Ricci curvature along a unit vector X € T'M. This
result, now known as the Chen-Ricci inequality, has been widely studied and applied
in differential geometry.

In Riemannian geometry, the Levi-Civita connection is a derivative operator
associated with the metric that enables calculus on manifolds. It is a torsion-free and
metric-compatible connection. Beyond the Levi-Civita connection, there exist various
connections that, although lacking its symmetric and metric properties, yield

significant geometric results. On a Riemannian manifold M, such a general connection
2 is defined by

9V1V2 = VV1V2 + Y(Vl, Vg),
for all vector fields V1, Vo € I'(T' M), where V is the Levi-Civita connection and  is a
(1, 2)-type tensor field. Depending on the specific properties of 2, it is classified into
various types, such as semi-symmetric metric, semi-symmetric nonmetric, semi-
symmetric quarter-metric, etc. A generalization of these connections was provided in
[31]. Several authors have explored the theory and applications of different

introduced the ¢ — n-connection, a special type of connection, and applied it to
Kenmotsu manifolds.

In this study, Chen-Ricci inequalities for submanifolds of a Kenmotsu space form
are examined using the ¢ — n-connection. In the second section of the study, the
definition and properties of Kenmotsu space forms are provided, and the curvature
properties associated with the ¢ — n-connection are examined, resulting in various
equations. The third section contains general information about submanifolds and
discusses the curvature properties and Riemannian invariants of submanifolds in



Kenmotsu space forms equipped with the ¢ — n-connection. Finally, the last section
presents results concerning Chen-Ricci inequalities for submanifolds of Kenmotsu
space forms admitting the ¢ — n-connection.

2 Kenmotsu Space Forms

In this section, the concept of Kenmotsu space forms are introduced, and the ¢-n
connection on these structures is examined.

An almost contact structure on a (2m + 1)-dimensional Riemann manifold M is a
triple (¢, n, ) such that

$=-I+n®E, B
where ¢ is a (1, 1)-type tensor field, £ is a vector field, and 7 is a 1-form on M. A
Riemannian metric related with structure (¢, n, §) is given by

g(#Vi, 8V2) = g(Vi, Va) — n(Vin(Va),  m(Va) = g(V1, ), B
for any vector fields V1, Va € T'(T'M ), where I'(T'M) is the vector field space of M.
On an almost contact metric manifold (M, ¢, 7, &, g) we have the following relations:

An almost contact metric manifold recalls as normal if ¢ is integrable, i.e.,

N, (V1,Va) = [oV1, pVa] — @leVi, Va] — @[V1, oVa] + ¢*[V1, V2] = 0, for all

V1, Vs € T'(TM). A Kenmotsu manifold is a class of almost contact metric manifolds
which is normal and

dw=2wAn, dn=20,
where w(V7, V5) = g(¢V7, V3) recall as the fundamental 2-form of the contact

structure and dn is differential of 7. The following theorem states when an almost
contact metric manifold is Kenmotsu.

Theorem 2.1 An almost contact metric manifold( M, ¢,m, &, g)is a Kenmotsu

manifold if and only if
(Vii@)Ve = —g(V1, ¢V2)¢ — n(V2)9V1 (2.3)

is satisfied for any vector fieldsV7, Voon M, whereV is Levi-Civita connection onM

[20].

From (2.3) we have

V=V —n(h)
for any vector fields V; on M.

Sectional curvature is a significant parameter in the context of Riemannian
geometry, as it provides direct information about the curvature of a Riemann
manifold. Manifolds with constant sectional curvature are referred to as space forms
and are classified based on this constant curvature. In addition to the sectional



curvature derived from the curvature of the manifold, there are different kinds of
sectional curvatures that arise due to specific structures on the manifold. The
sectional curvature associated with an almost complex structure is termed
holomorphic sectional curvature. If the holomorphic sectional curvature of a
Hermitian manifold is constant, the manifold is called a complex space form. Similarly,
the curvature associated with a contact structure is referred to as the ¢-holomorphic
sectional curvature. A Kenmotsu manifold M with constant ¢-holomorphic sectional
curvature c is denoted by M(c) and is called a Kenmotsu space form. The Riemannian
curvature tensor of a Kenmotsu space form is expressed as follows [26]:

R(V1, Vo, V3, Vi) = <2 (g(Vo, V3)g(Vi, Vi) — g(Vi, V3)g(Va, V)

L [n(Vi)n(Va)g(Va, Va) — n(Ve)n(V)g(Va, Va)
+n(V2)n(Va)g(Vi, V3) — n(Vi)n(Va)g(Vz, V3) (2.4)
+9(¢V2, V3)g(dVi, Vi) — g(éV1, V3)g(¢V2, Vi)

~29(8Vi, V2)g(éV3, V).
Here, R denotes the Riemannian curvature tensor of the Kenmotsu space form.
In general, a connection on a Riemannian manifold M is described by a mapping
V :I(TM) x T(TM) — (T M), defined as

 Vu=VyVa+ Z(Vi, Va),
for any V1, Vo € T'(T'M), where V represents the Levi-Civita connection, and 7 is a
tensor field of type (1, 2). The connection is classified and named by the definition of

7. A specialized quarter-symmetric nonmetric connection was introduced in [7]
specifically for Kenmotsu manifolds as follows:

Vi Ve = Vi Va = 1(Vi)@Va + g(Vi, Va)é — n(Va) Vi — (Vi) Va + 0 (Vi)n(V)€.(2:5)
V is called the quarter-symmetric nonmetric¢ — n—connection [7]. In this study we

recall V as a ¢ — n-connection.

~ ~

Let R denote the curvature tensor of M ™? with respect to V, where

n + p = 2m + 1.In [7], the relation between the curvature tensors of V and V is
given by

R(V1, V2, V3, Vi) = R(V1, Va)g(Vs, Vi) + g(Va, V3)g(Vi, Va) (2.6)

—9(V1,V3)g(V2, Va).
Using (2.4) in (2.6), we have
(2.7)



R?(V17V27V3av4) = Czl[g(VmVs )9(V1, Va) — g(V1, V3)g(Va, V)
+n(Vi)n(Vs)g(Va, Vi) — n(V2)n(Vs)g(V1, Va)

+n(Va)n(Va)g(Vi, V) — n(Vi)n(Va)g(Va, V)
+9(8V2, V3)g(éV1, Va) — g(¢V1, V3)g(#V2, Vi)

—~2g(¢V3, Va)g(9Vi, V),
forall Vi, Vs, V3, Vy € F(TM)

3 Submanifolds of Kenmotsu Space Forms

Submanifolds can exhibit geometric properties that differ from those of the ambient
manifold in which they are embedded. While some properties can be derived from the
ambient manifold, others may not be reducible. Moreover, the intrinsic geometry of
submanifolds can possess characteristics distinct from the ambient manifold. Some
equations and results originally introduced by Gauss for surfaces have been extended
to submanifolds, providing relationships between the tangential and normal
components of a vector field on a manifold. On the other hand, the properties of
submanifolds can also vary depending on the structure (complex, contact, etc.) of the
ambient manifold. In fact, there exist different classes (invariant, anti-invariant, etc.)
of submanifolds associated with structured manifolds. In this section, we will present
the general equations for submanifolds of a Kenmotsu space form and relate them
with the ¢ — n-connection.

Let M be a Kenmotsu space form and M be an n-dimensional submanifold tangent
to &. Let us denote:

e V the induced connection on M from the Levi-Civita connection 6

~

o V the induced ¢ — m-connection from V

Then, the Gauss formulas are given as follows:
V{/1V2 = VV1V2 -+ h(Vl, Vg), (3.8)

ViVa = ViVs+h(Vi,Va), (3.9)
for V1, Va € T'(T'M), where his a (0, 2)-tensor second fundamental form of M in
M™P and h is the second fundamental form on M with ¢ — n-connection. By using
(2.5) and (3.8) and considering tangential and normal parts, we get h="hA

submanifold of a Riemannian manifold is called as totally geodesic if h = 0. We
observe that the property of being totally geodesic is the same with respect to both V

and V. This situation could be changed by the definition of .7 in the connection.

Crucially, the equality h = his determined by whether the structure vector field £ is
tangent to the submanifold M. The norm square of h is given by
(3.10)



I IP= ) . glhles e hleires).

i,j=
By the definition of the direct sum of vector spaces, the space of vector fields on the
ambient manifold can be expressed as
I(TM) =T(TM) & T(TM)".
In this context, the bases of the manifold M could be given by
T,M = {e1,ea,...,en, &}, TpyM+ ={eni1,€nt2,---,€nip}-
Thus, any vector field V; can be written as

n—1 n+p
_ i, . r
Vi Y ViectuVe+ Y, Ven
where this representation makes the tangential and normal components of the vector
field more explicit. By consider this decomposmon and from (3.10), we obtain

2m+1 n+1
2_ 3.11
S S a1

where h; = g(h(ei, ej),er),4,5=1,...,n,7 E {n -+ 1, ...,n + p}, the components

of the second fundamental form.
The trace of the second fundamental form is defined as the mean curvature which
is denoted by H and given by

H(p) = + Zi:l h(e;, e;), (3.12)

where {ey, ..., e, } is an orthonormal basis of the tangent space T, M,p € M. The
square norm of || H|| is given by

V= o) =92 ) Hene 2 D hieses)),

and so, we have

EP=L Y Y : gh(ei,ei), hejey)).
n—+p
B(ei7ei): E :T'—nJrl Biieh

where b, = g(h(e;, ei),e,) and {€ep11,. .., €nyp} is an orthonormal basis of the
normal space T),M *. Substituting h(e;, €;) into the expression for || H ||?,

2__ hr.h$
|| H || 17,2 Zz 1 ZJ 1 Zr n+1 Zs n+1 ”h]J €r, € >

Since {e, } is an orthonormal basis, (e, e5) = d,s, where d, is the Kronecker delta.
This simplifies the expression to

n+p n 2
2_ 1 r
|| H || o Zr—n+1 (Zi—l h”) ) (3.13)

Let us take



2, frequently appears in the
study of geometric inequalities. It quantifies the total contribution of the mean
curvature H to the curvature in all normal directions. This formula establishes a
fundamental connection between the intrinsic geometry (characterized by the
dimension n) and the extrinsic geometry (represented by the second fundamental
form h) of the submanifold. Let us give a useful expression of (3.13). The expanded
form is given by

n—+p
2
| H ||*= 2 E :_ (hfy + hoy + -+ + hp,)°

r=n+1
In a fully expanded form it is like

n—+p n
2_ L
| H [|*= - E :r_n+1<§ :Z z :J 1 JJ)

which can also be written as

n-+p
2_ 1 rLT
U DN O DI DN 1) NI CED

Also, from (3.10) and (3.14) we have the following relation between the squared

second fundamental form and the squared mean curvature:
m

1 1
Ih|* = S T H P+ E (h}y = Ry — -+ = h7,)°
r=n-+1 (3.15)
rLT 2
+2 E E )*—2 E E (rrhz; = (7))
r=n+1 = r=n+1 2<i<j<n

The contact structure on a manlfold may behave differently on a submanifold. This
behavior is determined by the endomorphism ¢ that defines the contact structure. If
V1 is a vector field on the submanifold, it is not immediately clear where ¢V; will
project. For any vector field V3, let us write

oV, = PVy + FVq, (3.16)
where PV (respectively, F'V) denotes the tangential (respectively, normal)
component of ¢V7. Here, P acts as an endomorphism on the tangent bundle 7'M,
while F represents a normal bundle-valued 1-form on 7'M. The norms of the
projections P and F are defined as

2
IPIP= ), denPe), IFIP= ), [Pl

where || P ||? and || F ||? are independent of the choice of {e1, ..., e,} orthonormal
basis.

One of the most significant results in submanifold theory is the Gauss equation,
which establishes a relationship between the curvature of the ambient manifold and
that of the submanifold. We present the Gauss equation, which describes these



curvatures, in different forms corresponding to the various connections discussed
above. Subsequently, we will relate these forms to one another and ultimately derive
the curvature associated with the connection induced from the ¢ — n-connection.

The Gauss Equations with Respect to V and V
R(Vla V27 V37 V4) = R(Vla V2a V37 V4) + g(h(Vla V4)a h(V27 V3))
_g(h(V17 V3)7 h’(V27 V4))a

where R and R are the curvature tensors of M and M, respectively.

(3.17)

The Gauss Equation with Respect to V and V

— A~

R(Vla V2’ V37 V4) - R(Vl) V2a V37 V4) + g(h(V1, V4)a h(VZ’ V3)) (318)
_g(h(Vla V3)a h(V27 V4))

for any vector fields V1, V3, V3, V4 tangent to M. Here, R is the curvature tensor of M

)
~

with respect to the ¢ — n-connection, and R is the induced curvature tensor of the
¢ — n-connection on M.

Combining (2.6), (3.17), and (3.18), we derive
R(V1, Vo, V3, Vi) = R(V1, Vo, V3, Vi) + (g(Va, V3)g(Va, V)

(3.19)
—9(V1,V3)g(Va, V).

We now present the following lemma:

Lemma 3.1 A submanifold M cannot be simultaneouslyV -flat and@-ﬂat.

Using (3.20) in (3.18) we get the Gauss equation with respect to ¢ — n-connection as
follows:

R(Vh V27 V37 V4) — R(V17 V27 V37 V4)
+(9(V2, Va)g(V1, Vi) = 9(V1, Va)g(Va, Vi) (3.20)
+9(h(V1, Va), h(V2, V3)) — g(h(V1, V3), h(V2, V).
We mentioned that the decomposition of the vector field ¢V} into its tangential and
normal components on a submanifold is not always clear. This situation can vary
depending on whether the vector field £ is tangent to the submanifold. In this study,
we assume that £ is tangent to the submanifold. The tangent space of the submanifold

can be decomposed into different subspaces, referred to as distributions, which allow
for a classification. Below, we present some of these classifications. A submanifold M

of a Kenmotsu space form M is defined as follows:

e Invariant submanifolds:¢(T,M)C T, M, i.e., FV; = 0 for any vector field V; on M

e Anti-invariant submanifolds:gb(TpM ) C TpLM ,i.e.,, PV; = 0 for any vector field
VionM



¢ CR-submanifold: There exists a pair of orthogonal differentiable distributions D
and D+ on M, such that TM = D @ D+ @ {¢}, where {¢} is the one-dimensional
distribution spanned by &:

- Dis invariant by ¢, i.e,, ¢(D,) C D,, forallp € M. Thatis, FV; = 0if V; on D.
- D' is anti-invariant by ¢, i.e., qb(le) - TpLM, forallp € M. Thatis, PV; = 0if
Vl on DL.

In particular, if D+ = {0} (respectively, D = {0}), M is an invariant (respectively,
anti-invariant) submanifold.

The relationships between the intrinsic invariants of submanifolds and the invariants
of the ambient manifold are among the key topics of study in submanifold theory.
These invariants are often referred to as Riemannian invariants or curvature
invariants. One of the most significant of these is sectional curvature. The tangent
space of a submanifold is decomposed into two-dimensional sections, and their
sectional curvatures are studied. The sum of these curvatures gives the scalar
curvature. Below, further details regarding these concepts are provided; for more
details see [14].

Letw C T,M™,x € M™, be a 2-plane section. Denote by K () the sectional

curvature of M "¢ — n-connection V. The scalar curvature of M is given by

T(x) = E I<icjon K(e; Nej)

for any orthonormal basis {e1, .. ., e, } of the tangent space T,, M ".

Let us consider a k-dimensional subspace L of the tangent space T, M ™ at a point
x € M™ and X be a unit vector lying within L. Let L be a k-dimensional subspace of the
tangent space T, M " at a point z € M ", and let X be a unit vector lying within L. The
k-Ricci curvature of L along X is then defined by

Ricp(X) = K19 + K13+ - - - + K, (3.21)

where we choose an orthonormal basis as {e; = X, es, ..., ex}, where K;; denotes
the sectional curvature associated with the two-dimensional plane spanned by e; and
ej.

The scalar curvature 7(L) of L is defined as

g Kez/\ej 1<14,5 <k, (3.22)
where K (e; A e]) denotes the sectlonal curvature of the 2-plane spanned by e; and e;.
We denote the scalar curvature of the k-plane section spanned by {e1,...,e,} as

T1...k- The scalar curvature 7(p) of M at a point p € M is simply the scalar curvature
of the tangent space T, M. When L is a two-dimensional plane section, 7(L) reduces
to the sectional curvature K (L) of L. Geometrically, 7(L) corresponds to the scalar
curvature at p of the image of L under the exponential map exp,, [14].

For a fixed integer k such that 2 < k < n, a Riemannian invariant ©; on M " is
defined as



Or(z) = i’%ﬁ Ricy(X), ze€ Mn™, (3.23)

1
k—1
where the infimum is taken over all k-dimensional subspaces L C T, M" and all unit
vectors X € L.

The invariant O (x) generalizes the concept of Ricci curvature by considering k-
dimensional subspaces of the tangent space instead of the entire tangent space. It
measures the “worst-case” k-dimensional Ricci curvature, providing valuable insights
into the interaction between the intrinsic and extrinsic curvatures of submanifolds.
Fork = 2, @2(33) corresponds to the minimum sectional curvature at x, and for k = n,
where n is the dimension of M, ©,(x) corresponds to the traditional Ricci
curvature. The total scalar curvature 7(p) at a point p can be expressed in terms of
O (p) by summing or averaging over all k-dimensional plane sections. ©(z) plays a
crucial role in various geometric inequalities and is particularly significant in the
study of submanifolds.

The concept of the relative null space is a crucial tool in submanifold theory,
providing insights into the relationship between the intrinsic geometry of a
submanifold and its embedding in the ambient Riemannian manifold. For a
submanifold M of a Riemannian manifold (M, g), the relative null space of M ata
point p € M is defined as

Np={XeT,M|h(X,Y)=0, VY € T,M}.
The relative null space .4, consists of all tangent vectors at p that are “flat” in terms of
their interaction with the second fundamental form. That is, vectors in .4, do not

contribute to the bending of the submanifold in any direction. For a totally geodesic
submanifold, A = 0, and hence .4}, = T),M for all p € M. The dimension of .4,
depends on the point p and the geometric properties of M. It reflects how the
submanifold bends within the ambient manifold. If M is minimal, the mean curvature
vector H vanishes, which implies certain symmetry properties in h and affects 4. A,
provides a way to characterize submanifolds with specific curvature properties, such
as null 2-type submanifolds or submanifolds with harmonic curvature. The size and
structure of .4}, influence the relationship between the intrinsic geometry of M (e.g,,

Ricci curvature) and its extrinsic properties (e.g., mean curvature).

4 Chen-Ricci Inequalities on Kenmotsu Space Forms
Admitting ¢ — n-Connection

In this section, results related to Chen-Ricci inequalities for submanifolds of Kenmotsu
space forms with a ¢ — n-connection are presented. Various inequalities for
submanifolds of Kenmotsu space forms have been studied by several authors [4, 5, 16,
23-25,27,33].

The following lemma, proven by Chen [10], provides a useful relationship among
real numbers, which play a crucial role in deriving inequalities:



Lemma 4.1 ([10]) Letai,as,...,anand b be(n + 1)real numbers withn > 2,
satisfying the equation:

(3 a) ~ o0 et )

Then the inequality2a1ay > bholds, with equality if and only if

a1 +ax=as3=...=ap,.

For submanifolds of Kenmotsu space forms endowed with a ¢ — n-connection, we
establish the Chen first inequality.

Theorem 4.2 LetM",n > 3, be an n-dimensional submanifold of an(n + p)-
dimensional Kenmotsu space form M "™ (c)of constant sectional curvature c, endowed

with¢ — n-connectionV. Then we have

c c— n—2)n?
Sy () < (n?—3n+3||P||?) <t —3< L 4 G2 ) . (4.24)

Here,mdenotes a two-dimensional plane section of I, M ", wherex € M". At a point
x € M™", the equality holds if and only if there exist:

e An orthonormal basis{e1, es, . . . , e, }for the tangent spaceT,, M ™and
e An orthonormal basis{en1, . . ., enp }for the normal spaceT;- M"

such that the shape operators of M ™inM ™ "?(c)at x satisfy the following conditions:

00 --- 0
000 o)
Ao, =00y - Of " gip=1,
Lo 0 0 . ’)
(RS R0 - 0)
Wt R0 e 0
enri = 0 0 0 --- 0, 2<i<p,

\o 0 0 - 0
where we defineh;; = g(h(ei,ej), e )forl <i,j <nandn+1 <7 <n+p.
Proof Letz € M", {e1,e2,...,e,}and{ent1,...,entp} be orthonormal basis of

T,M™and T;- M", respectively. For Vi = V; = e;, Vo = V3 = e;,1 # j, from Eq.
(2.6), and by summationon 1 < 7,5 < n we get



~ 1
R(eiaej7ejaei) = (n2_3n+ 2_3HPH2) cjl_ :

Similarly from (3.20) and by summation on 1 < 7, 7 < n, it follows from (3.11) and
(3.13) that

(n?—3n + 2-3||P||?) <E = 27+ n® — n+||R||> — n?||H||%. (4.25)
First, multiplying Eq. (4.25) by (n—1) and then adding and subtracting n? || H ||? to
both sides, we get

n?||H||?> = (n— 1)(||h||2—|—27'—(n —3n + 2-3||P|| )cj:l + n?
—n — 2| 2).

Let us take

¥(r,c) =27 — (n®—3n+ 2—3HPH2)%1 +n?—n— ("%)IMHHHQ,
and thus we can write
n?||H|* = (n—1) (| |R]|* + 9(7, c)). (4.26)
Letz € M", 7 C T,M",dim 7w = 2, m = sp{e1, e2}, and define e, 1 = ﬁ By
using (3.11) and (3.12) and from the relation (4.26), we obtain

(g ) h”H) (n—1) (g E " h" —1—19(7' c))
i=1 1,j=1 r= n+l ’

or equivalently

n 2 n
2
Z hZ—H _ (n—l) Z (hZ—&-l)? + Z (h?j—i—l)
i=1 i=1 i#j
n n+p (4.27)

+E E (RL)? + 9(r, c)

1,j=1 r=n+2

By using Lemma 4.1 and from (4.27), we have

n—+p
2h7HI AL > Zi#( ZH) S i S o n+2( i]) +9(7,c).  (4.28)

On the other hand, from the Gauss equation we get

RV, Vo, V3, Vi) = R(Vi,V3,V3, Vi)
_(g(V27 V3)g(vla V4) + g(vla V3)g(v27 V4)) (429)
—g(h(V1, V4), h(V2, V3)) + g(h(V1, V3), h(Va, Vy)).
Letustake Vi = Vy = ey and V, = V3 = es. Since e1, es € I'(T' M), we have
Pe; = ey, Pes = e3 and so we obtain




2m+1 9
-1 E E hrh”. — hr)
+ T:n+1 2§Z<]§n { 1 ]] ( 1] .

Thus considering (4.28) we have

K(r) > c;1+% E n)” E )2 4 9(r, )

i#j i,j=1  r=n+2
n—+p n+p
T oyT 2
+ E 11790 — E (his)
r=n-+2 r=n+1
c—1 1
2 2 : : )
1#£j ,7=1 r=n+2
n—+p n—+p
2
+ § hiihsy — § (h12)",
r=n-+2 r=n+1

and thus, we get

Y IE D W)

1#£] r=n+2  ,j>2
n—+p
1 2 2 1
+5 E (hly + hy)? + E [(h?f) +(h’§f1)]+519(7,c)
r=n+2 j>2
-1 1
= 62 +519(7',c).

Let us set the expression of ¥(7, ¢) in the last inequality; then we get

K(m) > 71— L(n®>-3n—6 + 3||P||*)c — L (n? 3n+6+3||P||)

and so, the inequality has the following form:

7~ K(rm) < (n?-3n+ 3||P||?) - —3< + G20 " H 2.

In the inequality obtained above, a necessary and sufficient condition for the equality
to hold at an arbitrary point x € M™ is that equality must occur in all the previous
inequalities, as well as in the equality given in Lemma 4.1.




Y =0,V # iG> 2,
By =0,¥i#4,i,5>2r=n+1,...,n+p,
hiy +h5% =0,Vr=n+2,...,n+Dp,
Rt =Ryt =0,v5 > 2,
R R = = =
Choosing {el, 62} to be h’”rl = 0 and denotinga = h';,b = hl,, u =

h"+1 = ... = h™ the shape operators are obtained as a desired form. O

Every invariant submanifold of a Kenmotsu manifold is minimal [22]. We show that

h = ﬁ; thus from the definition of mean curvature, it is evident that if the submanifold
of a Kenmotsu manifold is minimal, then the submanifold of a Kenmotsu manifold
admitting a ¢ — n-connection is also minimal. On the other hand, for an invariant
submanifold and any unit tangent vector X € T, M orthogonal to &, since the
manifold is invariant, we have | PX ||=| ¢X ||=|| X ||= 1. If M is anti-invariant,
then PX = 0. Thus, we can state the following result:

Corollary 4.3 Let M be a submanifold of Kenmotsu spaceformM(c)admitting ap —n
-connection.

(1)
If M is an invariant submanifold, then we have
6 < (n?—3n+3) <t —3<L.
(ii)

If M is an anti-invariant submanifold, then we have

Sy < (n2—3n) ct1 3c 1 (n—2)n HHH2

(iii)
If M is CR-submanifold, then we have:
(a)

For each unit vectorX € D,,

5M§( 2 3,n)c+1 3c1 n2 ||HH2

(b)

For each unit vectorX € le, we have

5M§ (n2_3n+3) c+1 3c 1 + 2(n 1) HHH2

Let X € T, M be a unit vector in the tangent space at x. We select an orthonormal
basis {e1,€2,...,€n,€nt1,...,enip}, where {e1,es,...,e,} spans the tangent space
T, M with e; = X. Consider Eq. (4.25). From this equation we get



c+1 (4.30)

n?||H||> =27 +n? —n+ ||h||> - (n2—3n+ 2—3||P||2)

From (4.29), V1 = e;, Vo = V3 = e, we get !
n+p
c—1 E 2
Kij = 2 + {h;h;y (hzj) }
r=n-+1
By summation, it follows that
n+p
E Ky - E E [highs, — (3)?] + E B
2<i<j<n r=n+1 2<i<j<n 2<i<j<n

_ } :E :h;h;j_ R )

r=n+1 2<i<j<n

Thus, using (4.30) and (3.15) we get

m
2 2 1 2 2 1 r r r \2
n® || H[* = 274‘5" | H | +§ (i — hiy — -+ — hp,)
r=n+1
2
+2ZZ ZZ (it = (#5)°)
r=n+1 j=2 r=n+1 2<i<j<n

c+1

+n? —n — (n2—3n + 2—3||P||2)

Hence we obtain



1 . 1 r r r
5n2 | H|? = 2Ric(er) +2 E Kij+5 E (P11 — hhy — -+ = hl,)”

2<i<j<n r=n-+1
T T 2
*222 Z D (b - 00
r=n+1 j=2 r=n+1 2<i<j<n
1
12 —n— (n2—3n + 2-3||Pey|?) le‘
—2)(n—1)(c—1
Bty ¢ {220 0e)
1 T T T
‘1‘5 § (hfy — Ry — -+ — hl,)°
r=n+1
1
+n? —n — (n®*-3n + 2-3||P||?) €t
—2)(n—1)(c—1
Z RiC(€1)+ (TL )(n )(C ) +n2_n

2

1
_ (n2—3n+2-3||Pey||?) S

Finally we get
Ric(X) < ¢[n* || H ||> —2(n—1)((n—2)c + 2)
(n —3n + 2-3||X|| )CH}
Assume that H(p) = 0. Equality in (4.31) holds if and only if
hiy=---=h], =0, hly=hl,+---+h,re{n+1,...,n+p}
This implies that h7; = 0 forallj € {1,...,n}andr € {n +1,...,2m}, which
means X € 4. Equality in (4.31) for all unit tangent vectors at p holds if and only if
hi; = 0, i#jre{n+1,...,n+p},

LWt +h,—2h; = 0, ie{l,...,n},re{n+1,...,n+p}.
Consequently, the point p is totally geodesic. The converse is straightforward and
follows directly. Finally we state the following result.

(4.31)

Theorem 4.4 LetM(c)be an(n + p)-dimensional Kenmotsu space form admitting
¢ — m-connection and M an n-dimensional submanifold tangent to€. Then:
(1) ,
For each unit vectorX € T,Morthogonal to§, we have (4.31).
(i) IfH(p) = O, then a unit tangent vectorX € T, Morthogonal tosatisfies the



equality case of (4.31) if and only ifX € A,

(iii)
The equality case of (4.31) holds identically for all unit tangent vectors
orthogonal to€at p if and only if p is a totally geodesic point.

For special submanifolds we have the following result.

Corollary 4.5 Let M be a submanifold of Kenmotsu spaceformM(c)admitting ap —n
-connection.

(1)

If M is an invariant submanifold, then we have
1
Ric(X) < 3 [(n2—3n +5)c — n® + 11n—17].
(ii)

If M is an anti-invariant submanifold, then we have
1
Ric(X) < 3 [(n*—3n+2)c—n®+12n—8 +n* || H ||*].

(iii)
If M is CR-submanifold, then we have:

(a)

For each unit vectorX € D,

Ric(X) < %[(nz—&n—l— 5)c—n*+1ln—7+n” || H ||?].

(b)
For each unit vectorX € DpL, we have

Ric(X) < %[(n2—3n—i— 2)c — n®+12n—-8+n’+n® || H ||2}

5 k-Ricci Curvature

k-Ricci curvature of M " is an intrinsic geometric invariant, and the squared mean
curvature || H ||? is an extrinsic invariant. The k-Ricci curvature of M™ is an intrinsic
geometric invariant, while the squared mean curvature H? is an extrinsic invariant. A
fundamental question in submanifold theory is to establish a sharp relation between
these invariants. In this subsection, we provide a new result concerning the interplay
between intrinsic and extrinsic properties.

Theorem 5.1 LetM"™,n > 3, be an n-dimensional submanifold M tangent to€of an
(n + p)-dimensional Kenmotsu space form M "™ P(c)of constant sectional curvature c

endowed with¢ — n-connectionV. Then we have



- n?—3n+2-3||PX||?)(c+1)+4(n%—n)
| B |22 iy + ! il . (532)

Proof We begin by selecting an orthonormal basis {e1, ..., €n, €11, .., €2m+1 = &}
at the point p € M, such that:

e e, is aligned with the mean curvature vector H(p).
e ey,...,e, diagonalize the shape operator 4,,_ ;.

Under these assumptions, the shape operators are expressed as

ap 0 0 --- O

0 a 0 --- O
Ani=1. . . K

O o0 0 --- a,

n

AT:(h;’j>, iji=1,....n, r=n+2,...,2m, traceATZE _hp=0.

2
Using the Gauss equation (4.25), we derive the following relationship:

n 2m n
n|H|2 = 2r+ E a? + E E (ry)®
— (5.33)

r=n+2  i,j=1

1
¢+ +n2—n.

+(n”—3n + 2-3||PX||?)
To simplify further, we note the inequality

n
E 2 E E
0< i (a; —aj)” = (n—1) - a?—2 i a;a;.

From this, it follows that

n 2 n n
2 2__ g I - g 2 - 2
n® | H |*= ( i=1 a2> i % 2 ZK]’ ai; < nZi—l i

Thus, we deduce
n
E : a;>n| HJ|?.
=1

Substituting this inequality into (5.33), we obtain
n? || H|?>27+n || H||> +(n?-3n+ 2-3||PX||?) =L + n? —n.
This completes the proof. O

Using this result, we derive the following theorem.

Theorem 5.2 LetM™,n > 3, be an n-dimensional submanifold M tangent to€of an
(n + p)-dimensional Kenmotsu space form M "™ P (c)of constant sectional curvature c



~

endowed with¢ — n-connectionV. Then we have

2—3n+2-3||PX||*)(c+1)+4(n*—
| H |2 (p) > Ox(p) + 2= ”4(,12”,35)6 e o) (5.34)
Proof Consider an orthonormal basis {e1, ..., e,} of T, M. Let L;,...;, represent the
k-dimensional plane section spanned by the vectors e;, , . . ., €;,. From (3.21) and

(3.22), the following relations hold:

1 E )
T(Lil"'ik) = 5 I{gc(el)a

i€liy, i} 1k

1 E
T(p) = Ck_2 T(Lil-'-ik)-

S e e
By combining (3.23) with (5.35), we derive the inequality:
7(p) = 2L 04(p). (5.36)
From (5.32) and (5.36), we obtain (5.34). O

(5.35)

For special submanifolds of Kenmotsu space form we get the following corollary.

Corollary 5.3 Let M be a submanifold of Kenmotsu SpaceformM(c)admitting ap —n
-connection. Then, for any integerk,2 < k < n, and any pointp € M:

(1)
If M is an invariant submanifold, we have
1+3n—n2(c+1))+4(n?—n
or(p) < & (c+1) +4(n’ —n)
4(n% —n)

(ii)
If M is an anti-invariant submanifold, we have
(n?-3n+2)(c+1) +4(n* —n)
4(n? —n) .

| H || (p) > Ox(p) +

(iii)
If M is CR-submanifold, we have

| H |? (p) > Owlp) + (n2_3n+2—6(h)(c+)1)+4(n2_n)
_ 4(n%—n )
where2h =dim D.

6 Conclusion

In this study, we addressed the fundamental problem in submanifold theory, namely
finding simple relationships between the main extrinsic and intrinsic invariants of a
submanifold, within the framework of Kenmotsu space forms. We investigated Chen
invariants and Ricci inequalities for submanifolds of Kenmotsu space forms endowed



with a special quarter-symmetric connection. The inequalities involving Chen
invariants on Kenmotsu space forms equipped with this special connection yielded
significant geometric results.

These results were applied to invariant, anti-invariant, and CR-submanifolds,
which are special classes of submanifolds. The findings of this study provide valuable
contributions to ongoing research in this field and offer a foundation for further
exploration. Additionally, the proposed connection allows for potential investigations
into other special submanifolds of Kenmotsu space forms. Moreover, extending this
connection to other geometric structures could lead to novel insights and diverse
applications in differential geometry.

This work underscores the importance of the proposed approach and invites
future studies to build upon these results, extending the scope of submanifold theory
in the context of Kenmotsu geometry and beyond.
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Abstract

This study is devoted to find Chen and Chen-Ricci -type inequalities for semi-slant £--Riemannian
submersions from Sasakian space forms onto Riemannian manifolds. These inequalities reveal relationships
between intrinsic invariants, such as Ricci and scalar curvature, and extrinsic invariants like the second
fundamental form. Finally, we analyze the conditions under which equality is attained, and we present
illustrative examples.

1 Introduction

In a series of pioneering works [13, 14], B. Y. Chen explored meaningful connections between the intrinsic
curvature quantities (such as Ricci, scalar, and k-Ricci curvature) and the extrinsic curvature quantities
(such as the squared mean curvature and shape operator) in submanifold geometry. These led to the
development of what are now known as the Chen inequalities, which provide sharp bounds involving
curvature invariants for Riemannian submanifolds in space forms (see: [13-16]). Since then, extensive
studies have expanded upon these results, leading to a wide array of inequalities applicable to various

The theory of Riemannian submersions, introduced by O’Neill [29] and further developed by Gray [20],
has proven to be a useful tool in the study of the geometric structure of manifolds. Later, Sahin [40] extended
this framework by introducing anti-invariant Riemannian submersions from almost Hermitian manifolds.
Motivated by these developments, researchers have proposed several generalizations such as slant, semi-
invariant, and semi-slant submersions, each offering novel insights into submersion geometry [2, 6,7, 17,

=2 L

Specifically, Lee [26] introduced the concept of anti-invariant £--Riemannian submersions from almost
contact metric manifolds. This notion was later generalized by Akyol et al. [7] to semi-invariant £*-
Riemannian submersions and subsequently extended to slant submersions from Sasakian manifolds by
Erken and Murathan [17]. Building on these contributions, Akyol and Sar1 [6] proposed the notion of semi-
slant £ --Riemannian submersions, which generalizes the previous frameworks.

In this chapter, we examine Chen-Ricci inequalities for semi-slant £ -Riemannian submersions from
Sasakian space forms. We derive new inequalities, study their equality cases, and offer explicit examples to
illustrate the results.

This chapter is organized as follows. In Sect. 2, we review some fundamental geometric properties of
Riemannian submersions, Sasakian manifolds, and Sasakian space forms. In Sect. 3, we derive the Chen-Ricci
inequality and the Chen inequality for semi-slant £*-Riemannian submersions from Sasakian space forms.
We also discuss the equality cases. Finally, we provide some illustrative examples.
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2 Preliminaries
Definition 2.1 Let (M, g) and (M1, g1) be Riemannian manifolds, where dim(M) = m, dim(M;) = m;,
and m > m;. A Riemannian submersion ¢ : M — M is a map of M onto M satisfying the following
axioms:
@ _

1) has maximal rank.
(ii

The differential ¢, preserves the lengths of horizontal vectors, that is, 1, is a linear isometry [29].

The geometry of Riemannian submersions is characterized by O’'Neill’s tensors 7 and <7, defined as follows
[19]:
T, U2 = VYV yu, U + Vyy, VUs, (2.1)

.QfUlUg = ’Y/ng’UljfUz + FEV v, YU, (2.2)
for any vector fields U; and U, on M, where V is the Levi-Civita connection of g. It is easy to see that J7;,
and &y, are skew-symmetric operators on the tangent bundle of M reversing the vertical and the horizontal
distributions. We now summarize the properties of the tensor fields 7 and & . Let [19] V1, V5 be vertical
and X7, X5 be horizontal vector fields on M, and then we have

T\ Vo = Ty, V1, (2.3)
Wy, Xy = —lx, X1 = 3 V[X1,X3)]. (2.4)
By virtue of (2.1) and (2.2), we get
Vv, Vo = Sy, Vo + Vy, Vs, (2.5)
VVle - ylel + %VVIXI, (26)
Vx Vi =% Vi+VVx Vi, (2.7)
Vx, Xy = HVx X+ x, Xo, (2.8)

forall Vi, Vs € T'(kerty,) and X1, X2 € F((kemp*)L), where §V1V2 = V' Vy, Va.If X, is basic,
Vv, X1 = &%, V1 [19]. We also note that:
0]
ForU1,U; € ’V(M), yUle = e?U?U].
(ii)
For X1, Xs € c%”(M), D, Xo = —x,X.

Denote by R, R/, R and R; the Riemannian curvature tensor of Riemannian manifolds M, M7, the
vertical distribution ¥, and the horizontal distribution /%, respectively. Then the Gauss-Codazzi-type
equations are given by

R(Ula U27 U37 U4) = R(Ulv U27 U3a U4) + 9(9U1U4a 9U2U3) - g(yU2U47 yUlU?)) (2'9)
R(X17 X27 X37 X4) = R*(Xh X27 X?n X4)_2g('Q{X1X2a ”Q{X3X4)

2.10
+9(x, X3, Ix, X4) — 9(x, X3, ox,X4) (2.10)
R(X1,Us, X2,Us) =g((VxT)(Uz,Us), X2) + g((Vve) (X1, X2),Us) 211)
_g(yU2X17<7U4X2) +g(dX2U47=Q{X1U2)7 .
where
Vi (R (X1, X2) X3)) = RI(4: X1, 9. X2)9h. X5 (2.12)
forall Uy, U, Us, Uy € ¥ (M) and X1, X2, X3, X4 € (M) [19, 29].
The mean curvature vector field H of any fiber of Riemannian submersion %) is given by
T
N=rH,N = E i1 9U].Uj, (2.13)
where {U1, ..., U,} is an orthonormal basis of the vertical distribution #". Moreover, 9 has totally geodesic

fibers if 7 = 0 on (M) and ¥ (M) [19].
Now, we have the following lemma which shows that 2/ and 7 are antisymmetric with respect to g.

Lemma 2.2 ([29]) Let(M, g)and(Mj, g;)be Riemannian manifolds andy : M — MyRiemannian
submersion. ForE1, E5, E5 € x(M), we have



9(T8,E2, E3) = —g(Es, I5,E3), (2.14)
9(Fp,Es, E3) = —g(Es, &5, E3). (2.15)

A (2m + 1)-dimensional Riemannian manifold (M, g) is said to be a Sasakian manifold if it admits an
endomorphism ¢ of its tangent bundle TM, a vector field U, and a 1-form 7 satisfying

¢2 = —Id+77®5777(U) = 17¢€: 0777052 0,
9(¢pX1,$X3) = g(X1, X2) — n(X1)n(X2),n(X1) = 9(X1,9),
(VX 0) X2 = g(X1,X2)6 —n(X2) X1, VIEE = - Xy,
for any vector fields X1, X5 on TM, where VY denotes the Riemannian connection with respect to g.

Definition 2.3 Let (M, ¢, £, 7, g) be a Sasakian manifold and (M7, g1) be a Riemannian manifold. A
Riemannian submersion ¢ : (M, ¢, £,n,g) — (M, g1) is said to be semi-slant £--Riemannian submersion

if there is a distribution 2 C kerw), such that
ket = 9@ 9 & (£),J(9) = 9, i
and the angle § = 6(X) between #.X and the space Z, is constant for nonzero X € I'(2) ,and g € M,

where 2 is the orthogonal complement of Jin keri, [6]. Here we call the angle 6 a semi-slant angle.
Remark 2.4 In this chapter, we suppose that the Reeb vector field £ is vertical.

From now on, we will assume that 1 be a semi-slant £*-Riemannian submersion from a Sasakian manifold
(M, ¢,&,m, g) onto a Riemannian manifold (M1, g1).
Now [6], let ¢ be a semi-slant {L-Riemannian submersion. Then, for U; € I'(keri.), we get

PU, = ¢U; + wUy,
where U7 and wU; are vertical and horizontal components of U3, respectively. Similarly, for any
X, € I((ker,)"), we have

¢X1 = BX,1+EX,
where X (resp. € X1) is the vertical part (resp. horizontal part) of ¢ X;. Then, the horizontal distribution
(kery,) " is decomposed as

(kerp,)t = wP & p.
Theorem 2.5 Letibe a semi-slant¢--Riemannian submersion. Forany U, € T (92), we have

¢2UQ = — COS2 OUQ,
wherefdenotes the semi-slant angle of 2[6].

Lemma 2.6 ([6]) Letibe a semi-slant*-Riemannian submersion. For anyUy,U, € T' (@), we have

9(pUy, @Us) =cos? Og(U1, Us),
g((-UUl, (.UUQ) :Sin2 eg(Ula U2)

A plane section 7 in T}, M is called a ¢-section if it is spanned by X and ¢X1, where X is a unit tangent
vector orthogonal to U;. The sectional curvature of a ¢-section is called a ¢- sectional curvature. A Sasakian
manifold with constant ¢-sectional curvature c is said to be a Sasakian space form and is denoted by M (c)
[12, 35]. The curvature tensor of M (c) of a Sasakian space form M(c) is given by

R(X1, X2) X5 = S {g(X0, X3) X1 — g(X1, X3) X2}
c—1
L (X )n(X ) X (2.16)

—n(Xa)n(X3) X1 + g(X1, X3)n(X2)€ — g(X2, X3)n(X1)€
+9(¢ X2, X3)pX1 — g(d X1, X3)9pX2—29(¢ X1, X2)p X3}




for any tangent vector fields X1, X2, X3 on M(c).
Let (M (c), g), (M1, g1) be a Sasakian space form and a Riemannian manifold, respectively, and

¥ : M(c) — M, a semi-slant £ -Riemannian submersion. Furthermore, let {E, ..., E,, Fy, ..., F,} be an
orthonormal basis of T, M (c) such that ¥ = span{E\, ..., E, = £}, 7 = span{F1, ..., F,}, and
r = 2d; + 2d3 + 1. Then we consider adapted semi-slant orthonormal frames

Ev,Ey = @FEy,...,Ey, 1, Eag—1 = pE2,, Bad 11,

BEsiiv2 = g 9B2415 -+ Bagyr2d,-15 Bagy 24,

= C(}W(PEMIH@A, B, 124,11 = 3

Here, we have
for i € {1,. -1},

1,
E;, E;
g'(¢ )= { cos®0, fori e {2d1 + 1 ., 2dy + 2dy—1},

and then

Zij:l 9*(¢Es, E)) = 2(dy + dacos®0).

3 Chen-Ricci Inequality and Chen Inequalities
¥ : M(c) — M a semi-slant £*-Riemannian submersion. Furthermore, let {E, ..., E,, Fy,..., F,} be an
orthonormal basis of T, M (c) such that ¥ = span{E\, ..., E, = £}, 7 = span{F, ..., F,}. By virtue of
(2.9), (2.10), and (2.16), we have

R(UL,U2,Us, Us) = 7 {g(Us, Us)g(Us, Us) — 9(Us, Us)g(Us, Us)}

+ET n(UD)n(Us)g(Us, Us) — n(Us)n(Us)g(Un, Us)
+1(U2)n(Us)g(Ur, Us) — n(Ur)n(Us)g(U2, Us) (3.17)
+9(¢U2, Us)g(8Un, Us)
—9(¢U1,Us)g(¢U2, Us)—29(¢U1, U2)g(¢Us, Us) }
—9(Tu,Us, T0,U3) + 9(F0,Us, Ty, Us),
R*(Fy, Fy, F3,Fy) = (CH {9(Fs, F5)g(F1, Fy) — g(F1, F3)g(F>, Fy)}

+(CT1{77(F1)77(F3)9(F2, Fy) — n(F2)n(Fs)g(Fr, Fi)

+n(Fo)n(Fa)g(F1, F3) — n(F1)n(Fs)g(Fs, F3)

+9(pFs, F3)g(¢F1, Fu) — g(¢F>, Fu)g(dF1, F) (318)
—29(pF1, F2)g(Fy, F3)}

+2g(.52{F1F2, JZfF3F4) — g(&{FQFg, JZ{FIF4)

—|—g(,527F1F3,J27F2F4).

Theorem 3.1 Let) : M(c) — Nbe a semi-slanté*-Riemannian submersion such that€is vertical. Then, the
following statements are true:

@
For any unit vector fieldE € F( 7), it follows that
Ric(E) > L3 (1) + 15N —rg(mE, H). (3.19)
The equality case of (3.19) holdsfor a unit vertlcal vectorE € F(@)Ifand only if each fiber is totally
geodesic.
(i)
For any unit vectorfleldE € I'(9), it follows that
Ric(E) > %3)(7”—1) + %(—1 + 3 cos? 0) — rg(IgE, H). (3.20)

The equality case of (3.20) holds for a unit vertical vectorE € I‘(@)ifand only if each fiber is totally
geodesic.



Proof From (3 17), we have
Ric(B) = &2 (r-1)9(B, B) + 52{(2 - r)(n(B))*

(3.21)
—9(E, B) +3 Z 9*($B, E))} — rg(TpE, H) + | TsEi|",

where

Ric(E) = 5 izlﬁ(E,Ei,Ei,E)~

> PeEE) =1 (3.22)

Similarly, if we get E € I‘(@), we obtain

Zi:l *(¢E, E;) =cos” 6. (3.23)

By virtue of the last two equations in (3.21), we get (3.19) and (3.20). O

If we get E € T'(2), we have

Theorem 3.2 Lety : M(c) — Mjibe a semi-slant¢™--Riemannian submersion such that€is vertical. Then
27 > L8 p(r1) 4 LD 49(1 — r) 4 6(dy + dy cos? 0)} — r2|| H|%. (3.24)
The equality case of (3.24) holds if and only if each fiber is totally geodesic.

Proof By using the symmetry of 7 in (3.17), we have

T

27 = (1) + & 1){2(1—v~)+3 E :i=192(¢E,Ei)}—"‘2HH||2

+ E :ijzlg(yEiEﬁyEiEj)’

= Z 1<i<j<r R(E;,Ej,E;, E;).

E - 9*(#E, E;) = 2d; + 2d, cos? 6, (3.26)

then by using last two equations in (3.21), we obtain (3.24). O

(3.25)

where

Since

For the horizontal distribution, in view of (3.18), since 1 is semi-slant £ --Riemannian submersion and ¢ is
vertical, using the antisymmetry of 4, we find

27t = L8 n(n_1)+3 g ) §(€F;, F})g(€F;, F))

(3.27)
_g("Q{Fi J?”Q{FiFJ)}a
where
T = g 1§i<j§rR*(Fi’Fj’Fj’Fi)' (3.28)
Now we define
€] = E :iZIgZ(%Fi,Fj), (3.29)
and then from (3.27) and (3.29), we obtain
27 = 8 p(n-1) + L )2 3§ oI Fy, I F). (330)

From (3.30) we have:

Theorem 3.3 Lety) : M(c) — Mibe a semi-slanté*-Riemannian submersion such that€is vertical. Then
27+ < L8 p(p—1) 4+ 2l g2 (3.31)
The equality case of (3.31) holds if and only if 7€ (M)is integrable.



Let4) : M(c) — M; be a semi-slant £--Riemannian submersion such that ¢ is vertical and
{E7r,...,E,, Fy,...,F,}isan orthonormal basis of TpM (c) such that ¥ p(M) = span{Ex,..., E,},
Hp(M) = span{F1,..., F,}.Now we denote 7} by

7 = 9(Tk.Ej, Fy), (3.32)
wherel <¢,7 <rand1l < s < n(see[22]).

Similarly, we denote <7 by
o = 9(g,Ej, Ea), (3.33)

wherel < 4,7 <nand1 < a < r.From [22], we use

I(N) = Z ZH I(VET) g, Er, Fi). (3.34)

From the binomial theorem, there is such as the following equation between the tensor fields 7:

Zlei,jl(‘Z;)Q =3 2| H|* + 4 (75— T —- = T2)?
s 2
+2Zs IZ] 2 1.7 _223 122<l<]<7‘ “ i _(‘7) )

Theorem 3.4 Lety) : M(c) — Mbe a semi-slanté*-Riemannian submersion such that€is vertical. Then, the
following statements are true:

(3.35)

(1) ~
For any unit vector fieldE, € T'(9), ltfollows that
Ric(By) > ©3 (r—1) 4 0 _ L2 )2, (3.36)
(if)
For any unit vector fieldE; € T'(9), it follows that
Ric(By) > 8 (r—1) + L2 (~1 + 3 cos? 6) — 102 H|%.(3.37)
The equality case of (3.36) and (3.37) holds if and only if
i =Tt + T
T =0, j=2,...,r
Proof Let{E\,...,Esq,Es,11,E2, 42, -, Ead 12d,-1, Bod, 12dy5 E2d, 124,41} be an adapted semi-slant
basis of ¥’ p(M).

__ Due to the fact that one can choose the above adapted semi-slant basis such that £y = F, it suffices to
(4) prove (3.36) for E = Ej. Con51dermg (3.25) and (3.26), we have
" 27 = L8 p(r1) 4 L 09(1 — 1) 4 6(dy + dy cos? 6)} — r2||H|?

+Z i1 ? 9(Tg,Ej, T5,Ej).

By using (3.32) in (3.38) and the symmetry of .7, we can write
27 = 8 (1) 4 D091 — ) 4 6(dy + da cos? 0)} — r2||H|?

+Zs 12”1 ” ) o

Hence using (3.35) in (3.39), we obtain
27 = L1y 4+ L4921 — 7) + 6(dy + dy cos? 6)} — Lr?||H|?

AT m T2, D (T 40
_2ZS=IZZ<K]‘<T sys ( ))

Then from (3.40), we have

(3.38)

(3.41)



on (c+3) r(r—1) + (C V) £9(1 — 7) + 6(d1 + da cos? )} — Lr2H|?

_223 1Z2<1<]<7‘ sys_( )2)

Besides, taking Uy = Uy = E;, Uy = Uz = E;in (3.17) and using (3.32), we obtain

2 Zzgiqgr R(E;,E;,E;,E;) =2 Z2§i<jgr R(E;,E;,E;, E;)

n (3.42)
s s _ 5)2
023 1D TT T
Considering (3.42) in (3.41), we get
27 > 1) 4 LU g9 — ) 4 6(dy + dy cos? 0)} — Lr2| H|?
. (3.43)
+2 E r<icjcr R(E;,E;,Ej, E;)—2 g r<icjcr R(E;,E;,Ej, E;).
Moreover, we have
27 =2 E pcicicr R(E,,E;,E;,E;)+2 E i1 R(E\,E; E;, E,). (3.44)
By using (3 44)in (3.43), we get
2Ric(E1) > 8 p(r—1) + LD 42(1 — ) + 6(dy + dy cos? 6)}
(3.45)

2
— L2 H|2-2 g seicior B(Bir Bjy Ej, By).

Since M is a Sasakian space form, its curvature tensor R satisfies the equality (2.16), we have

c+3
D i RBuELE,B) =9 (r2)r1)

E l){ T)Z (n(U; (3.46)
+322§i<j§r92(¢Ei7Ej)}.

If we get By € I'(2) in (3.46), we obtain
c+3 c—1
yeijon BB Bjy By By) = S (r=2)(r=1) + 72— 7)

+3((d1—1) + da cos? 6)}.
Taking into account of the last equation in (3.45), we get (3.36).

(3.47)

(#2) Due to the fact that in this case one can choose the adapted semi-slant basis
{E1, ..., Esi,, Eoq i1, Eagy 2, - - E2d1+2d2 1, Eod, 124, } such that Eoy 1 = U, it suffices to prove
(i) (337 for E = Ey,+1. If we get E1 € I'(2) in (3.46), we obtain:
With similar arguments as in case (%), we obtain

2Ric(Bagy 1) > 0 r(r—1) +2{2(1 — ) + 6(dy + da cos? 6)}

-zl (3.48)
—2 Z 1<k<s<r; k,s£2d1+1 R(Ey, By, Es, By)-
Ifwe get Eag, 11 € T'(2 ) in (3.46), we obtain
R(Ey, By, By, By) = S (r-2)(r—1)
e (349)

+3(dy + (da—1) cos? §)}.
Taking into account of the last equation in (3.48), we get (3.37).

1<k<s<r; k,s#2d;+1



Theorem 3.5 Lety) : M(c) — M;be a semi-slant&*-Riemannian submersion such that¢is vertical. Then we

have
Ric*(Fy) < “3 (n-1) + 20 1gm |
The equality case of (3.50) holds if and only if
%?:0, ji=2,...,n

Proof From (3.30) and (3.33), we have

* 3 3
2 = Enn-1) 4 XD s Y ()

Since & is anti-symmetric on (M (c)), (3 1) can be written as

or* = L8 p(n-1) + 2 52— E B E :] 2(%)2

a=1 2<z<]<n ”

Moreover, taking X; = = F; X9 = X3 = F}in (3.18) and using (3.33), we get
222<1<]<n F“F]’F]’Fl) =2 : :2§i<j§nR (F’HF]?F]aFZ)

,
)2
+6 Za:l Zz<i<]’<n (W;J)
By using (3.53) in (3.52), we get

=)+ 2t e Y D ()

+2 Z2§i<j§n R*(FZ, Fj, Fj, Fl)—2 Z2§i<j§n R(Fl, Fj,Fj,Fi).

Besides, from (3.18), we obtain

R(F;, Fj, Fj, F;) = L3 (n_2)(n—1)

3(c—1)
T 22§i<j§n 92(%5’ Fj)'

Then from (3.54) and (3.55), we derive

2Ric*(F,) = C+3( 1)+ (e 1 |‘5F1H 62 Z] 2 1;

This completes the proof. O

2<i<j<n

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

(3.55)

(3.56)

Now, by taking into account of £ is vertical, we compute the Chen-Ricci inequality between the vertical and

horizontal distributions. For the scalar curvature 7 of M (c), we have

21 = g ch (Fs, Fs) + g . lec(Ek,Ek)
2r = : :jk IR(EjaEkaEkv + : : : :k IR(anEkaEka)

+ E :is:lR(Fi7FsanaFi)+ E :s:l E :jle(Ejananan)'

Let us denote [22] . .
2
177" = E :i:l § :kzlg(yEkFiayEkFi),

2

177" = E :kd:lg(?EkEj,yEkEj),
2 n

[E=adl :E : Q(WFFJ',WFF')

[EZdls E . g o1 9(r By, 5. Ey).

(3.57)

(3.58)

(3.59)
(3.60)
(3.61)

(3.62)



Theorem 3.6 Lety : M(c) — M;be a semi-slant&*-Riemannian submersion such that€is vertical. Then we
have:

(1)
For any unit vector fieldE, € T'(9), it follows that
9 (r 4+ r-2) + G2 - n + 3(|B)* + |€F1|*)] < Ric(Er)
+ch (Fy) (3.63)
a) 2 2
2= +3§ : E : (@) = 8(N) + | T = |l
(i)
For any unit vector fieldE, € T'(9), it follows that
) (4 m+r7—-2) + L2 -1 — 1+ 3 cos? 0+ 3(|B|* + |EF)]
< Ric(E,) + Ric*(Fy) (3.64)

FLAEE 3 Y (@)t + |27 - e

The equality case 0f(3.63) and (3.64) holds if and only if
T =Ip -+ T
T =0, j=2,...,r

Proof Since M (c) is a Sasakian space form, from (3.58) we obtain
2r = (c+3) (n+7r)(n+r-1)+ (C D 2(1—7—n)

+3{2(dy + da cos® 0) + ||Z||> + 2 g . g o 9 (BF, B}

Now, we define . .
|18)|* = E :izl E :kzng(ﬂFi,Ek). (3.66)

On the other hand, using the Gauss-Cod?ZZi-type equations (2.9), (2.10), gnd (2.11), we get

(3.65)

27 =27+ 27" +r2||H|? - kalg(yEkEj, I5.E;) +3 g . 9( R Fy, o5 Fy)
_Zz 1Zk lg((va Ek’F. + : : : :k 1 g(yEkFiayEkFi)

Zs 1211 VF‘?)EEJ’F)"’Zle 9(Tg,Fs, T, Fs)

_g(dFsEp 'QfFSEJ))'
Thus from (3.35) and (3.67), we derive

n r s 2
2 =2t L = T - Ty — T2 ), ) ()
§= =4 1y
S o7 s 5)2 a2
+2Zs IZ2<'L<]<T y 7((2j) )+62a:1 25:2 (52{15) +6Za:1 Z2§i<s§n (JZ{Z

+ ZZ . Zk (9(TB,Fi, T5, Fi) — g(p, B, &5, Ei))—26(N)

+Zs 12 yE Fs,yE ) g(,,Q{FSEj,JZ{FSEj)).

Using (3.42), (3.53), (3.65), and (3.66) in (3.68), we obtain

(3.69)



(6%43)(71 +7r)(n+r-1)+ (611) [2(1 —r —n) + 3{2(d1 + d2 cos? 0)
+2[| B *+ 1 € |1*}]
= 2Ric(E1) + 2Ric* (1) + 5 |H|* = 5(F3 — Ty — .. = T)’

2D DLy
+6 Z;:I Z::2 (”‘2710;)2 + Z;l Z;Zl{g(yEkF’L" Ig.F;) — g(p Ey, IF EL)}
—20(N) + Zn Z A9(Tn,F., T5,F.) — o, By, o, Ej)}

+Z2<z<]< El’E]’EPE)—f— : :2< i<j<n F F F F)

If we take U; € T'(2), considering (3.47), (3.55), (3.59), and (3.62) in (3.69), we obtain (3.63). In a similar
way, if we take U; € F(Q?), considering (3.49), (3.55), (3.59), and (3.62) in (3.69), we obtain (3.64). This
completes the proof. O

From (3.65) and (3.67), we obtain
) (4 r)(n+ r—1) + 201 — 7 — n) + 3{2(dy + d; cos? 6)
+2 2%+ € 1°}] (3.70)

~ « 2 2 2 2
=27+ 2r* +r?|H|* - | 77| + 3|l | =28(N) + 2| 7| 2| & |
From (3.70), we get:

Theorem 3.7 Lety) : M(c) — Mibe a semi-slanté*-Riemannian submersion such that€is vertical. Then we
have

274 2r0 <Ly r)(n+r—1) + SL2(1— 7 —n) + 3{2(d + da cos? 6)

+2(| B2+ | % |12 - | H|* + | 77| + 28(N) -2 77 |)” (3.71)
+2]7 |,

274+ 2r0 > L () (n4r—1) + EL2(1 — 7 — n) + 3{2(d1 + ds cos? 6)
+2| 22+ | % 12 - 2= | + | 773 |” + 26(N) (3.72)
I d

Equality cases of (3.71) and (3.72) hold for allp € Mif and only if horizontal distribution.7€is integrable.
From Theorem 3.7, we have:

Corollary 3.8 Lety) : M(c) — Mibea semi-slanté*-Riemannian submersion such that€is vertical and each
fiber be totally geodesic. Then we have

274+ 2rr <Ly r)(n+r—1)+ EL2(1 -7 —n) + 3{2(ds + dy cos? ) 573
, .
+2 =%’||2+ 1% 11%] + 2]l I,
27+ 2r* > 8 (4 py(n 4+ r—1) + SLR(1 - r — n) + 3{2(d1 + ds cos? 6) 574

2
+2 | 2 |° + || ¢ |7} -3l ||
Equality cases of (3.73) and (3.74) hold for allp € Mif and only if horizontal distribution.7€is integrable.

Theorem 3.9 Letyy : M(c) — Mibea semi-slanté*-Riemannian submersion such that€is vertical. Then we

have
(3.75)



27421 > (C%“?’)(n +7r)(n+r-1)+ %[2(1 —r—n)+ 3{2(d1 + d2 cos? )
2 2 2
+2 | B+ [ €17} - 2| H|" + 28(N) =277 ||” + 2] & 7|

2
=8|,
(c+3) (c—1)

27 4 27 < 5 (n+r)(n +r—1) + = [2(1 — 7 — n) + 3{2(d; + d, cos? §)

2 2 2 2
+2[| Z1° + 11 €17} - 2| HI" + |77 + 26(N) + 2| 7|3 & 7"
Equality cases of (3.75) and (3.76) hold for allp € Mif and only if the fiber through p ofiis a totally
geodesic submanifold of M.

(3.76)

From Theorem 3.9, we have the following corollary.

Corollary 3.10 Letyy : M(c) — M be a semi-slanté*-Riemannian submersion such that€is vertical and #is
integrable. Then we have

27421 > @(n +7r)(n+r-1)+ (C;—l)[2(1 —r—n)
+3{2(dy +da cos®> 0) +2 || B |2 + || € ||*}] — r?|| H||?> + 26(N) (3.77)
2|77,

27+ 271* < @(n +7)(n+r-1)+ %[2(1 —r—mn)
+3{2(d1 + dy cos? 0) + 2 | B> + | € |2} — 2| H|* + 26(N) + | 77|,
Equality cases of (3.77) and (3.78) hold for allp € Mif and only if the fiber through p ofijis a totally
geodesic submanifold of M.

(3.78)

Lemma 3.11 Let p and q be nonnegative real number, and then
5t 2 Ve
with equality iffp = q.

By virtue of Lemma 3.11 in (3.70), we get:

Theorem 3.12 Lety) : M(c) — Mbe a semi-slant¢--Riemannian submersion such that€is vertical. Then we
have

@(n +r)(n+r-1)+ (6%41)[2(1 —r —n) + 3{2(d; + d» cos? 6)
+2 [ B+ | € 12} < 27+ 27 + 02| H|* + 2| 77| + 3]l 7| ~26(N) (3.79)
—2v2l|l ||| 7.

Equality cases of (3.79) hold for all peM if and only if|| ./ || = |7 7.

Theorem 3.13 Lety : M(c) — Mjbe a semi-slant&*-Riemannian submersion such that€is vertical. Then we
have

) (1) (n+r=1) + L1 [2(1 — r — n) + 3{2(d1 + d3 cos® 6)
42| B2+ | G2 > 27+ 20" + r2 | H|? — | 77| —28(N) -2 ]| || (3.80)

+2v6] 7|77 l.
Equality cases of (3.80) hold for allp € Mifand only if|Z” || = | T 7.

Lemma 3.14 ([49]) Letpi,p2,- ..., Pn,be n-real number(n > 1),and then

with equality iffp1 = pa =...= pp.

Theorem 3.15 Lety) : M(c) — Mbe a semi-slant¢*--Riemannian submersion such that€is vertical. Then we
have



3 (g r)(n 4 1) + L2201 — 7 — n) + 3{2(d1 + d; cos? 6) (3.81)
2 B+ 1€} < 2T+2T* +r(r—1)[|H| + 3|27 |*~28(N) + 2| 7”|”

2
2|7

Equality case of (3.81) holds for all p € M if and only if we have the following statements:
o . . N
1 is a Riemannian submersion that has totally umbilical fibers.

(i)
Fij=0,fori #je{l1,2,...,r}

Proof From (3.70), we have
) (n 4 r)(n+r—1) + L [2(1 — r — n) + 3{2(d1 + da cos® 6)
+2||%‘H2+||‘5|| 1

R . ) ) n T s 2 n T s 2 12 (382)
S P - D QL (9 = Q) () + 3l 2sw)

2 2
+2| 77 =2l
Considering Lemma 3.11 in (3.82), we get
) (n 4 1) (n+r—1) + L [2(1 — r — n) + 3{2(d1 + da cos® 6)

n r 2 n T s 2
R T er L T D DN O DA I DD DN

+3]la 7| ~26(N) + 2|7 7 |*~2]| & *],
which is equivalent to (3.81). Equality case of (3.81) holds for all p € M if and only if

n T
— _ _ E E 2
%1—%2—'--—%7‘ and =1 j#k(Tﬁc) ’
which completes proof of the theorem. O
The same proof way of Theorem 3.15, we have:

Theorem 3.16 Letrw : M(c) — Mibe a semi-slant¢™-Riemannian submersion such that€is vertical. Then we
have

) (- r)(n+ r—1) + 201 — 7 — n) + 3{2(d1 + d3 cos? 6)

+2 | 21+ % I1°} (3.84)
> 27 4+ 2r* + 2||H|? — |77 + Ltr(a ) —26(N) + 2| T 7| —2|| ||
Equality case of (3.84) holds for allp € Mif and only ifety, = oy = ... = ppanda;; = 0, for

i1#£7€{1,2,...,n}.
From Theorem 3.16, we get:

Corollary 3.17 Letr : M(c) — Mbe a semi-slanté*-Riemannian submersion such that€is vertical and each
fiber is totally geodesic. Then we have

3 (n 4+ r)(n+r—1) + L [2(1 — r — n) + 3{2(d1 + d2 cos® 6)
HH%W+H%HH2%+%“meﬁ+%%ﬂﬁt%W%wﬂfﬁ
Equality case of (3.85) holds for allp € Mifand only ifety1 = @by = ... = Gppanda;j = 0, for
i#je{l1,2,...,n}.

Finally, in this section, we are going to provide some illustrative examples for semi-slant {--Riemannian
submersion from a Sasakian manifold. We first have the following trivial examples:

(3.85)



o Every invariant submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant £*-

Riemannian submersion with 2 = 0 and § = 0.
o Every anti-invariant submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant £-

Riemannian submersion with 9 = 0 and § = 3 [26].
¢ Every slant Riemannian submersion from a Sasakian manifold to a Riemannian manifold is a semi-slant
&' -Riemannian submersion with 2 = 0 [17].

The following example is a nontrivial example for semi-slant £ --Riemannian submersion from a
Sasakian manifold.

Example 3.18 Letbe (R, g1, @, £, 1) almost contact metric with Sasakian metric structure manifold and
(RS, go) be Riemannian manifold. Here

n= 1{2dz + v?du’ — vidu' — v du’}, £ = 2%,
grn =n®@n+ $(du! @ du' + du’ @ du? + ... + du'® ® du'®)

grs = + E izl(dui ® dut).

¢(U17---,U10,Z) = (—U4,—U10,U7,U1,U6,—U5,—U3,—U9,U8,U27

wus+uTug—uduy )

and

2
Let ¢ be a submersion defined by

7/1 : (RU’gR“aQSy 67 77) — (R6agR6)v

-1 1 1 1
¢(U1, L) 7u107z) = ﬁuZ + Wu%ul?uﬁ: WUS - ﬁu107u57

~1 1
—=ug — —=ug ).
2 4T 8)

Then it follows that
_ _ 1 9 1 9 _ -1 9 1 5]
kergp, = {El__iﬁ_w+_28_w’E2_ V3 B T V3 Bun
B L0 _ 1 8
3= V2 Ouy V2 Oug’
d ]
E4=3—u9,f=2g}
and
-1 0 1 0 0 > 0 0 29
(kergp) ={p - =2 1L 2 p 0 w8 p 0 w9
V2 Ous V2 Ouy Oouq 2 0z Oug 2 0z
_ 190 1 9 _ 0 w9 . -10 1 9]
4_\/§6u3 \/§6u10’ 5_6u5 2 9z’ 6_\/§BU4 V2 Ous ’

hence we have ¢(E;) = —E». Thus it follows that & = span{E1, E2} and 2 = span{Es, E,} is a slant
distribution with semi-slant angle = 7. In this case 1) is a semi-slant &+ submersion. Also by direct
computations, we obtain ggs(F;, F;) = gru (¢F;, F;); i =1,...,6, which show that ¢ is a semi-slant £*-

Riemannian submersion, where (u1, . .., u;g, ) are the Cartesian coordinates.
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Abstract

This chapter concerns with the investigation of k-almost Ricci-Yamabe solitons and
gradient k-almost Ricci-Yamabe solitons in perfect fluid space-times and generalized
Robertson-Walker space-times. First, we deduce the criterion for which the k-almost
Ricci-Yamabe solitons in a perfect fluid space-time is steady, expanding or shrinking.
Then we establish that if perfect fluid space-times admit a gradient k-almost Ricci-
Yamabe soliton with Killing velocity vector, then either it represents phantom era, or the
gradient k-almost Ricci-Yamabe soliton is expanding or shrinking under some condition.
Moreover, we illustrate that a generalized Robertson-Walker space-time represents a
perfect fluid space-time if it admits a k-almost Ricci-Yamabe soliton. Next, we establish
that if a generalized Robertson-Walker space-time allows a k-almost Ricci-Yamabe
soliton of gradient type with constant scalar curvature, then it also represents a perfect
fluid space-time.

Keywords PF space-times - GRW space-times - k-almost Ricci-Yamabe solitons

1 Introduction

Einstein’s general relativity (GR) theory is usually called the gravitation theory of
geometry. GR, the finest well-known physics theories of this century, has established the
fundamental relationship between the geometry of space-time and physics. It has been
the areas of greatest interest in both mathematics and physics during the last century.
Today, one of the most significant issue is trying to solve Einstein’s field equation (EFE)
in many different approaches.

The most straightforward answer of the above issue is the Minkowski space-time
(four-dimensional Euclidean space R* with a Lorentzian metric). Further nontrivial
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solutions include the Kerr, de-Sitter, and Schwartzchild solutions. In GR theory,
Lorentzian warped product manifolds were modified to acquire a general solution to
EFEs. Standard static space-time [1] and generalized Robertson-Walker space-time
(GRW) [2, 3] are two prominent instances.

From GR we know that a space-time is a Lorentzian manifold M * that allows for a
globally time-oriented vector and has the metric g (Lorentzian) of signature
(+, 4, +, —)- The notion of GRW space-times was first invented by Alias et al. [4]. If a
Lorentzian n-manifold M with n > 3 can be formed as a warped product
M = —I x p?M*, where p > 0 indicates a scale factor and M * denotes an (n—1)-
dimensional Riemannian manifold, then it is referred to as a GRW space-time. The GRW
space-time reduces to a Robertson-Walker (RW) space-time if the Riemannian manifold
M* is a 3-dimensional manifold of constant curvature.

In [5], the authors define pseudo-Einstein space as a Riemannian space whose Ricci
tensor S fulfills the condition

S(Xl,Yl) :alg(Xl,Yl) —|—b1A(X1)A(Y1), (11)
where a1,b; € R and A4 is a nonzero 1-form such that A(X;) = g(X1, p), p is a unit
vector field.

Later, in [6], Duggal and Sharma defined pseudo-Einstein space as a semi-Riemannian
space whose Ricci tensor obeys the relation (1.1), where a; and b; are scalar functions.

Subsequently, in 1991, Deszcz and Verstraelen [7] studied hypersurfaces of pseudo-
Riemannian conformally flat spaces and named a semi-Riemannian space that satisfies
the Eq. (1.1), a quasi-Einstein space.

In [8], Chaki and Maity introduced the notion of a quasi-Einstein manifold whose
Ricci tensor is not identically zero and satisfies the condition (1.1) in which a; and b; are
scalar functions and p is a unit vector field.

In 2004, the authors [9] studied a 2-quasi umbilical hypersurface of a Euclidean
space, and they obtained the following expression for Ricci tensor S as

S(Xl, Yl) = alg(Xl, Yl) + blA(Xl)A(Yl) + ClB(Xl)B(Yl) (1.2)
in which a1, by, ¢ are certain nonzero scalars and A1, B; are two nonzero 1-forms. The
unit vector fields p and p corresponding to the 1-forms A and B, respectively, defined by

A(X,) =g(X1,p) and B(X;)=9(X1,n), (1.3)
are orthogonal, thatis, A(u) = B(p) = g(p, ) = 0. The vector fields p, u are called the
generators of the manifold and a1, b1, c; are the associated scalars. The authors [9]
named such a manifold generalized quasi-Einstein manifold.

The nonvanishing Ricci tensor S in a perfect fluid (PF) space-time is presented by

S=aig+bin®n, (1.4)
o is demonstrated by g(X1, ) = n(X1) for any X1, and a;, by are scalars. Also, gis a
time-like unit vector field of the PF space-time, that is, g(o, o) = —1. Each and every RW
space-time is a PF space-time [10]. In dimension 4, the GRW space-time represents a PF
space-time iff it is a RW space-time. The characteristics of GRW space-times and PF
space-times have been found in [2-14].

For a gravitational constant k, the EFEs with vanishing cosmological constant are
described by

S— 5g=kT, (1.5)



in which r represents the scalar curvature and the energy-momentum tensor (EMT) is
denoted by T.
For a PF space-time, T is described by
T=pg+(@+omen, (1.6
p denotes isotropic pressure, and o indicates the energy density. The Eq. (1.4) can be
obtained from the Egs. (1.5) and (1.6) [11].
Jointly using the Eqgs. (1.4)-(1.6), we provide
ar =200 p = k(p +a). (1.7)
Besides, p = p(o) interconnects p and o known as equation of state (EOS), and in this
case, the PF space-time is called isentropic. For p = o, this space-time is named as stiff

matter. As per [15], the radiation era, the dust matter fluid, and the dark energy epoch
o
are represented by the PF space-time if p = 3 p = 0,and if p + o = 0, respectively. It

also covers the phantom era in which % < —L

On the contrary, the conformal curvature tensor, also named as the Weyl tensor, is
important in relativity theory and geometry. Weyl tensors have been used by many
researchers to characterize space-times. The conformal curvature tensor C is described
by

1
C(X,Y1)Z1 = R(X1,Y1)21—E[Q(QY1,21)X1

—9(QX1, Z1))Y1 + 9g(Y1, Z1)Q X1 — g(X1, Z1)QY1]

+m[9(1’1, Z1) X1 — g(X1, Z1)Y),
R stands for the Riemann curvature tensor, and the Ricci operator Q is presented by
g(QXh Yl) - S(X17 Yl)'
In addition, we are aware that

(div C)(X1,Y1)Z, = n—:g[{(vxls)(Yth)—(VYIS)(Xl,Zl)}
(1.8)
sy (Eam)a(¥s, 20) — (ar)a(r, 22

“div” denotes the divergence, and if divergence vanishes, then it is called harmonic.

The theory of geometric flows has given rise to some of the foremost interesting
mathematical methods used in the last few decades to illustrate the geometric structures
in differential geometry. A part of solutions in which the metric transforms through
diffeomorphisms has a substantial impact on the understanding of flow singularities, as
they appear to be realistic models of singularities. They are referred to as soliton
solutions in general.

In [16], Hamilton simultaneously introduced the Ricci and Yamabe flow. The Ricci
solitons (RSs) and Yamabe solitons (Y Ss) are the specific solutions of the Ricci and
Yamabe flow, respectively. Lately, geometric flows, such the Ricci and Yamabe flows, have
attracted the theoretical attention of many geometers. In 2019, the Ricci-Yamabe (RY)
map was presented in [17] as a novel geometric flow. This map is just a scalar
combination of Ricci and Yamabe flow. A flow like this improves the metrics on the semi-
Riemannian manifold M, which are given by Guler and Crasmareanu [17]



0
EQ(I) = Bor(t)g(t) —2BRic(t), go= g(0). (1.9)

Based on the signs of the related scalars, 8 and B2, anyone can interpret the RS flow as a
Riemannian, semi-Riemannian, or singular Riemannian flow. Certain mathematical or
physical models require this range of choices. The fact that RSs and Y Ss are essentially
distinct in higher dimensions, even if they are equal in two dimensions, is another
compelling reason to start investigating Ricci-Yamabe solitons (RY Ss).

The investigation of space-time symmetries is crucial for figuring out EFEs. Geometry
is characterized by symmetry, which reveals the physics. Space-time geometry exhibits
numerous symmetries. The equations of metric are advantageous since they simplify
several solutions. They are mostly used in GR to classify solutions to EFEs. The soliton is
a type of symmetry that includes the geometrical flow of space-time geometry.
Consequently, the flows of RS and Y S are helpful, since they make the theories of energy
and entropy easier to understand.

A k-almost RY Son (M, g) is a data (g, Z1, k, A1, a1, B1) fulfilling

k£ 7,9 = 2015 — (2A; — Bi7)g, (1.10)
in which k, A1, a1, 81 are smooth functions on M, S represents the Ricci tensor, r
indicates the scalar curvature, and the Lie derivative is represented by £.

The previously mentioned concept is known as gradient k-almost RY S if f denotes a
smooth function and Z; is the gradient of fon M, and then Eq. (1.10) transforms into

kVZf=—a1S— (A1 — 5517) 9, (1.11)
in which V2 f indicates the Hessian of f.

The k-almost RY S (or gradient k-almost RY S) is called expanding for A; > 0, steady
for Ay = 0 and shrinking when Ay < 0.If 81 = 0, a1 = 1, then k-almost RY S (or gradient
k-almost RY S) reduces to k-almost RS (or gradient k-almost RS). Similarly, it turns into k-
almost Y S (or gradient k-almost YS) if 1 = 1, a; = 0. Also, if 81 = —1, a1 = 1, it
reduces to a k-almost Einstein soliton (or gradient k-almost Einstein soliton).

The k-almost RY S (or gradient k-almost RY S) is named proper if a; # 0, 1.

Venkatesh et al. [18] have investigated *-Ricci solitons and gradient almost *-Ricci
solitons on Kenmotsu manifolds. In 2022, Blaga and Ozgiir [19] have studied almost 7-
Ricci and n-Yamabe solitons with the help of torse-forming vector field where as in [ 20]
the Ricci-Yamabe solitons have examined. Also in [21], the authors have investigated *-7)-
Ricci-Yamabe Solitons on Sasakian manifolds.

Very recently, there is a notable increase of fascination in researching solitons in
numerous geometrical contexts because of their connection to GR. Many geometers have
recently studied many sorts of solitons in PF space-times including RSs and gradient type
RSs [22, 23], n-RSs [24], Y Ss [22, 25], k-almost Y Ss [26], n-Einstein solitons of gradient
type [23], gradient p-Einstein solitons [27], gradient Schouten solitons [23], m-quasi
Einstein solitons of gradient type [22], RY Ss [28], respectively.

The research mentioned above motivates us to explore k-almost RY Ss in PF space-
times and GRW space-times. Specifically, we arrive at the following conclusions:

Theorem 1.1 Let the PF space-time admit a k-almost RY S, and then its potential vector

ieldZ1is Killing ifdivZ, = Oanday = 0. Also, the soliton is expanding forr < 5% or
g panding -



B1 > —<5, steady ifr = 60[‘311“1 orfy = —%-, and shrinking forr > 60/‘311‘“ orfy < —5,

provideddivo = 0.

Theorem 1.2 If the PF space-times of dimensions 4 allow a gradient k-almost RY S with

Killing velocity vector fieldg, then either the space-time represents a phantom era, or the
gradient k-almost RY S is expanding, steady or shrinking ifr > W , T = %O

20 (a;—b .
r < % respectively.

Theorem 1.3 Let a GRW space-time admit a k-almost RY S, and then the space-time

becomes a PF space-time. Also, the soliton is expanding forr > W, steady if
r= %:n)’“, and shrinking forr < %Zn)’”

Corollary 1.4 In dimension 4, a GRW space-time admitting a k-almost RY S is of Petrov
type I, D, or O and the space-time reduces to a RW space-time.

Theorem 1.5 If the GRW space-time admits a k-almost RY S of gradient type withr =
constant, then it becomes a PF space-time.

As a result of the aforementioned theorem, we establish:

Corollary 1.6 In dimension 4, if a GRW space-time allows a gradient k-almost RY S with
r =constant, then the space-time belongs to Petrov classification I, D, or O and the space-
time reduces to a RW space-time.

2 PF Space-Times and GRW Space-Times
From the PF Eq. (1.4), we provide

QX1 = a1 X1 +bin(X1)oe, (2.12)
Q indicates the Ricci operator demonstrated by g(QX1,Y1) = S(X1,Y1), and
contracting the above equation gives

r= E jeier =na; — by, (2.13)

in which at every point of the space-time {e;} represents the orthonormal basis of the
tangent space and €; = g(e;, ;) = £1. The covariant differentiation of Eq. (2.12) yields

(Vx,Q)(Y1) = (X1a1)Y1 + (X1b1)n(Y1)e + b1 (Vx,m)(Y1)e + bin(Y1)Vx,0. (2.14)

Theorem 2.1 ([11]) Ann (n > 3)-dimensional Lorentzian manifold represents a GRW
space-time iff it allows a time-like and unit torse-forming vector field:

Vx,v=Y[X; + A(X1)v], A denotes a one-form demonstrated asg(X1,v) = A(X1)for
any X1, which is also an eigenvector of the Ricci tensor.

Let us assume that the velocity vector field g is a torse-forming vector field. Therefore, by
using Theorem I, we obtain



Vx,0 = ¥[X1+ n(X1)e] (2.15)
and
S(X1, 0) = ¢n(X1), (2.16)
¢ is a nonzero eigenvalue, and ¥ denotes a scalar.

Lemma 2.2 For any GRW space-time, we provide [29]
R(X1,Y1)o = pa[n(Y1) X1 — n(X1)Y1] (2.17)
and
5(Xy,0) = (n—1)pin(X1), (2.18)
where we setp; = (0¥ + ¥?).

Lemma 2.3 Any GRW space-time satisfies the following [29]
(X1p1) + (opa)n(X1) = 0. (2.19)

3 Proof of the Main Results

Proof of Theorem 1.1  Suppose the PF space-time admits a k-almost RY soliton
(9, X, k, A1, 21, B1). Then from Eq. (1.10), we acquire
k(.leg)(Xl, Yl) + 20(15(X1,Y1) + (2)\1 — ﬂlr)g(Xl,Yl) =0. (3.20)
Using the Lie differentiation’s explicit form, the foregoing equation yields
018(X1, Y1) = —£[g(Vx,Z1,Y1) 4+ 9(X1, Vv, Z1)] — < 1— %)9(X1,Y1)- (3.21)

Contracting Eq. (3.21) gives

ayr = —k:dz'le—4()\1 _ %)

which implies

A — B = MA o (3.22)
Using Eq. (3.22) in Eq. (3.20), we obtain
%(leg)(Xl,Yl)+0415(X1,Y1)+ <%+%) =0. (3.23)

If we take divZ; = 0 and a; = 0, then from the last equation Theorem follows.
Again contracting the PF equation (1.4) provides

r = —b; + 4a;. (3.24)
From the Egs. (3.22) and (3.24), we acquire
(011 + 251)(—171 + 4a1) =4\ — kdivZ;. (3.25)
Again comparing Egs. (1.4) and (3.21), we infer
a19(X1, Y1) + bin(X1)n(Y1) = —5e-[9(Vx,0,Y1) + 9(X1, Vv, 0)]

— (M= A )g(xs, 1), 0

Putting X; = Y7 = pin the previous equation gives
al — b1 = L ()\1 — %) (3.27)

a1
Comparing the Egs. (3.25) and (3.27) and taking divpe = 0, we achieve

a1+2
)\1 = ﬁ[ﬁalal — ,317’]. (3.28)



Therefore, the soliton is expanding for r < 6(;311‘“ or B > —<-, steady if r =
B1 = —5+, and shrinking for r > % or 1 < —4, provided divp = 0.0

6051(11

or

Proof of the Theorem 1.2 Choose a PF space-time which admits a k-almost RY soliton of

gradient type, and therefore from Eq. (1.11), we get
EVx,Df + a1QX; = —( 1— %)XL

Differentiating the Eq. (3.29), we provide
kalelDf + (Ylk)VXlDf = —Oé:[VYIQXl

—()\1 - %)vY}Xl + %(Yl’l")Xl.

From the Eq. (3.30), interchanging X; and Y7, we infer

kVXIVlef—k (Xlk)Vlef = —O.’lelel
- ()\1 - %)vxln + %(Xlr)Yl.

Again, from Eq. (3.29), we acquire
kV x, vy Df = —1Q([ X1, Y1]) — ()\1 - %)[Xl,yl]-
From Egs. (3.30), (3.31), and (3.32), we reveal
kR(X1, Y1)Df = —au[(Vx,Q)Y1+ (Vy,Q)X{]

+%[(X1k)QY1 — (Y1k)QX)]

+% <)\1 — %) [(X1k)Y1 — (Y1k) X]

B
+ 5 [(Xar)Yy — (Yir) X4,
The covariant differentiation of Eq. (2.12) yields

(Vx,Q)(Y1) = (X1a1)Y1 + (X1b1)n(Y1)e + b1(Vx,m)(Y1)e + bin(Y1) Vx, e.

The Egs. (3.33) and (3.348 yield

ER(X,,Y1)Df = oy[(X1a1)Y7 — (Y1a1) X1 + {(X1b1)n(Y1) — (Y1b1)n(X1)

+b1(Vx,m)(Y1) — 01(Vyn)(X1)}o + bi{n(¥Y1)Vx,e
—n(X1)Vy,0}]

+% [(X1k)QY1 — (Y1k)QX1]
+1 ()\1 - %) [(X1k)Y1 — (Y1k) X4]

g
+5 [(Xin)Y1 — (ir)X).
Now contracting the Eq. (3.35), we provide

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)



kS(Yl, Df) = Ckl[(]. — n)(Ylal) + (Ylbl) + (le)’I](Yl)
+01[(Ven) (Y1) — (Vvin)(e) + n(Y1) dive

+% {a1(1 — n) + b1 }(Yik) + b1 (ek)n(Y1)]

+% ()\1 — %) (]. — n)(Ylk) + %(1 — n)(er)

Also the PF equation (1.4) gives

S(Y1,Df) = ar(Y1f) + bin(Y1)(ef)- (3.37)
Putting Y7 = pin Egs. (3.36) and (3.37) and then comparing, we acquire
k(a1 — b1)(ef) = a1 —n)(ear) — by divg]

5 [aa(1 =) + by — b (k)

(3.38)
1 ﬁlr /Bl
t ()\1 - T) (1 —n)(ek) + =~ (1 —n)(er).
Let (ok) = 0 and p be Killing; therefore, we acquire (see, [30], p. 89) £ ,p = 0 and
£ 0 = 0.1tisknown thata; = % and by = k(p + o). Thus, we infer

(ea1) = (ob1) = 0.
Again, from (2.13), we obtain

r = nai; — by.
Hence, we get (or) = 0. Because the hypothesis g is Killing, then div ¢ = 0. Thus, using
the foregoing result, Eq. (3.38) yields
k(a1 — b1)(ef) = 0. (3.39)
This reflects that either a3 = b; or (9f) = 0, since k # 0 on a PF space-time with the
gradient k-almost RY soliton. Here, we consider the following two cases:

Case (i): Leta; = by and (of) # 0, and hence the Eq. (1.7) gives

_ n—3
b=— n—1 g,

which provides the EOS in a PF space-time equipped with a gradient k-almost RY soliton.
For n = 4, the EOS is 3p + o = 0, which entails that the PF space-time represents
phantom era.

Case (ii): Let (of) = 0and a; # b;. The covariant differentiation of g(g, Df) = 0
produces

9(Vx,0,Df) = [ §-(ar — br) + + (M = 57 ) [m(x), (3.40)
in which we have used Egs. (2.12) and (3.29). Since here g is Killing, we infer
9(Vx,0,Y1)+ g(X1, Vy,0) = 0. Now putting Y7 = g in the last relation, we acquire
that g(X1, V,0) = 0, since g(V x, 0, 0) = 0. Therefore, we state that V ,0 = 0. Using the
previous relation, putting X; = pin Eq. (3.40), we find that

AL = % + a1(by — a1), (3.41)



which shows that the k-almost RY soliton of gradient type in a PF space-time is
expanding, steady, or shrinking if r > —20{1(;1_1’1) T = —20‘1(;1_“) orr < —20‘1(214’1),

respectively. O

Remark 3.1 div o = 0 implies the space-time is expansion free. It may be mentioned
that div o = 0 plays a significant role in Raychaudhuri’s equation.

Proof of the Theorem 1.3  Suppose the GRW space-time admits a k-almost RY soliton
(g, 0, k, a1, A1, B1), and hence the Eq. (1.10) provides

E(£vg)(X1,Y1) + 204 8(X1,Y7) + (2A1 — B17)g(X1,Y7) = 0, (3.42)

which entails
k{9(Vx,0,Y1) + g9(X1,Vy,0)}
+2a18(X1, Y1) + (2A1 — B17)g(X1,Y1) = 0.
Using the Eq. (2.15) in Eq. (3.43), we provide
(X1, Y1) = - {Ou = & + ke bo(X0, 1) - Ep(xn(ri),  (3.44)

(3.43)

al
which represents PF space-time.
Putting X; = Y; = pin the previous equation yields

)\1 = —al(n—l),ul + %

Therefore, the soliton is shrinking for » < W, steady if r = 20‘1(27:")’“, and

expanding for r > W O

Proof of the Corollary 1.4. In [31], Mantica et al. proved that a GRW space-time becomes
a PF space-time iff (div C)(X1, Y1)Z1 = 0. Also, we know that in a GRW space-time,
C(X1,Y1)e = 0iff (div C)(X1,Y1)Z1 = 0. Also, C(X1, Y1) = 0 tells us that the Weyl
conformal curvature tensor is purely electric[32]. In four dimensions, the space-times
are of Petrov types I, D, or O if C is purely electric ([33], p. 73).
For dimension 4, C(Y1, X1)p = 0 is identical to ([34], p. 128)
n(U1)C (Y1, X1, Wi, Z1) + n(Y1)C (X1, Ur, Wi, Z1) s
n(X2)C(U, Yi, Wi, 1) = O, 545)
in which ’l](Yl) = g(Yl, g) and C(Yl, Xl, W1, Zl) = g(C(Yl, Xl)Wl, Zl) for any Yl, X1
, Wi, Z3, Us.
Now, replacing U; by p yields
C(YlaXthaZl) :Oa (346)
from which we say that the space-time is conformally flat.
A GRW space-time has been found to be conformally flat iff it is a RW space-time [35].
Hence, the proof. O

In one specific instance, we get the following:

Corollary 3.2 The GRW space-time allowing a k-almost Ricci soliton represents a PF
space-time. Also, the soliton is steady ifis1 = 0, expanding forp; < 0, and shrinking for
p1 > 0.



Proof In particular, if we take 81 = 0 and a; = 1, then the Eq. (3.44) entails
S(X1,Y1) = —{A + k¥ }g(Xy, Y1) — k¥n(X1)n(Y1), (3.47)
which means that it is a PF space-time.
Putting X; = Y7 = oin Eq. (3.47) yields

/\1 = —(n—l),ul.
Thus, the soliton is steady if 1 = 0, expanding for ; < 0, and shrinking for p; > 0.
Hence the result follows. O

Proof of the Theorem 1.5 Assume that GRW space-time allows a k-almost RY soliton of
gradient type. Then, the Eq. (1.11) yields

kleDf—l-alQXl = —()\1 — %)Xl (3.48)
Then the Eq. (3.33) tells that
kg(R(X1,Y1)Df,0) = —ailg((Vx,Q@)Y1,0) +9((VrQ) X1, 0)]

+% [(X1k)n(QY1) — (Yik)n(QX1)]

i (Al - @) (Xikn(v) — (km(xy]  G49)

k 2
FEL[Xarin(vh) — (Varn(Xa)]
From Eq. (2.18), we get
Qo = (n—1)uo. (3.50)
Differentiating (3.50), we reach
(Vx,Q)e = (n—1)(Xip)e
+(n—1)¥u1[X1 +n(X1)0] (3.51)

—VQRX; — (n—1)Tuin(X1)o.
Using Egs. (2.17) and (3.51) in Eq. (3.49), we obtain
kpan(XO)Y1f —n(Y1)X1f] = ai(n=1)[(Yip)n(X1) — (X1p1)n(Y1)]

+ 2L (X1 k)n(QY1) — (Yik)n(QX1)]

k
re (Al - %) (kv — (Vikm(xy) 352
_|_% [(Xlr)n(Yl) — (Y17’)77(X1)]-

Putting Y7 = pin Eq. (3.52), we have
kpi[Xa1f + (ef)n(X1)] = ar(n—=1)[(X1p1) + (op1)n(X1)]
+ S (Xak)n(Qe) — (ek)n(QX)]
(=B ¢ encryy B9
_hA
2

[(Xar) + (er)n(X1)]-



With the use of Lemma 2.3 and (X1 k) = 0, the Eq. (3.53) entails that

Bl f + (ePn(Xn)] = 21 1(Xr) + (ern(X))] (3.5
Let r be constant, and then from the Eq. (3.54), we obtain
ku [ X1 f + (ef)n(X1)] =0, (3.55)
which implies
Xi1f=—(of)n(Xy), since p;andk # 0. (3.56)
The above equation reduces to
Df = —(ef)e, (3.57)
which reflects
Vx, Df = —{Xi(ef)}o — ¥(ef){X1 + n(X1)e}- (3.58)

The Egs. (3.48) and (3.58) jointly entail
{X1(ef)In(Y1) + ¥(of)[9(X1, Y1) + n(X1)n(¥1)]

«a 1 T 3.59
= fS(Xl,YI)“—E()\I_%)Q(Xlayl) ( )
Setting Y1 = oin Eq. (3.59) yields
{X1(eN} = —{ 5 (=D + + (M - 57 bn(x0). (3.60)
With the help of the above two equations, we provide
1 r
S(X1,Y1) = a—{k‘l’(gf) - (Al - %) }Q(Xl,Yl)
! . b (3.61)
+ Lo — antn-1m - (3 - 25 bacxonv,
1

which implies that it is a PF space-time.
This finishes our proof. O

Proof of the Corollary 1.6. The proof is the same as that of previous Corollary.

Corollary 3.3 Let a GRW space-time admit a k-almost gradient-type Ricci soliton. Then
the GRW space-time reduces to a PF space-time.

Proof In particular, if 8; = 0 and a;; = 1, then Eq. (3.54) implies

kui[X1f + (ef)n(X1)] = 0. (3.62)
Using the aforementioned theorem’s analogous calculations, we obtain
5(X1, Y1) = {k¥(ef) — M}g(X1, Y1) +{k¥(ef) — (n—1)pu1 — Ai}n(X1)n(Y1),(3.63)
which represents PF space-time.
Therefore, the corollary follows. O

4 Discussions

The current stage of the physical world’s predictive models is space-time. The proper
EMT may be used in GR theory to estimate the Cosmos’s matter content, which is
acknowledged to act like a PF space-time in cosmological models. The simplest kind of
fluid, which is incapable of transferring heat, is called a PF. A perfect fluid cannot resist a



tangential force since it lacks viscosity. In GR, perfect fluids are used to simulate
distributions of matter (idealized), like an isotropic universe or the inside of a star.

A wave packet known as a soliton or solitary wave keeps its form while moving at a
steady speed. Gradient is commonly used in physics and mathematics to denote the
direction and magnitude of a force acting on a particle or field. Gradients are often used
in chemistry and engineering, among other fields, to characterize how a substance’s or
system'’s property varies in response to its location or other factors.

In this chapter, we determine the condition under which the k- almost RY Ss and
gradient k-almost RY Ss are expanding, stable, or shrinking in a PF space-time. Also, we
derive that if a GRW space-time admits a k-almost RY S, then the space-time represents a
PF space-time. Also, if it allows a k-almost RY S of gradient type with r = constant, then it
represents a PF space-time.

In future, we or perhaps other researchers will look at the characteristics of various
solitons in cosmological models and GR theory.
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Abstract

Ricci flows are used as a powerful tool to address several problems of information technology, engineering,
medical science, and other allied areas. A self-similar solution of the Ricci flow on a Riemannian manifold is
named as the Ricci soliton. The Ricci soliton becomes an almost Ricci soliton if we think of the soliton
constant as a smooth function in the Ricci soliton equation. This chapter explores the properties of almost
Ricci solitons within the framework of Riemannian concircular structure manifolds (briefly, (RCS),,-
manifolds). We establish the conditions for which the (RC'S),,-manifolds to be quasi-Einstein manifolds,
and the solitons are expanding, shrinking, and steady. We also provide the restrictions for the soliton
function of almost Ricci solitons to be harmonic, strictly super-harmonic, and strictly subharmonic. The
existence of projectively semisymmetric (RC'S),,-manifolds is ensured. Some geometrical properties of

(RCS),,-manifolds satisfying @ - & = 0 are investigated, and the definition of extended Ricci recurrent
manifolds is encoded.

Keywords Riemannian manifolds - (RC'S),,-manifolds - Curvature tensors - Symmetric spaces - Torse-
forming vector field - Concircular vector field - Generalized soliton

1 Introduction

Let (M, g) be a Riemannian manifold of dimension n. Vector fields play a significant role in understanding
the geometry and topology of Riemannian manifolds, and they are indeed central to various aspects of
differential geometry and theoretical physics. For example:

e Torse-forming vector fields: These vector fields generate torsion in the manifold, and they are important
in the study of connections and the curvature of the manifold.

e Torqued vector fields: Related to the concept of torque, these vector fields influence how the manifold
might twist or rotate, and they have applications in studying dynamics, fluid flows, and electromagnetism
on manifolds.

» Concircular vector fields: These fields preserve the shape of a curve under parallel transport, meaning
they maintain the geometry of paths on the manifold and have applications in understanding symmetries
and geodesics.

e Recurrent vector fields: These fields are of interest in dynamical systems, where they correspond to vector
fields whose flow returns to its initial configuration after a certain time, and they are essential in studying
periodic or quasiperiodic phenomena.

 Parallel vector fields: These are vector fields that are “constant” in some sense, meaning that they remain
unchanged under parallel transport along any curve on the manifold. They are related to the concept of
curvature and can help characterize the manifold’s geometry.
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These vector fields are used to explore and understand the curvature, topology, and other intrinsic
properties of Riemannian manifolds. They also show up in the study of Einstein’s theory of general relativity,
fluid dynamics, and even string theory, where the geometry of space-time is often modeled as a Riemannian
manifold. The behavior and classification of these vector fields allow mathematicians and physicists to draw
significant conclusions about the manifold’s global properties.

Riemannian manifolds admitting concircular, special concircular, non-isometric concircular, non-
isometric conformal, and non-affine projective vector fields were classified by Tashiro [68] in 1963. The
features of Riemannian manifolds with exterior concurrent vector fields and torse-forming were
investigated by Mihai and Mihai [55]. Chen [25] established several results of Ricci solitons and investigated
the properties of concircular vector fields. In [26] and [27], he examined the characteristics of torqued and
parallel vector fields in collaboration with his coauthors. Various authors have conducted studies on
68, 70, 71] along with their respective references. In [17], Chaubey and Suh have started their study by
considering n-dimensional Riemannian manifolds admitting a torse-forming vector field and introduced the
notion of Riemannian concircular structure (briefly, (RC'S),,-manifolds). They have validated the existence
of such structures by proving nontrivial examples. They also proved that the (RC'S),,-manifolds are
integrable and established some curvature identities. Several authors have explored the properties of
Riemannian concircular structure manifolds by considering the different values of potential function « (see

their findings. This chapter explores the properties of (RC'S),,-manifolds if the Riemannian metric is an
almost Ricci soliton.

The exploration of symmetric spaces represents a compelling and significant area within the realm of
differential geometry. Semisymmetric space (R(U, V) - R = 0) [67] is the generalization of locally
symmetric space (VR = 0), and it has been studied by several geometers. Here R denotes the non-
vanishing curvature tensor of the Riemannian manifold M, V is the Levi-Civita connection of the Riemannian
metric g, and R(U, V') acts as a derivation on R for all vector fields U and V on M. A Riemannian manifold M
is referred to as a Ricci semisymmetric if its non-vanishing Ricci tensor S satisfies the curvature condition
R(U,V) - S = 0. Note that while the class of Ricci symmetric manifold (V.S = 0) includes the class of Ricci
semisymmetric manifold (R(U, V) - S = 0), the converse is generally not true. It is well known that every
semisymmetric manifold is Ricci semisymmetric, but its converse part is not true (in general). Numerous
authors have examined the characteristics of symmetric spaces in Riemannian and semi-Riemannian
settings, including locally symmetric, semisymmetric, Ricci semisymmetric, and others. For further

As a generalization of the Kahler-Einstein metric, Koiso [50] introduced the concept of quasi-Einstein
metric on Fano manifolds in 1987. Numerous scholars have examined the characteristics of quasi-Einstein
metrics. Chaki and Maity [6] investigate the characteristics of the Ricci tensor S of an n-dimensional
Riemannian manifold M that satisfies the following relation after being inspired by the work by Chave and
Valent [23] on quasi-Einstein metrics.

S=m®n+ag. (1.1)
Here a and b are nonzero smooth functions on M, and 7 is a nonzero 1-form associated with the vector field £
, thatis, (-, &) = n(-). M is referred to as a quasi-Einstein manifold (briefly, (Q E),,-manifold) [6] if the non-
vanishing Ricci tensor S of M satisfies Eq. (1.1). In the general theory of relativity, the space-times satisfy Eq.
(1.1) and is termed as perfect fluid space-times provided that vector field £ is a unit timelike vector field,

while a = b = 0 recovers the Ricci-flat manifold. Chaki and Maity examined the following presumptions in

[6]:

e aand b are constants, and the generator of (Q E),,-manifold is recurrent

© a+b=0W = 5-grad a,and VyW = —U + A(U)W, where A is a dual 1-form of W and U is an
arbitrary vector field of M

for (QE),,-manifolds, and they proved that in both the cases (QE),,-manifolds are conformally

conservative. In [17], the authors have generalized results of Chaki and Maity’s work [6]. They gave a clue to
evaluate the smooth functions a and b on M.



In 1822, Joseph Fourier introduced the concept of a heat flow equation, which is a nonlinear partial
differential equation. In 1964, Eells and Sampson [36] introduced a similar nonlinear variant of the heat
flow equation, known as harmonic map heat flow. This inspired Hamilton to introduce the concept of Ricci
flow in 1982 [39, 40]. A Ricci flow is defined by the equation: % = —2Ric, ¢(0) = go. In this nonlinear

partial differential equation, the variables g, ¢, and Ric represent the Riemannian metric, time, and Ricci
tensor of the Riemannian n-manifold, respectively. In 2002 and 2003, respectively, Perelman used the Ricci
flow to solve the Poincaré Conjecture (one of the millennium problems) and the Geometrization Conjecture
[58-60]. Using the Ricci flow, M. T. Anderson [54] provided the geometrization of 3-manifolds. Note that a
number of long-standing, unresolved issues in mathematics, physics, medicine, engineering, and technology
have been addressed with the help of the Ricci flow. A Ricci soliton is a self-similar solution of the Ricci flow.
In order to address a number of problems in the mathematical sciences and related fields, the Ricci soliton
has been employed. The equation
T£vg+S+Ag=0 (1.2)

represents the Ricci soliton equation on an n-dimensional Riemannian manifold M, where £ is the Lie
derivative operator of the Riemannian metric g. S is the Ricci tensor, V is a soliton vector, and A is a soliton
constant. The Ricci soliton is represented by the symbol (g, V', A). The Ricci soliton equation (1.2) becomes
an almost Ricci soliton if we select A as a smooth function on M. If ) is positive, negative, or zero, then an
almost Ricci soliton (g, V, A) is expanding, shrinking, or steady. For more detailed information on solitons,

The following is how we set up our work. We define the Riemannian concircular structure manifold and
list some of its fundamental characteristics in Sect. 2. Section 3 deals with the study of (RC'S),,-manifolds
admitting almost Ricci solitons. Section 4 ensures the existence of projectively semisymmetric (RCS),,-
manifolds admitting almost Ricci solitons. Next, Sect. 5 deals with the study of (RC'S),,-manifolds admitting
Ricci solitons and satisfying the condition 2 - & = 0. Here £ and £ denote the Ricci operator and
projective curvature tensor of M.

2 Riemannian Manifolds and Torse-Forming Vector Field

In this section, we consider the Riemannian manifolds endowed with a torse-forming vector field and
encode the basic results of Riemannian concircular structure manifolds ((RCS),,-manifolds).

Yano [71] introduced the idea of a torse-forming vector field on Riemannian spaces, and numerous
scholars have examined its characteristics in Riemannian and semi-Riemannian settings (see [5, 53, 55, 56]).
In [71], he states that a smooth vector field £ defined on M is a torse-forming vector field if

(Vun)(V) = ag(U, V) +7(U)n(V), ¥V U,V € X(M), (2.3)
where 7(-) = g(+,€) is a 1-form associated with £ and 7 is a 1-form. Here X (M) is the collection of all
smooth vector fields of M. If 1-form 7 is closed on M, then £ is said to be a concircular vector field [37, 70].
The torse-forming vector field £ on M, in particular, reduces to the:

Torqued vector field [26] if (&) = 0

Concircular vector field (in Fialkow’s sense) [25, 37] if 7 = 0
Concircular vector field (in Yano's sense) [70] if the 1-form 7 is closed
Recurrent vector field [61] ifa = 0

Concurrent vector field [27] if Tt = 0,anda =1

Parallel vector field [27, 37] if t = 0,and o = 0

Researchers are drawn to the study of geometric structures using these vectors because they can address a
number of scientific and technological issues, particularly because they play a unique role in geometry and
physics.

These vectors are capable to address several issues of science and technology, especially they play a
peculiar role in geometry and physics, and therefore the study of geometric structures with these vectors
attracts researchers. We categorize Riemannian manifolds with concircular vector fields (in Yano’s sense) in
this chapter. The geometrical and physical properties of Lorentzian manifolds endowed with concircular
vector fields (in Yano’s sense) have been explored by Mantica and Molinari [52] and then proved that the
Lorentzian manifolds are the generalized Robertson-Walker space-times. For instance, we refer to [5, 8, 9,



Assume that M admits a unit torse-forming vector field ¢, thatis, g(¢§,£) =1 = ¢(Vy&, £) = 0. Using
Eq. (2.3) with V = & we discover

an(U) +=n(U) =0, (2.4)
since g(§,€) = n(§) = Land g(Vyn)(§) = 0. In Eq. (2.3), we apply Eq. (2.4) to get
(Vo) (V) = a{g(U, V) —n(U)n(V)}, (2.5)
which implies that
V¢ = o{U - n(U)&}. (2.6)

Here a is a nonzero scalar, and for some smooth function g on M, Vya = g(U, Do) = U(e) = pn(U). The
gradient operator of g in this case is D. It is clear from Eq. (2.1) that the 1-form 7 is closed. By taking the
covariant derivative of Eq. (6) along V and applying Eq. (2.1) and the fact that U(a)) = un(U), we can also
conclude that 7 is closed. According to Yano, the unit torse-forming vector field £ defined in (2.3) is a unit
concircular vector field on M. The smooth function a on M is the potential function of the concircular vector
field. Equation U(a) = un(U) gives that{(a) = p = &(&(a)) = &(u). Again U(a) = pun(U) infers that
Da = p€. Along U, the covariant derivative of Da = u€ yields

VyDa = U(p)é + pa(U — n(U)E).
Examining an orthonormal frame field on M, we can then contract the aforementioned equation over U to
arrive at

Da = ¢(¢(a)) + a(n-1)¢(a),
where A represents the Laplace operator of g. A smooth function ¥ on M is regarded as harmonic if and
only if AW = 0. Assuming that £ = % on M, the equation above takes the following form:

Na =L (% 4+ nlg?), (2.7)
Thus, we state the following result:

Lemma 2.1 ([17]) The partial differential equation (2.7) is satisfied by the potential functionaof§if a unit
concircular vector field€is admitted by an n-dimensional Riemannian manifold.

Equation (2.7) also allows us to say:

Lemma 2.2 ([17]) On an n-dimensional Riemannian manifold endowed with a unit concircular vector field§,

the potential functionaof€is harmonic if and only if%t—o‘ + %oﬁ = constant.

Leta (1,1) tensor field ¢ be admitted to the Riemannian manifold M such that
aglU =Vyg, a#0,

which provides

oU =U — W(U)& (2.8)
where (2.6) is applied. Following (2.8) and n(£¢) = 1 and operating ¢ on either side of Eq. (2.8), we get
¢2 =I-7n® 67

where [ stands for identity transformation and ® denotes the tensor product on M. In view of Eq. (2.8), we
have

9(oU, V) = g(U, V) —n(U)n(V), n(V) = g(V,¢).
Remark that g(¢U, ¢V) = g(¢U, V) = g(U, ¢V),V U,V € X(M). Therefore, we deduce that if M admits a
1-formn, a (1, 1) tensor field ¢, and a unit concircular vector field £, then we have
PP=I-n®¢ n€)=1, g@¢-)=g(,)—n®n (2.9)
The authors of [17] provided the following definition after taking into account all of the aforementioned
facts.

Definition 2.3 Assume that the data (¢, &, 7, g) on an n-dimensional Riemannian manifold M satisfies
(2.9). A Riemannian concircular structure manifold, or (RCS),,-manifold, is then defined as M equipped
with (¢, &, 1, g). On M, the structure (¢, €, 7, g) is defined as a Riemannian concircular structure.

A few fundamental (RCS),,-manifold results are encoded as follows:



Proposition 2.4 ([17]) An n-dimensional (RC'S),,-manifold satisfies:

D g0

W ) =

(i rank (¢) =n—1,

™ (Gud)(V) = al2a@n(V)E — o(U,VIE—n(V)ULY U,V € X(M)

Proposition 2.5 ([17]) Inan (RCS),-manifold, we have:

D Ru Ve = (@ + winV - a0y,
D R0y = @+ WU - oU, V),
(ii

! n(RU, V)W) = (a® + u){n(V)g(U, W) — n(U)g(V, W)},

(iv)
75,6 = ~(n-1)(e® + () © Q¢ = —(n-1)(a + )&,
forallU,V,W € X(M), and (a® + u) # 0.

Proposition 2.6 ([17]) Inan (RCS),-manifold, we have:

VIRV, 6W, 2) 1RV, W,62) = (02 + )W) (V)a(U, Z) — n(0)a(V, 2)] + n2)in(V)gl
R, v, 6w, 62) — iRV, 0V, W, 2),
(iif)

IR($U, ¢V, ¢W,$Z) = IR(U,V, W, Z) — (&* + p){n(Z) [n(U)g(V, W) — n(V)g(U, W)] + n(W)[n(V

W) YR(¢U,V, W, $2) — 1IR(U, $V, $W, Z) = (a® + ) {n(U)n(W)g(V, Z) — n(V)n(W)g(U, 2)},

™) S(oU, V) = S(U,V) + (n—1)(a® + pw)n(U)n(V), forall U,V,W,Z € X(M), here lR(U,V, W, Z) =

3 (RCS),-Manifolds Admitting Almost Ricci Solitons

Let us consider that (RCS),,-manifolds M admit an almost Ricci soliton (g, &, A). Then by the equation of
almost Ricci soliton (1.2), we have

(£Leg)(U, V) +25(U,V) +2X9(U,V) =0 (3.10)
for arbitrary vector fields U and V on M. The definition of Lie derivative together with Eq. (2.6) assumes the
following form:

(£eg)(U, V) = g(Vu&, V) + g(U, Vvé) = 2a(g(U, V) — n(U)n(V)). (3.11)
By making use of (3.11) in (3.10), we find
S(U,V) ==(A+a)g(U,V) + an(U)n(V), (3.12)

which infers with the help of (1.1) that M endowed with (g, £, \) is a quasi-Einstein manifold. The
geometrical and physical properties of quasi-Einstein manifold have been studied by many researchers. In
the general theory of relativity, the space-time possesses a non-vanishing Ricci tensor S that satisfies Eq.
(3.12) and is termed as a perfect fluid space-time provided g(&, &) = —1.

Let {e1,ea, - ,e, = £} be a set of orthonormal vector fields e1, e3, - - - , €, = £ on M. Then the
contraction of Eq. (3.12) over the vector fields U and V gives

r=-An+(1-n)a,
wherer = )" ; S(e;, ;) is a scalar curvature of M. Next, taking V' = £ in (3.12), we find



S(Ua 5) = _)‘U(U) & Q6= —AE, (3.13)
where Q is the Ricci operator of g corresponding to the Ricci tensor S such that S(-,-) = g(Q-, -). Equation
(3.13) shows that — A is the eigenvalue of Q corresponding to the eigenvector &.

From (3.13) and Proposition (2.5) (iv), we obtain
A= (a?+ p)(n—-1), (3.14)
which reduces to
A= (n-1)(a®+ %),
where £ = gt_a and p = &(a) are used. Hence, we state the following:

Theorem 3.1 Let M be an(RC'S),,-manifold admitting an almost Ricci soliton(g, &, A). Then M is a quasi-
Einstein manifold, and the soliton functionis given byA = (n—1)(a?® + 22).

It is well known that an almost Ricci soliton (g, &, A) on M is shrinking, expanding, and steady provided that
A is negative, positive, and zero, respectively. These facts together with Theorem 3.1 observe the following:

Corollary 3.2 An almost Ricci soliton(g, §, A\)on(RC'S),,-manifolds is shrinking or expanding if% < —a’or

Oa 2 :
9 > —Q, respectively.

In consequence of Proposition 2.2 and Theorem 3.1, we have the following corollary:

Corollary 3.3  An almost Ricci soliton(g, §, \)on(RC'S),,-manifolds reduces to an expanding Ricci soliton
(9, &, A)if the potential functioncwof the concircular vector field€is a nonzero constant.

Let us suppose that « is a smooth function on M. Then from Eq. (3.14), we have
DX = (n—1)(20ap + 0)¢,
since p = £(a). The covariant derivative of the above equation along X gives
VxDA = (n—1){X(2ap + 0)§ + (2ap + 0)Vx£},
which, after contraction over X, gives
AN = (n—1){&(2ap + o) + (n—1)a(2ap + o)}
A smooth function § on a Riemannian manifold M of dimM = n > 3 is, respectively, named as harmonic,

strictly super-harmonic, and strictly subharmonic if AF = 0, AF < 0, and AF > 0.
Let{ = %. Therefore, the above definitions together with Eq. (3.15) reveal the following:

Corollary 3.4 Let an(RCS), -manifold admit the almost Ricci soliton(g, §, \). Then the soliton functionof
(9, N)is:

M

Harmonic if - (2ap + 0) + (n—1)a((2ap + 0) = 0,
a g

Strictly super-harmonic if 5 (2ap + o) < (1 — n)a(2ap + o),
(iii)

Strictly subharmonic if% 2ap +0) > (1 —n)a(2ap + o).

Corollary 3.5 Let an(RCS), -manifold admit the almost Ricci soliton(g, &, \). If the potential functioncof
the concircular vector field€is a nonzero constant, then the soliton functionAis harmonic.

Let an (RCS), -manifold M (n > 3) admit an almost Ricci soliton (g, &, A). Then M satisfies Eq. (3.12).
Taking the covariant derivative of (3.12) along the vector field X, we find

(VxS)(U,V) = —X(A+a)g(U,V)+ X(a)n(U)n(V)

+a{g(X, U)n(V)—=2n(U)n(V)n(X) +n(U)g(X, V)},
where Eq. (2.1) is used.



(VuS)(X,V) = -UA+a)g(X,V) + Ula)n(X)n(V)
+a{g(X, U)n(V)=2n(X)n(V)n(U) +n(X)g(U, V)}.
The last two equations give

(VxS)(U,V)— (VuS)(X,V)=-UA\+a)g9(X,V) = X(A+ a)g(U,V)
+X(a)n(U)n(V) = U(a)n(X)n(V) + o*{g(X, V)n(U) — n(X)g(U, V)}.

Contracting the above equation over U and V, we find
X(r) = —2(n—2)X(a)—2(n—1)X(A) —EA)n(X) — (n—l)azn(X). (3.16)
Again, contraction of Eq. (3.12) over U and V gives

(3.15)

r=-An—(n—1)a,
which becomes

X(r) = —nX(A) — (n—1)X(a). (3.17)
In consequence of Egs. (3.16) and (3.17) we have
(n—3)X(a) + (n—2)X(\) = —[¢(A) + (n—1)a?n(X). (3.18)
From Eq. (3.14) we obtain
X(A) = (n—1)2ap + o]n(X), (3.19)

since X (a) = pun(X) and X (p) = on(X).
In view of Egs. (3.18) and (3.19), we lead to
(n=3)u + (n—1)[(n—1)(2ua + o) + a2 = 0.
Thus, we can state the following:

Theorem 3.6 Let an(RCS),,-manifoldM (n > 3)admit an almost Ricci soliton(g, &, X). Then the functionsa
, i, andoon M satisfy the relation

(n=3)u + (n—1)[(n—1)(2ua + 0) + o] = 0.

4 Projectively Semisymmetric (RC'S), -Manifolds

Let M be an n-dimensional Riemannian concircular structure manifold admitting an almost Ricci soliton
(9,&, A). Suppose & denotes the projective curvature tensor on M; then it can be expressed as
PU, V)W = R(U, V)W — L (S(V,W)U - S(U, W)V), (4.20)
where dimM = n.
A Riemannian manifold M is said to be projectively semisymmetric if and only if
R(X,Y) - &£ =0, (4.21)
for arbitrary vector fields X, Y on M. Equation (4.21) is equivalent to
R(X,Y)2(U, V)W — (R(X,Y)U, V)W
- P(U,RX,Y)YVYW - 2P(U,V)R(X, Y)W =0,
which becomes
R(&,X)P(U, V)W — P(R(E, X)U, V)W o
~ P(UREX)VIW — 2(U,V)R(E X)W =0, 422

since X = £is used.
Let M be an (RC'S),,-manifold. Then in view of Proposition (2.5)(¢%), Eq. (4.22) takes the form

(@ + p(P U, VIW)X - g(X, P(U,V)W)E - n(U) P(X, V)W
+9(X, U)Z(§, V)W —n(V)2(U, X)W + g(X, V) 2(U, )W (4.23)
—n(W)2(U, V)X + g(X, W) P(U, V)| =0,
where a? + p # 0. Taking the inner product of (4.23) with &, we have
(@ + @) (22U, V)W)n(X) — g(X, 2(U, V)W) — n(U)n(L(X, V)W)
+9(X, Un(2(§, V)W) = n(V)n(2(U, X)W) + g(X, V)n(Z(U, )W) (4.24)
—n(W)n(ZU,V)X) + (X, W)n(Z(U, V)¢)] = 0.
From (4.20), we find
(4.25)



At a

POV = (o - S

) (o(U, W)n(V) — g(V, Wyn(D)) ,

A
06 VW) = (@ + - 212 ) (v, ) - nV (), (4.26)
(LU, V)§) = 0. (4.27)
In view of (4.25)-(4.27), Eq. (4.24) reduces to
9(X, P(U, V)W) = (o + pu— 252) (g(U, W)g(X, V) — g(X,U)g(V, W), (4.28)

where a? + p # 0.
In view of (3.12) and (4.20), Eq. (4.28) takes the form
g(R(U,VIW,X) = (o’ +p)g(U, W)g(X, V) — g(X,U)g(V, W)]

- S (X, VInUn(W) - g(X, Un(V)n(W)),

(4.29)

which is equivalent to

RU,VIW = f1lg(U, W)V — g(V,W)U] + fo(n(U)V — n(V)U)n(W), (4.30)

where f; = a? + pand fy = — =2,

n—1
A Riemannian manifold M of dimension n is said to be a manifold of quasi-constant curvature [24] if the
curvature tensor R of M satisfies

—9(X, Z)n(Y)€+n(Z)n(Y)X —n(Z)n(X)Y},
for some smooth functions a and b on M. Motivated from the above definition, we say that an n-dimensional
Riemannian manifold M is said to be a semi-quasi-constant curvature if its non-vanishing curvature tensor R
satisfies Eq. (4.30). From the above definition and Eq. (4.30), we notice that if M is projectively
semisymmetric, then it is a manifold of semi-quasi-constant curvature.
Let{e;},7 =1,2,3...n, be an orthonormal basis of the tangent space at any point of the manifold. If we
put V =W = e; in (4.29) and taking summation with respect to i(1 < 7 < mn), then we get

S(U, X) = —[(a® + u)(n—1) — 225 |9(U, X) — -2 n(U)n(X).
From Egs. (3.12) and (4.30), we have
—[(@®+u)(n—-1) = 3257 ]9(X,Y) — 225n(Y)n(X) = —(A + a)g(X,Y)
+an(X)n(Y).
Contracting the above equation over the vector fields X and Y, we get a = 0, which is inadmissible. Hence,

our hypothesis that M together with an almost Ricci soliton is projectively semisymmetric is not possible.
Thus we can state the following:

Theorem 4.1 Let M be an(RC'S),,-manifold admitting an almost Ricci soliton(g, , X). Then M cannot be a
projectively semisymmetric manifold.

5 (RCS),-Manifolds Admitting Almost Ricci Solitons Satisfying
Q-Z=0

Let M be an (RC'S),,-manifold admitting almost Ricci solitons. If M satisfies the relation Q - & = 0, then we
have

QLZ(U, VW) - L2(QU, VW — P(U,QVIW — L(U,V)QW =0 (5.31)
forallU,V,W € X(M). In view of (4.20), (5.31) turns to

Q(R(U, V)W) — R(QU,V)W — R(U,QV)W
—R(U,V)QW + 2-[S(QV, W)U — S(QU,W)V] =0,

which by taking the inner product with £ takes the form
n(Q(RU,V)W)) — n(R(QU, V)W) — n(R(U, QV)W) (5.32)

—n(R(U,V)QW) + =25 [S(QV, W)n(U) — S(QU, W)n(V)] = 0.



Putting V' = £in (5.32), we have
n(QR(U,W)) — n(R(QU, W) — n(R(U, QW) (5.33)
—n(R(U,§)QW) + 727 [S(Q¢, W)n(U) — S(QU, W)] = 0.
From Proposition (2.5) (i) and (v), we find
n(QRU,HW)) = n(R(U, QOW)
= (a? + )’ (n=1)(m(U)n(W) - g(U, W),
| n(R(QU,OW) = n(R(U, QW) (5.34)
| = (& +u)(S(U, W) + (o’ + p) (n=1)n(U)n(W)),
S(Q&, W) = (a® + p)*(n—1)*n(W).
By the use of (5.34), Eq. (5.33) takes the form
S(QU,W) = —(a? + p)(n—1)S(U,W). (5.35)

This implies

S§*(U,W) = —(a® + p)(n—-1)S(U, W),
where S2(U, W) = S(QU, W). In view of (3.12), Eq. (5.35) leads to

a(n—1)(a?
S(U,W) = —%U(U)U(W), (5.36)

provided A + o — (n—l)(oz2 + ) # 0. Equation (5.36) infers that M under consideration is a special type
of quasi-Einstein manifold. By putting U = W = £ in (5.36), it follows that

(n=1)(a? + u){X — (n—-1)(a® + )} = 0. (5.37)
This shows that either a + 1 = 0 or A — (n—1)(a? + i) = 0. If possible, we suppose that o + p = 0, and
hence Eq. (5.36) reflects that the (RC'S), -manifolds under consideration are Ricci-flat.

In [38], Fischer and Wolf have studied the properties of compact Ricci-flat Riemannian manifolds and
established several interesting results. They proved that a compact connected Ricci-flat n-manifold M ™ has
the expression M™ = ¥ \ T* x M™% where ks the first Betti number b; (M"),T* is a flat Riemannian k-
torus, M ™ * is a compact connected Ricci-flat (n — k)-manifold, and ¥ is a finite group of fixed-point-free
isometries of T* x M™ ¥ of a certain sort (see Theorem 4.1, [38] and Theorem 1.2, [20]).

Since a? + p = 0, the (RC'S),,-manifold admitting an almost Ricci soliton (g, &, A) and satisfying the
expression @ - & = 0 can be expressed as

M=V \TFx M™*,
Let a? + p # 0. Then from (5.37) we have
A= (n—1)(a® + p). (5.38)
Equations (3.14), (5.36), and (5.38) lead to
S(U,W) = (n—1)(e? + p)n(U)n(W), (5.39)
since a? 4+ p # 0. Thus, we can state the following theorem:

Theorem 5.1 Let a compact(RC'S),,-manifold M admit an almost Ricci soliton(g, &, X). If M satisfies the
relationQ - & = 0, then eitherM = ¥ \ T* x M™ *or M is a special type of quasi-Einstein manifold, and its
Ricci tensor satisfies (5.39).

Let p be the eigenvalue of the endomorphism Q corresponding to the eigenvector U, i.e, QU = pU. Then
from (5.35), we have

p*9(U, W) = —p(a® + u)(n—1)g(U, W). (5.40)
By putting U = W = £in (5.40), we have p? + p(a? + p)(n—1) = 0. This gives that either p = 0 or
p = —(n—1)(a® + ). Thus, we have the following corollary:

Corollary 5.2  Ifan(RCS),,-manifold admitting an almost Ricci soliton(g, &, X)satisfiesQ - & = 0, then the
eigenvector of Q is either 0 or—(n—1)(a® + p).

Let a? + p # 0. The covariant derivative of (5.39) along the vector field V gives
(VvS)(U, W) = 2an(V)S(U, W) — aa® + w){g(V, U)n(W) + g(V, W)n(U)},



since Eq. (2.6) is used. This equation can be rewritten as
(VVS)(Ua W) = A(V)S(U7 W) + B(W)g(va U) + B(U)g(V7 W)a (5.41)
where A(V) = 2an(V) and B(U) = —a(a? + u)n(U) are 1-forms.
Inspired from Eq. (5.41) and the definition of Ricci recurrent and generalized Ricci recurrent manifolds,
we define the following definition:

Definition 5.3 A complete Riemannian manifold M of dimension n > 3 is said to be an extended Ricci
recurrent manifold if its non-vanishing Ricci tensor satisfies
(VxS)(Y,2) = A(X)S(Y, Z) + B(Y)g(X, Z) + B(Z)g(X,Y)
for arbitrary vector fields X, Y, and Z on M, where A and B are 1-forms corresponding to the generators p;
and po, thatis, A(-) = g(-, p1) and B(-) = g(-, p2)-
In particular, if we take A = 0 = B and B = 0 in the above equation, then an extended Ricci recurrent
manifold reduces to the Ricci symmetric manifold ((V xS)(Y, Z) = 0) and Ricci recurrent manifold

(VxS)(Y,Z) = A(X)S(Y, Z)), respectively.
Equation (5.39) and Definition 5.3 state the following:

Corollary 5.4 Let a complete(RCS),,-manifold M admit a Ricci soliton(g, &, ). Then M satisfiesQ - & = 0,
anda?® + p # Ois an extended Ricci recurrent manifold.

6 Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current
study.
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Abstract

This chapter proposes the concept of a statistical map between two statistical manifolds
and presents illustrative examples. Subsequently, we generalize Chen'’s first inequality for
Riemannian maps to the framework of statistical maps by deriving the corresponding
Gauss equation.
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1 Introduction

The theory of statistical manifolds, which originated with the seminal work of C.R. Rao in
1945 [18], forms the foundation of what is now known as information geometry. This field
primarily investigates the differential-geometric structures associated with statistical
models, particularly those defined on manifolds of probability distributions.

In recent years, information geometry has found diverse applications across several
domains, including information theory, stochastic processes, dynamical systems and time
series, statistical physics, quantum mechanics, and the mathematical modeling of neural
networks [4]. Numerous studies have further explored the role of statistical manifolds in
these contexts. For example, in [2], the authors analytically compute the asymptotic
temporal behavior of the information-geometric complexity in finite-dimensional Gaussian
statistical manifolds under the influence of microcorrelations. Similarly, the [9] presents an
extension of the ergodic hierarchy (encompassing ergodic, mixing, and Bernoulli levels) for
statistical models on curved manifolds using tools from information geometry.
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A significant structural component in information geometry is the concept of dual
connections (or conjugate connections) in affine differential geometry, introduced into
statistics by S. Amari in 1985 [3]. A statistical manifold is defined as a differentiable
manifold equipped with a Riemannian metric and a pair of dual torsion-free affine
connections. For comprehensive treatments of statistical manifolds, one may refer to [7,

Building on these structures, the notion of statistical submersions was introduced by N.
Abe and K. Hasegawa in 2001 [1], extending foundational results of B. O’Neill [13, 15]
concerning Riemannian submersions and geodesics to the statistical setting. This topic has

On a parallel track, the theory of Riemannian maps (a generalization of both isometric
immersions and Riemannian submersions) has garnered considerable attention in
Riemannian geometry. These maps provide a flexible framework for comparing geometric
structures between manifolds. Let (M, gar) and (N, gn) be Riemannian manifolds. A
smooth map 7 : (M, gp) — (N, gn) is called an isometric immersion if the differential 7,

is injective and preserves the metric:
gN(T('*X, W*Y) = gM(Xa Y)7 (1.1)

for all vector fields X, Y tangent to M. This theory traces back to Gauss’s investigations on
surfaces in Euclidean spaces.

A Riemannian submersion, on the other hand, is a smooth map
7w (M,gm) — (N, gn) for which 7, is surjective and satisfies the above metric condition
(1.1) on the horizontal distribution (kerr,)".

In 1992, Fischer introduced the broader notion of Riemannian maps [6]. For a smooth
map 7 : (M, gn) — (N, gn) with 0 < rankam, <min {m,n}, where dim M = m and
dim N = n, the tangent bundle TM decomposes as

TM = kerm, ® F,
where # = (kerr,)".
Similarly, the tangent bundle TN decomposes as

TN = ranger, ® (ranger,)™”

A map 7 is said to be a Riemannian map at p; € M if the horizontal restriction

Topy (kerm,,, )” — rangemw,,, is alinear isometry with respect to the induced metrics.

Thus, both isometric immersions and Riemannian submersions appear as special cases of
Riemannian maps, corresponding to kermr, = {0} and (ranger,)”™ = {0} [19, 20].

Furthermore, for a smooth map 7 : (M, gpr) — (IV, gn), the second fundamental form
of 7 is given by

(VI )(X,Y) = Vi(m.(Y)) - m(VYY), (1.2)

where V7 is the pullback connection. It is noted that the connection V on the bundle
Hom(TM,n TN) is induced by the Levi-Civita connection VM and the pullback
connection. This form is symmetric in its arguments and plays a crucial role in analyzing
curvature relations via the Gauss and Codazzi equations. Here 71T N is the pullback
bundle which has fibers (7 'TN),, = Ty, N, p € M.

In this chapter, we explore statistical maps by integrating the ideas outlined above. We
begin by revisiting the foundational notions and properties of statistical manifolds and
statistical submersions. We then introduce the definition of a statistical map, along with



illustrative examples. Finally, we derive the Gauss equation for statistical maps and extend
Chen’s first inequality (originally formulated for Riemannian maps) into the statistical
geometric setting.

2 Statistical Submersions
Let M be an n-dimensional smooth semi-Riemannian manifold equipped with a metric
tensor gjs, where gj/ is a symmetric nondegenerate (0, 2)-tensor field of constant index.
The common value v of index of the index of g5 on M is called the index of M with
0 < v < n. We denote such a manifold by M,’. When v = 0, M becomes a Riemannian
manifold.

At any point p € M, a tangent vector E to M is called:

1.

Spacelike if gps(E, E) > 0or E =0
2.

Null (or lightlike) if gpr(E, E) = 0or E # 0
3

" Timelike if g (E, E) < 0

Let R} be an n-dimensional real vector space endowed with an inner product of
signature (v, n — v), defined by

v n
2 2
z,T) = g xT; + g x;
(@, z) i=1"" i=v+1 ")

where z = (z1,...,x,) are the standard coordinates. This space is called the semi-
Euclidean space of dimension n and index v. In particular, Rf corresponds to the standard
Euclidean space and R7 to the Lorentzian space [28].

Following [13, 14], a smooth map 7 : (M, gpr) — (IV, gn) is called a semi-Riemannian
submersion if:

1.
dmy, is surjective forallp € M.

2.
Each fiber w’l(b), b € N, is a semi-Riemannian submanifold of M.

3.
The metric is preserved on the horizontal distribution, that is,

I (X,Y) = gn(dnX,dnY),
for all vectors X, Y normal to the fibers.

It is worth noting that (semi-)Riemannian submersions are of considerable importance
not only in differential geometry but also in various scientific and technological domains.
Numerous researchers have contributed to this area of study, for example, see [31].

Assume that 7w : M™ — N™is such a semi-Riemannian submersion. For each b € N,

the fiber M, = 7' (b) inherits an induced metric g and forms an 7 = (m — n)-

dimensional semi-Riemannian submanifold of M. A vector field on M is called vertical if it is
always tangent to the fibers and horizontal if it is orthogonal to the fibers.



Let #,(M) and %,(M) denote the vertical and horizontal subspaces of T, M, p € M,

respectively. Then the tangent bundle decomposes as
T,M = (M) © ¥,(M).

We denote the corresponding projection operators by ¥ : TM — ¥ (M) and
H:TM — H(M).

A vector field X on M is called projectable if there exists a vector field X, on N such that
dn(X},) = Xn(p) for every p € M; in this case, X and X, are said to be 7-related. If in
addition X is horizontal, it is called basic.

Lemma 2.1 ([13, 14]) LetXandY be basic vector fields on M,m-related to X .andY,on N.
Then:

1.
gM(X7 Y) = QN(X*,Y*) o T.

2.
H| X, Ylis basic andr-related to[ X ., Y].

Let M be a semi-Riemannian manifold equipped with a torsion-free affine connection V¥,
The triple (M, V™, gyy) is called a statistical manifold if V gj/ is symmetric. For such a

manifold, the conjugate (or dual) connection v*" is defined by
*M
Egu(F,G) = gu(VE F,G) + gu(F, Vi G) (2:3)
for vector fields E, F', and G on M. The connection v+ is torsion-free, and V*MgM is

symmetric. Moreover, the duality condition satisfies (V*M)* = V¥, implying that
(M, v+, gu) is also a statistical manifold. Let R and R* denote the curvature tensors
corresponding to V¥ and v+, respectively. Then the following identity holds:
gu(R(E,F)G,H) = —gu(G,R*(E,F)H),
where R(E, F)G = [V¥, V¥|G — V%,F]G' Hence R = O ifand only if so is R* = 0. In
this case, the manifold is said to be flat.
Define the difference tensor

K:%(VM—V*M):VM—ﬁM, (2.4)
where V" is the Levi-Civita connection. Then K is symmetric in the sense that
KEF = KFE and gM(KEF, G) = gM(F, KEG) hold [ﬂ]
Let (M, V™ g,/) be a statistical manifold and 7 : M — N be a semi-Riemannian

submersion. Denote by V and V* the affine connections induced on each fiber M. For
vertical vector fields U, V, these are given by

VoV =¥V¥V, ViV =v9V}V,
and both are torsion-free and mutually dual with respect to the induced metric g on the

fiber.
Letm: (M, gm) — (IV, gn) be a smooth map between statistical manifolds with

0 < rankm, <min {m,n}. Ateach pointp € M, let ¥}, = kerm,, and J¢, = (kerﬂ'*p)L.
Then we have the orthogonal decomposition:

T,M = kerr,, ® (kerm,,)" = ¥, ® J,.



Similarly, at m(p) € N, we define the range rangem,, C T (p)N and its orthogonal
complement (rangew*p)l. Since rank7, <min {m,n}, this decomposition is nontrivial:

Trp)N = (rangem,,) ® (rangem.p,) .

3 Statistical Maps

In this section, we first define a statistical map.
A smooth map 7 : (M, gp) — (I, gn) is a statistical map at p; € M if the horizontal
restriction

o (kerm,p, )~ — (rangem.p,)

is a linear isometry between the inner product spaces ((kerw*pl)L, gm(p1) |( )L) and

kerfr,kp1
(rangem.p,, gn (P2)| (ranger.,,))» P2 = 7(p1). Thus 7, satisfies the equation
gN(ﬂ-* X,y Y) = gM(Xa Y)a (3.5)
which holds for all horizontal vector fields X, Y.

Thus, isometric immersions and statistical submersions appear as special cases of
statistical maps, corresponding to kerr, = {0} and (ranger.)" = {0}, respectively.
Moreover, a statistical map must be a submersion, implying that the rank of
Ty : TpM — Ty N is constant on each connected component of M.

Definition 3.1 Let (M, V™ g)/) and (N, V¥, gn) be statistical manifolds and
7 : M — N asmooth map between them. If 0 < rankm,, <min {m,n}, m,, maps the

horizontal space J%, = (ker(m,,, )" isometrically onto range(m,y, ), i.e.,
In (ﬂ-*plxa 7r*p1Y) = gM(Xa Y),

N
and the affine connections satisfy the relation V%, (Y) = 7., (VYY) + C(X,Y)

7Tp1

for X,Y € J%,,, then 7 is called a statistical map, where C(X,Y) € I'((rangem,)").

IfC(X,Y)_ =0, then a statistical map becomes a statistical submersion.

Tpy

Example 3.2 Letw: (M, gy) — (IV, gn) be an isometric immersion between statistical
manifolds. Then 7 is a statistical map with kerw, = {0}.

Example 3.3 Letw: (M, gy) — (NN, gn) be a statistical submersion between statistical
manifolds. Then 7 is a statistical map with (ranger,)™ = {0}.

Example 3.4 Let us take two statistical manifolds (M = R2, V¥, g5;) with
gur = dz? + dy? and affine connection V¥ defined by
and (N = R2, V¥ gy) with gy = d2? + dw? and affine connection V' defined as



Véi(?w =0= Vg;@z,
Vg@z = O, Vg;@w =0.
Define the differentiable map 7 : (M™, V¥ g3/) — (N", V¥, gn) with Cartesian
coordinates (z,y) by

7(z,y) = («,0).

10
Ty = )
00

where 0 < rankm, = 1 <min {2, 2}. Then we have

Hence we get

kerm, = Span{es = 0y}
and
(kerﬂ'*)L = Span{e; = 0.},
where 9, = 0 / O.

Thus it is easy to see that

gn(mi(ei), mi(e:) = gu(eir e) =1,
and
gn(me(ei), m(ej)) = gum(ei,e5) = 0,
i # j,fori=1,2.
On the other hand, if the expressions C(X,Y) are calculated with respect to the bases,
the following cases are obtained:
1.
For X = 0, and Y = 9,, using 7,0, = 0,, .0y = 0, we get
C(0:,0,) = VY, 1.0y — m.(V}9,) = 0.

For X = 0, andY = 0, using 7,0, = 0., we have
C(0z,0;) = VﬂN*azw*Bm — ﬁ*(ngam) = Oy

For X = 0yandY = 0,, using 7.0y = 0, 7.0, = 0., we get
C(0y,0;) = Vfiayw*ax - ﬁ*(ngam) =0.

For X = 0yandY = 0, using w0y = 0, we put
Then 7 is a statistical map with

ranger, = Span{e} = 8.}, (rangern,)” = Span{el, = By}

Let 7 be a statistical map from a statistical manifold (M, VM g M) to a statistical manifold
(N, V¥, gx). Then we define T and 4 as

TpF = AV VF + YV HAF,  ApF=#V0 . VF+ VYV HF,



where V# is the linear connection of gj;. We can easily obtain the tensors 7* and A*

corresponding to the conjugate connection by simply replacing V¥ by V*" in the above
equations. We note that (T*)* = T and (A*)* = A. For vertical vector fields, T and T"* are
symmetric. Also for X, Y € (M) and U,V € ¥ (M), we have
gu(ToV,X) = —gu(V,T;X)  and gu(AxY,U) = —gu(Y, AXU). (3.6)
Thus, Ty V = 0 (resp. Ty X = 0) if and only if T;;.X = 0 (resp. T;V = 0).
On the other hand, from (3.6) we have
VMY = TyV + VyV ViV =TEV + ViV,
VUX = #VYX +TyX Vi X =#V X +TiX,
VYU = AxU + VYU VU =AU+ ¥V U
VMY = VMY + AxY VY'Y =V Y+ ALY,
for X, Y € (M) and U,V € ¥(M).
Furthermore, if X is basic, then %V%X = AxU, ,%”V*UMX = A%U, and
AxY = — A} X for horizontal vector fields X and Y. The tensor A = 0 if and only if

A* = 0. Since A characterizes the integrability of the horizontal distribution (M), it is
identically zero if and only if 5# (M) is integrable with respect to V.

Proposition 3.5 Letm: (M™, V™ gy) — (N, V¥, gn)be a statistical map. Then we
have

9, (Vm)(X,Y),m.(2)) = —g,(V'm)(X,Y), m(2)),
forX,Y,Z e T'((kerr,)").

Proof The proofis clear from Eqs. (1.1) and (2.4). 0

Then we can give the following corollary:

Corollary 3.6 Letm: (M™, V™ gy) — (N", V¥, gn)be a statistical map. Then, for all
X,Y,Z e I((kerm,)"), (V) (X,Y) € I((ranger,)")if and only if
(V*1,)(X,Y) € I((ranger,) ™).

Proposition 3.7 Letm : (M™, V™ gy) — (N", VY, gn)be a statistical map. Then we
have

gN((V*ﬂ-*) X, Y) ( )) = gN(T('*(Y), (V*F*)(X7 Z))7
forX,Y,Z e I'((kerm,) ™).

Considering these results, we can give the following lemma.

Lemma3.8 Letr: (M™, VM gy) — (N", VY, gn)be a statistical map. If
K(X,n.Y)=m(K(X,Y)),we have
9x((Vm)(X,Y),m.(2)) =0, (3.7)
forX,Y,Z e T'((kerr,)").



Proof Since 7 is a statistical map, from (1.1), we get
gN((Vﬂ-*)(Xa Y)7 71-*(Z)) = gN(V}TF*Y, 7I-*(Z)) - gM(V¥Y, Z)7 (38)
where V is the Levi-Civita connection. Using (2.4), we have

9 (Vr)(X,Y),m(2)) = gy(VEm.Y,7.(2)) — gn(K(X, 7. (Y)), 7.(2))
—gn(m(VYY), 7:(2)) + gn(m(K(X,Y)), m(Z)).
So, considering the hypothesis, we obtain
0. (V7)(X,Y), 7.(2)) = 9,(C(X,Y), m.(2).

We know that g, (V. )(X,Y), m.(Z)) = 0. In this case, Eq. (3.7) is obtained, where
C(X,Y)=(Vm)(X,Y).O

Similarly, we can also say that g, ((V*m,)(X,Y), 7.(Z)) = 0 under the same condition.

We recall that the second fundamental form of 7 is the map
Vm, :T(TM) x I'(TM) — I'(T'N) defined by

(Vm)(X,Y) = N}ﬂ*Y — m(VHY), (3.9)
N N

where V is a linear connection on M and Vi m.Y om = V7 7.Y. Considering Lemma
3.8, we have

(Vr,)(X,Y) € I((ranger,) ™),
forall X,Y e I'((kerr,)"). Hence, we say thatat p € M

N&W*(Y) (p) = m (VYY) (p) + (V) (X, Y)(p), (3.10)

N
where V7 xm,(Y) € Ty N, 7. (VEY)(p) € m.p(T, M) and
(VI (X, Y)(p) € (map(T,M))
Also, we get the second fundamental form of 7 according to the dual connection V*
defined by
N
(V7 )(X,Y) = V¥nY — W*(V}MY); (3.11)
then we have (V*,)(X,Y) € I'((ranger,)").

Example 3.9 From Example 3.4, let M = R? with coordinates (z, 3) and the Euclidean
metric gas = dz? + dy? equipped with the Levi-Civita connection VM and a statistical
connection VM = UM 4 KM where KM is a symmetric difference tensor defined by
KM(9,,08,) = \0,, KM(az,ay) =0= KM(Z?y,az) , KM(By,ay) = 0.
Let N = R? with coordinates (z, w) and the Euclidean metric gy = d2? + dw?
equipped with the Levi-Civita connection V" and a statistical connection
vV =V ¢ K" where K% is defined as
K%(0.,0,) = \0., KV (0,,0,) =0=KY(8,,0.), KY(0y,0,) = 0.
Define the differentiable map 7 : (M2, V¥, gp) — (N2, VY, gn) by 7(z,y) = (z,0)
with differential



/10
™=\0 0)

0y = 0;, m0y =0.
Thus, the kernel of 7, is m, = Span{0,}, and its orthogonal complement is
(kerm,)" = Span{d,}.
Forall X,Y e I'((kerm,)") = Span{d,}, the condition holds. Specially:

so that

For X =Y = 0,, we have
KN (8,,m.0;) = KN(8,,0.) = A0,
and
(KM (0,,0;)) = m(AD,) = AO..
Hence, the condition holds.
For X = 0, and Y = 0,, we get
KN (8;,m.0,) = K¥(9,,0) =0
and
m.(KM(0,, 0y)) = m.(0) = 0.
Thus, the condition holds.
For X = 0yandY = 0,, we find
KN(8y,m.0;) = KN (8,,0,) =0
and
w*(KM((‘?y, 0:)) = m.(0) = 0.
Thus, we conclude that for all X, Y € I'((kerm,)"), the condition
K(X,m.Y)=m(K(X,Y)) is satisfied.

From now on, for simplicity, we denote by V¥ both the linear connection of (N, V", gx)

and its pullback along 7.
We now suppose that 7 is a statistical map; then Sy and S}, are defined as

VYV =-8Sym.X + V%V, (3.12)
SV =S X+ VTV (3.13)

forany X € I'((kerm,)") and V € I'((ranger,) ™). So, from (2.3), (3.9), and (3.12), we
have

gN(SVTr*Xv 7T*Yv) = gN(V7 (V*W*)(Xa Y)) (3.14)
Similarly, we find that
gn(Sim. X, 7.Y) = gn(V, (Vr.)(X, Y)). (3.15)

Using the concept of doubly totally geodesic submanifold from [8], we are able to define
the following:



Definition 3.10 Let (M, V¥, g/) and (IV, V¥, gn) be two statistical manifolds and

7w : M — N be a statistical map from these manifolds. If
(Vr)(X,Y) = (V*1)(X,Y) =0, for X,Y € I'(T M), then the map 7 is called doubly
totally geodesic map.

Theorem 3.11 Letrw: (M™, V™ gy) — (N™, VY, gn)be a statistical map which
satisfies the conditionK (X, m,Y) = m.(K(X,Y)); thenwis doubly totally geodesic if and

only if

1.
ALY =0.

2.
Sym X = 0.

3.
TyV = OforX,Y e T'((kerr,) " )andU,V e T'((ranger,)").

Proof ForV € T'((rangen,)"), we have (V,)(X,V) € I'(rangen,). Then we get
gn((Vm,)(X,V),n,Y)=0.
In this case, we have
0= —gM(VAX/‘rV, Y)=—gu(AxV,Y) = gu (ALY, V).
Also, we get
0=gn((Vm)(X,Y),nV) = gn(Sym X, m.Y).
Finally, for U, V € T'((rangem.)"),
0= gN((VT"*)(Ua V)7 W*X) = _gM(v]UVIV7 X) = _QM(TUV, X)
O

Ifr: (M™, V™, gr) — (N", VY, gn) is a statistical map, then considering 7 at each
p1 € M as alinear transformation

Filpl : ((kel‘ﬂ'*)L(pl),gMpl((kerm)L(pl))) — (ra’ngeﬂ-*(p2)7ngz('rangeﬂ'*)(pz)))a

we state the adjoint of 7" as *wfpl. Let us assume that the adjoint of

Tapy © (Tpy M, garp,) — (Tp, N, gNp,) 1S *Tap, . Therefore the linear transformation

(*w*pl)h : rangers (ps) — (kerm, )" (p1) defined as (*ﬂ'*pl)hw =" T4p,w, Where

w € I'(rangem.p,), p2 = m(p1), is an isomorphism and (wfpl)fl = (") = (wl,)-

Using (3.10), (3.12), and (3.13), we have
RN(mX,mY)m.Z =m.(R™(X,Y)Z)+ (V¥ (VT))(Y,2Z)

—(V¥(Vm))(X, Z) (3.16)
+Sr)(x,2)T=Y — S(vr)(v,z)m X

and
(3.17)



R (X, m.Y)m.Z =m(R"(X,Y)Z)(VY (V*m.))(Y, Z)
—(Vy (V'm))(X, 2)
F5vr) ™Y = Sz ™ X i

for X,Y,Z ¢ F((kerﬂ')L), where RM (respectively, R*" ) and R (respectively, R* ")

denote the curvature tensors of VM (respectively, V*M) on M and V¥ (respectively, V*N)

on N. Moreover, (V¥ (V7,))(Y, Z) and (V}M(V*w*))(Y, Z) are defined by

(VY(Vr )Y, 2) = VI (VMr)(Y, Z) — (Vm)(VYY, Z) — (Vr)(Y, VY Z)
and
(Vi (V'm))(Y, 2) = VEH(V'm)(Y, 2) - (V'm.)(Vy Y, 2)
—(V*m)(Y, V% Z).

This leads us to formulate Chen'’s first inequality for the statistical map 7 in the next
section.

4 Chen’s First Inequality
In this section, we establish Chen’s first inequality for a statistical map 7 into a statistical
manifold of constant curvature ¢, under the assumption that rankm = r > 3.
Letm: (M™, VM gy) — (N™ V¥, gn) be a statistical map. Suppose that
K(X,n.Y) =mK(X,Y). Then, using Egs. (3.16) and (3.17), the Gauss equation for 7 is
gN(RN(ﬂ-*Xa ”T*Y)ﬂ-*Z7 '/T*W) = gM(RM(X’ Y)Za W)
+gN((V7T*)(X’ Z)7 (V*T(‘*)(Y, W)) (4'18)
—gn((Vr)(Y, Z), (V'r.)(X, W)),
and its dual can be written as
gnv(R* (. X, 7 YV Z, m W) = gu(R* (X, Y)Z, W)
+gN((V*7T*)(X, Z)7 (Vﬂ-*)(y7 W)) (4'19)
—gn((V*'m) (Y, Z), (Vm) (X, W),
forall X,Y, Z, W € I'((kern)™).
Given an orthonormal basis {e;|i = 1,2,3,--- ,r—1,7} of (kerm,) ™, the scalar
curvature defined on (kerm, )™ is expressed as

= M
T= Zl§i<j§r gM(R (eiyej)ej,ei),

and for an orthonormal basis {v,|aa =7+ 1,7+ 2,--- ,n}, we put



he = gn((Vm.)(ei e5), va),
h;k]a = gN((V*ﬂ-*)(ei?ej) va),

IHE = Y, (V) enen), (V) ewes),
Hh*||2 = Z ij= 1 V W*)(eivej)7(V*W*)(ehej))?

trace(h) = Z (Vr.)(ei,e;), trace(h*) = Z (Vﬂ'*)(ei,ei),

|[trace(h)||?> = gn(trace(h),trace(h)),

|[trace(h*)||* = gn(trace(h*),trace(h*)).
For a point p € M, consider a plane section £ C T, M spanned by {E = e;, F' = e3}.
The sectional curvature J# (%) is then given by

H (L) = gu(RM (e1, e9)eq, €1).
Substituting X =T = e; ancLY = Z = ey into Eq. (4.18), we obtain

@) —c- >, (20— 1+ i)

+ Za_m_l (2h(1)?h(2)g - %(h(lllhzz —+ h*ah*a))
' a 1, O a2
set? ZOz=r+1 (h(l)l h(2)2 - (htl)z) )

a )2 xa) 2 a ho *Q T *Q
+% Za=r+1 ((h12) + (h’12 o h11h22 - hll h’22)'

By reformulating Eq. (4.20), we get
H (L) = —c+24(%)

" (4.21)
+3 Za:rﬂ ((h?‘z)2 + (hi$)® — h$yhg, — h’{‘fh;g),

where ¢ %(#) represents the sectional curvature of the Levi-Civita connection
corresponding to the plane section .Z.
Alternatively, by setting X =T = e; and Y = Z = e; in Eq. (4.18), we arrive at

r(r=1)g =7+ Zl§i<j§r(gN((V7r*)(ei’ ej), (Vm)(eir )

an((Vr)(ep e, (V) (ener)) ).

But we know that 2h?ja = h{; + h;, where hoo‘ = gn (V) (es, e;),va). Then we can

(4.20)

write



- =2 ) on(m(en ), (Fm)(ene)

4 (o ene), (T enes)
an((Tm)(enres)s (V) enves) )

~2 Z an((Vm.)(ejre5), (V) (ei )
A (oI e, (Fr(enen)

(T )epen, (V) enne) ),

which can be reduced to

n
r(r-1)5 = Za_r—H Zl§i<j§r (hiﬂq)
1 2 ron 2
-3 Z D0 v 0y?)
Oa Oa
Za r+1 Z 1<i<j<r ”
L * *,
2 Za:r+l ZngjST( f‘zh;"] +hii'h a)'

Upon recalling the Gauss equation associated with the Levi-Civita connection, Eq. (4.22)
becomes

(r 1) =T+ (T 1C 27" — Za =r+1 Zl<z<]<fr( U (h*ﬂa))

(ha hg; + h;‘i“h;;‘),

2 j]
where 70 represents the scalar curvature of Levi-Civita connection defined on (k:e'rﬂ'*)l.
From the combination of Egs. (4.21) and (4.23), it follows that

T (L) =2 — HN(L)) - (r=2)(r+ 1)<

1 a2 xar) 2
+7 ZOL—T+1 Zl§i<j§r((hij) + (hZ] ) )

(ha hO{ h*ah*a)
77 21
n
1 2 *a\ 2 *QL T, *
2 Za:r+1 ((h‘ﬁ) + (hlg) - h(lllhga - hl(llh’2g) .
The terms in the above equation resemble those in the following algebraic lemma from

[3]:

Lemma 4.1 Lets > 3be an integer anda;,©1 = 1,2,3,--- , s, be s real numbers. Then, we
have

vfo

(4.22)

(4.23)



s 2
E aiaj—a1a2<2(¥)( E ai) .
1<i<j<s - s—1 i=1

Moreover, equality in the above inequality holds if and only ifa; + a3 = az = - -+ = as.

Consequently, we have

T (L) 22— HL) - (-2 + D5

FED i Dy 0 i?)
3 (e i)
rian (Do ne) + (=) (20 )

(+
20— (L)) — (r—2)(r+ 1)%
( )(Ht’f'ace(h)H2 + ||trace(h*)\|2)_

As a result, we derive the following theorem:

ﬁ

AV

Theorem 4.2 Letw : M — Nbe a statistical map from a statistical manifold
(M™, VM g,)to a statistical manifold(N™(c), V¥V, gn)of constant curvaturec € Rwith
r > 3. Then

T—H(L)-2(r" - HL) > —(r-2)(r+1)

+(Z‘

Moreover, the equality holds if and only if

£
2

2 ) (||t7’ace(h)||2 + ||trace(h*)||2).

R 4 hSy = h% = - = he.,
hiT + h3y = h3g = -+~ = hy,

he — hix =0,
i 7£ jr (?'7.7) 7é (1a2)7 (27 1)' andforanya < {T +1,--- ,’I’L}.
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Abstract

We introduced and discussed the idea of hyperbolic Ricci-Yamabe solitons associated
with perfect fluid spacetime in this research note. Additionally, we examine a perfect
fluid spacetime, which accommodates the hyperbolic Ricci-Yamabe solitons and the
rate of change of the hyperbolic Ricci-Yamabe solitons coupled with a conformal
vector field, ¢(2)-vector field with Ricci collineation condition. We also analyze the
rate of change of the hyperbolic Ricci soliton and investigate the gradient hyperbolic
Ricci-Yamabe soliton on perfect fluid spacetime with scalar concircular field.
Furthermore, we investigate the energy conditions for perfect fluid spacetime in
terms of gradient hyperbolic Ricci-Yamabe solitons with a scalar concircular field. In
the end, we introduced a more generic notion of n-hyperbolic Ricci-Yamabe solitons
and proved that a spacetime admitting the n-hyperbolic Ricci-Yamabe solitons with a
conformal vector field is a perfect fluid spacetime.

Keywords Hyperbolic Ricci-Yamabe solitons - Gradient hyperbolic Ricci-Yamabe
soliton - n-hyperbolic Ricci-Yamabe solitons - Conformal vector field - Scalar
concircular field - Energy condition

1 Introduction

The General Theory of Relativity (GTR) is the name given to Einstein’s theory of
gravity. This theory states that the energy-momentum tensor mathcalT is the source
of the gravitational field and gravitational waves, which are represented by the
spacetime curvature. GTR is the foundation of all theoretical disciplines. All current
particle physics equations used in astrophysics, plasma physics, nuclear physics, etc.
are based on the Einstein equations, which describe the evolution of spacetime
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curvature. The best way to understand general relativity is through the mathematical
development of differential geometry and relativistic fluid models. Spacetime is best
represented as a curved manifold, according to GTR’s central notion [1].

The spacetime of GTR and cosmology can be simulated using a time-oriented
connected four-dimensional Lorentzian manifold, a special subclass of pseudo-
Riemannian manifolds with Lorentzian metric g and signature (—, +, +, +). For GTR,
this manifold has significant consequences. The first step in establishing the
geometry of the Lorentzian manifold .# 4 is to study vector nature on it. Therefore,
the ideal choice for addressing GTR [1] is the Lorentzian manifold (.24, g).

One of the main elements of the matter of spacetime is the energy-momentum
tensor . In addition to density, pressure, and other dynamical and kinematical
characteristics including shear, expansion, acceleration, and velocity, matter is
believed to be a fluid [46]. The universe’s matter component is thought to behave like
a perfect fluid in conventional cosmological models. The absence of viscosity and heat
conduction characterizes a perfect fluid, which is also known as an isotropic or star-
shaped fluid at rest. The dust matter fluid (p = 0) [29, 33] is the most basic
illustration of the perfect fluid. In GTR, perfect fluids are frequently used to simulate
idealized distributions. Moreover, In GTR, “stiff matter fluid” is described by the
relation p = o [29].

Definition 1.1 (|29, 46]) A quasi-Einstein Lorentzian manifold is referred to as
perfect fluid spacetime (PFS) if the Ricci tensor has the composition

FRic = a9+ b n, (1.1)
wherein g is the Lorentzian metric, a and b are scalars, and 1-form 7 is metrically
equivalent to a unit time-like vector field.

Furthermore, the Lorentzian manifold is a manifold that permits a time-like vector
field [27, 28].

The investigation of exact solutions to the Einstein field equations gave rise to
quasi-Einstein manifolds. For instance, the quasi-Einstein manifolds [27, 28] are the
Robertson-Walker spacetime. In GTR, they can also be viewed as a model of the perfect
fluid spacetime [32].

Definition 1.2 ([29]) The energy-momentum tensor 7 in conjunction with a
perfect fluid has the following shape:

T (F1, Fy) = pg(F1, F2) + (o + p)n(F1)n(F), (1.2)
for any vector field F, F», € x(.#*), and the isotropic pressure is denoted by p, the
energy density by o, and the Lorentzian metric by g. This means that
9(F1,¢) = n(F1), where nis 1-form, which corresponds to the fluid’s time-like
velocity vector ¢, and g(¢, ¢) = —1 [32].

If o = 3p [29], then matter in spacetime originates from a radiation fluid.
Furthermore, there are important uses for Eq. (1.2) in star structure and cosmology.



The scalar field theory and electromagnetic energy-momentum tensors are two more
instances of energy-momentum tensors.

The field equation governing perfect fluid motion is Einstein’s gravitational
equation (in short EGFE) [29].

FRic = KT — (A — %)g, (1.3)

where the scalar curvature of g is Z .4, the cosmological constant is A, the
gravitational constant is k (which may be expressed as 87G, with G being the
universal gravitational constant), and the Ricci tensor is #g;c.

Over the past 20 years, a number of scholars have used a range of geometric tools,
such as curvature tensors [2] and, most significantly, geometric flows [26, 45], to
thoroughly examine the properties of symmetries in the perfect fluid spacetime (PFS).
There are many symmetries in the geometry of matter and spacetime [34, 42].

Metric symmetries are essential because they facilitate the resolution of
numerous problems. They are mostly employed in GTR to classify solutions to
Einstein field equations. Among these symmetries are Ricci solitons associated with
the Ricci flow of spacetime. Ricci flow is important because it helps understand the
concepts of entropy and energy in GTR [21]. Ricci solitons are areas where the
curvatures obey a self-likeness [22].

First, spacetime symmetries were studied in connection with the Ricci soliton by
Ahsan and Ali [4]. Blaga used Einstein, Ricci, and their extensions, that is, n-Einstein
solitons [7] and n-Ricci solitons [15] in a PFS, respectively, to explain the geometrical
axioms of a PFS in [8]. Furthermore, Venkatesha and Kumara [48] used Ricci solitons
to investigate the characterization of PFS using the torse-forming vector field and
Jacobi. In [38], Danish and Shah-Alam talked about the conformal Ricci solitons on
PFS. Recently, Danish and Fatemah in [36, 37] looked at various properties of PFS
with hyperbolic Ricci solitons. Additionally, perfect fluid spacetime, magneto-fluid
spacetime [35, 44], and static spacetime [41] were studied by Siddiqi et al. utilizing
Ricci-Yamabe solutions. Recent research on Ricci-Yamabe solitons on imperfect fluid-
generalized Robertson-Walker spacetime [3, 40] was conducted by Alkhaldi et al. [5].

In 2010, Dai and colleagues introduced the notion of hyperbolic geometric flow.
Later, Faraji, and colleagues [6, 18] introduced the concepts of gradient hyperbolic
Ricci soliton and hyperbolic Ricci solitons. Recently, Blaga and Ozgiir have
investigated the idea of hyperbolic Yamabe solitons and hyperbolic Ricci solitons in
different methods (for more details, see [9, 11, 25]).

In the present study, we introduced the notion of the hyperbolic Ricci-Yamabe
soliton (HRY S) and gradient hyperbolic Ricci-Yamabe soliton (GHRY'S). The
hyperbolic Ricci-Yamabe soliton is a generalization of the hyperbolic Ricci solitons
and hyperbolic Yamabe solitons and their gradient version. We analyze the relativistic
PFS in terms of a gradient hyperbolic Ricci-Yamabe soliton (GHRY S) and a
hyperbolic Ricci-Yamabe soliton (HRY S) with different vector fields, drawing

inspiration from previous research.



2 The Einstein Field Equation Is Satisfied by Perfect
Fluid Spacetime with the Cosmic Constant A > 0

From Einstein’s field equations by adding a cosmological constant, which creates a
static universe, in accordance with his theory, in modern cosmology, it is thought to
be a potential dark energy contender that could account for the Universe’s faster

expansion.
We find from Egs. (1.2) and (1.3)

yRic(FlaFQ) = _(A - @ =+ K’p)g(FbFZ) + K:(O- +p)77(F1)’I’](F2) (24)

The values of pressure and density for PF'S (.#*, g) are determined by comparing
(10.2) and (2.4).

=L (% Aa), o= (arbia- %) 23)
In addition, we gain
a:@—&p—j\, b=k(oc+0p). (2.6)

In light of (4.7) one can articulate the following

Theorem 2.1 IfaPFS (.#*, g)fulfills the EGFE with the cosmological constantA,
then densityoand the pressure p are governed by (2.5).

Let (.#*, g) be a PFS fulfilling (2.4). Contracting (2.4) and assumed that g(¢, {) = —1,

we turn up
%scal = K’(J_?’p) +4A. (27)

Theorem 2.2 IfaPFS (.#*, g)with pressure p and densityofulfils the EGFE with the
cosmological constantA, then the scalar curvatureZ scq1is4A + k(o—3p).

Remark 2.3 Incase, A > 0, the cosmological constant A is essential to interpreting
the observed accelerating expansion of the cosmos and supernova [30]. Moreover, for
positive cosmological constant A, a spacetime is a de-Sitter spacetime.

Remark 2.4 ([30]) The Universe contains dark sector for the negative cosmological
constant A < 0, that is, ACDM. Therefore, model cannot accelerate, and the late time
expansion of Universe occurs.

If the source of matter is radiation type and stiff matter type, then from (2.7), we get
A=%2 = A=Z 7 (2.8)

Given (2.8) and Remark 2.3, we may now state the following findings:

Theorem 2.5 If the source of matter is radiation type in a spacetime(# *, g)with

pressure p and densitycand fulfils the EGFE with the cosmological constantA > 0, then
the spacetime is an accelerating Universe.



Theorem 2.6 If the stiff matter is the source ofspacetime(//{4, g)with pressure p and
densityoand fulfils the EGFE with the cosmological constantA > 0, then the spacetime
is an accelerating Universe.

Corollary 2.7 Ifthe source of matter is radiation type in a spacetime(.#*, g)with

pressure p and densitycand fulfils the EGFE with the cosmological constantA > 0, then
the spacetime is a de-Sitter spacetime.

Corollary 2.8 If the stiff matter is the source in Spacetime(///4, g)with pressure p
and densityoand fulfils the EGFE with the cosmological constantA > 0, then the
spacetime is a de-Sitter spacetime.

Corollary 2.9 Ifthe source of matter is radiation type in a spacetime(///4, g)with

pressure p and densitycand fulfils the EGFE with the cosmological constantA > 0, then
the spacetime is a Supernova.

Corollary 2.10 If the stiff matter is the source in Spacetime(///4, g)with pressure p
and densityoand fulfils the EGFE with the cosmological constantA > 0, then the
spacetime is a Supernova.

3 Dust Matter Fluid Spacetime Satisfying Einstein Field

Equation with the Cosmological Constant A < 0
For dust fluid [33], from (2.7), we turn up
A=Zpe (3.9)

Equation (3.9) implies that if Z > ko, then we can obtain similar results to
mentioned above for dust matter fluid with positive A. However, now we are
interested in the situation if A < 0, thatis, Z < ko.

Thus, using the aforementioned facts and Remark 2.8, we obtain the following
outcomes.

Theorem 3.1 Ifthe dust matter is the source ofspacetime(///4, g)with pressure p

and densityoand fulfils the EGFE with the cosmological constantA < 0, then the
spacetime is a non-accelerating Universe with a late time expansion rate of the
Universe.

Corollary 3.2 Ifthe dust matter is the source ofspacetime(///4, g)with pressure p
and densityoand fulfils the EGFE with the cosmological constantA < 0, then the non-
accelerating Universe contains dark sector.

Theorem 3.3 Ifa dust fluid spacetime(.#*, g)with pressure p and densityafulfils the
EGFE with the cosmological constantA < 0, then the dust matter is the ACDM.



4 Development of Hyperbolic Ricci-Yamabe Solitons

The principles of Ricci flow were first presented by Hamilton [21] in 1988. It
demonstrates that the limit of the Ricci flow’s solutions is the soliton of Ricci. In
addition, geometric flow theory, and the Ricci flow in particular, has attracted the
attention of many mathematicians throughout the last 20 years.

The Ricci flow [21] occurs when the family of metrics g(¢) on a Riemannian
manifold M evolves, if

£9(t) = —2FRic(t)9(t), 9o = 9(0). (4.1)

Definition 4.1 ([21]) A Ricci soliton on the Riemannian manifold (.#, g) is a data
(g,¢, M) that obeys

1Lcg+ Mg+ Fric =0, (4.2)
wherein #g;. is the Ricci tensor, and for the vector field ¢, the Lie-derivative is L¢g. A
Ricci soliton is shrinking, expanding or stable soliton is the manifold (M, g, , A),
depending on the constant ), regardless of whether A < 0, A > 0, or A = 0.

Kong and Liu, however, explored the hyperbolic Ricci flow [16]. A system of second-
order nonlinear evolution partial differential equations makes up this flow.
Hyperbolic Ricci flow illustrates the wave properties of metrics and manifold
curvatures. The evolution equation that follows explains the hyperbolic Ricci flow,
which is conseqléently driven by Ricci flow.

%%Q(t) = —ric(t)g(t), go=9(0), Zgij = hij, (4.3)
where h;; is a symmetric 2-tensor field. Thus, a self-similar solution of hyperbolic
Ricci flow is called a hyperbolic Ricci soliton (HRS) and has the following properties:

Definition 4.2 ([18]) A Riemannian manifold (.#Z", g) is a HRS if and only if M has
a vector field ¢ and real scalars p and A such that

1
5 Leleg + ALcg + FRic = pg- (4.4)

The types of solitons and the rate of the underlying type are indicated by A and w in
(4.4), respectively. Additionally, 1 has geometric meaning and denotes the rate of
change in the solutions. Regardless of whether p < 0, p > 0, or u = 0, the rate of
change of the HRS can be expanding, contracting, or roughly stable, depending on the
constant p.

Example 4.3 Let H3 denote the three-dimensional Heisenberg group. Since, any
simply connected nilpotent Lie group is diffeomorphic to R™. So give R3 its standard
coordinates (x, y, z). We consider a left-invariant Lorentzian metric g on Hs which is
defined by

g = —dz? + dy? + (zdy + d2)’.
Define a vector field X = (2z + zy)F; + yF> + xF3, where



0 0 0 0
F1_57 2—a—y—wa, F3 = —

are frame fields. Then, one can easily check that
) 5 5
Ric(g) — ngg + Zx(Zxg) = 59

5 5
Hence, (Hg, g, X, — 30 5) is a hyperbolic Ricci structure.
Since V1 X3 — V2 X7 = x # 0, the hyperbolic Ricci soliton is not of gradient type.

Hyperbolic Yamabe flow and hyperbolic Yamabe solitons were proposed by Blaga and
Ozgiir in [10] as an evolution equation
g_:zg(t) = _%scal(t)g(tL (4.5)

where %, indicates the scalar curvature, and an equation-satisfying stationary
solution of it

L¢Leg+ ALeg = (1 — Rscal)g (4.6)
with two scalars A and ¢ and a smooth vector field zeta, and the derivative of the
metric g in the direction of  is Lg.

Guler and Crasmareanu [20] have presented the research of a novel geometric

flow known as the Ricci-Yamabe map, which is a scalar combination of the Ricci and
Yamabe flows. The Ricci-Yamabe flow of type («, §) is another name for this.

According to [20], the Ricci-Yamabe flow is the development of metrics at the
Riemannian or semi-Riemannian manifold.

%g(t) = —2aFRic(t) + BRsca(t)9(t), go =9(0), t€ (a,b). (4.7)
The sign of the associated scalars a and 8 determines whether the Ricci-Yamabe flow
is Riemannian, semi-Riemannian, or singular Riemannian. Some geometrical or
physical models, such as relativistic theories, can benefit from this type of multiple
choices. Consequently, the Ricci-Yamabe soliton for the Ricci-Yamabe flow naturally
appears as the soliton limit.

5 Hyperbolic Ricci-Yamabe Flow

The author was greatly inspired by this to present the idea of the hyperbolic Ricci-
Yamabe solitons, which are described as the subsequent development of the
hyperbolic Ricci-Yamabe flow equation in such a way that

27 9(t) = —20Fpie(t) + BRuca(t)9(t), 90 =9(0), Zg(t) =h(t), (5.1)
where h is a symmetric 2-tensor field and g(t) is the solution of the hyperbolic Ricci-
Yamabe flow on a Riemannian manifold (.#Z ", g) if there exist a function f(¢) and 1-
parametric flow ¢(t) : M — M such that the solution of (5.1) is

g(t) = f(£)¥(t)"9(0). (5.2)

Definition 5.1 A stationary solution g(t) (or self-similar solution) of (5.1) on a
hyperbolic Ricci-Yamabe soliton (HRY S) is a Riemannian manifold (.#", g) ifa



vector field { on .# and real scalars p and A exist such that
1
gLCLCg + )‘LCQ + ayRic = (,U, - B'%scal).q (53)

A hyperbolic Ricci-Yamabe soliton is shrinker, expander, or stable soliton if the
constant A, regardless of whether A < 0, A\ > 0, or A = 0. In addition the rate of
change of hyperbolic Ricci-Yamabe soliton is shrinking, expanding, or stable soliton
depending on the constant u, whether p < 0, 4 > 0, or p = 0 [18].

Remark 5.2 A hyperbolic Ricci-Yamabe flow of type (a, 3), which is precisely:

» Hyperbolic Ricci flow [16] if &« = 1, 8 = 0 (hyperbolic Ricci solitons [18])
e Hyperbolic Yamabe flow [10] if &« = 0, 8 = 1 (hyperbolic Yamabe solitons [10])
e Hyperbolic Einstein flow [13] if @« = 1, 8 = —1 (hyperbolic Einstein solitons [13])

A gradient hyperbolic Ricci-Yamabe soliton (GHRY'S) is called a HRY S (g, A\, (, i)
[18] if there is a potential function fsuch that { = V f. Because of this, (5.3) can be
translated as (4.41).

Ly¢(Hessf) + 2 \Hessf + aSric = (4 — BRscal)9- (5.4)

6 Results

Definition 6.1 ([17]) A vector field zeta on a Riemannian manifold (., g) is
referred to as a conformal vector field if it meets the following relation:

Leg = 2wy, (6.5)
where w is the arbitrary nonzero smooth functions on .#. The smooth function o is
also known as a conformal coefficient. In particular, the conformal vector field with a
vanishing conformal coefficient (w = 0) reduces to the Killing vector field, and with

constant conformal coefficient (w = cont.) it becomes homothetic vector field.

Definition 6.2 ([12]) A Riemannian manifold (.#, g) is considered to be admitted
to Ricci collineation (RC) if

L:Sgic =0, (6.6)
wherein .#5;. is the Ricci tensor.

7 Main Results

Now, by the definition of hyperbolic Ricci-Yamabe solitons,
(L¢Leg)(F1, Fo) + 2AL¢g(F1, F) + 20 Ric(F1, F»)

7.7
= 2(ps — R sca)9(F1, F). (7.7)

Now, let ¢ be a conformal vector field, and from (7.7) and (6.5) we turn up
L(L¢g)(Fr, F2) + 2A(L¢g) (Fr, F2) + 2aRic(F1, F2) (78)

= 2(/.1, — ﬂ%scal)g(Fla F2)
(7.9)



L§(2wg(F1, Fg)) + 2)\(2wg(F1, FQ) + 2a,5”RZ-c(F1, Fg)

= 2(p — BZsca)9(F1, F2).
Once more using the conformal vector field formulation in (refdx5), we get

Fric(F1, Fy) = i (PP e+ D0+ 2 9(F1, Fy). (7.10)

(6
Consequently, we can draw the following conclusions:

Theorem 7.1 IfaPFS (.#*, g)admits the HRY S(g, \, ¢, u, o, B)with a conformal

vector field(, then thePFS (.#*, g)is Einstein, and the Einstein factor is
p—(BR scai+2Aw+2w?)
~ .

In light of (7.10) and (2 4) we gain
_{ A — mz + kp + —(ﬂ%scaz;-mﬁwz) } g(Fy, Fy)
+“(U+P)77( Fi)n(F3) = 0.

Putting F; = F3 = (in (7.11), we obtain
A= - { o) (1 = ﬁ) Bt 4 A +w}. (7.12)

(7.11)

a

Furthermore, we discover the following corollary in the context of Definition 4.1.

Theorem 7.2 IfaPFS (.#*, g)admits theHRY S (g, \, ¢, ., o, B)with a conformal
vector(field, then the HRY S is shrinking, steady, or expanding referring to as:

1. 9
I'L ( p) I E “Tscat : ’
20w < { ( a) : 2w }

2w

2.
25(0 = {5(0-2:217) + (1 - g) St + 2w —|—(.U}

3. (0+2 ) B
E_ > { Pl 4 (1 — E) Sl 4 5= +w} respectively, provided

20w

a,p #0

Depending on the constant p, the rate of HRY S is expanding, shrinking, or remaining
steady, regardless of whether u < 0, 4 > 0, or u = 0. The hyperbolic Ricci-Yamabe
flow’s rate ina PF'S (.#*, g) with a conformal vector field zeta is thus determined
from (7.12).

p = 20w + k(o + 2p) + (o — B)Pscar + a(A + 2w?). (7.13)
Thus, we can articulate the following result:

Theorem 7.3 IfaPFS (.#*, g)admits theHRY S (g, )\, {, u, o, B)with aCV'F ¢,
then the rate of change of the HRY S is expanding.

Now, in view of Remark 5.2 and using @ = 0, f = 1 in (7.13), we can state the next
corollary:



Corollary 7.4 IfaPFS (.#*, g)admits the hyperbolic Yamabe soliton
(9, A\, ¢,y = 0, B = 1)with a CKV F(, then the rate of change of the hyperbolic
Yamabe soliton is expanding, steady, or shrinking referring to as, respectively:

1.
‘%SCG
(0+2p) > ==
2.
(0 + 2p) = Lot
3. 2 %scal
(O'+ p) < —
In addition, inserting & = 1 and 8 = —1 in (10) and using Remark 5.2, we turn up
J— (U+2 ) 2'%6‘6@ A.
)‘_%_{nzwp"‘ 2wl+%+w}' (7.14)
p= 2w+ {W + 4% scal +A+2w2}. (7.15)

Thus, Egs. (7.14) and (7.15) entail the following results for hyperbolic Einstein
soliton and rate of change of the hyperbolic Einstein soliton:

Corollary 7.5 IfaPFS (.#*, g)admits the hyperbolic Einstein soliton
(9, A, ¢, py 1, —1)with aCV F (, then the hyperbolic Einstein is shrinking, steady, or
expanding referring to as, respectively:

1.

Iz K(o+2p) 2K sca A

w < { 2w + 2w l + 2w + W}
2.

B H(O’+2p) 2%5811 A

w { 2w + 2w l + 2w + w}

3.
7 K(0+2p) 2R scq A
E>{ 2w + 2wl+%+w}
In light of (7.15), we gain the following:

Corollary 7.6 IfaPFS (.#*, g)admits a hyperbolic Einstein soliton
(g9, A, ¢,y 1, —1)with aCV F (, then the rate of change of the hyperbolic Einstein
soliton is expanding.

Now, in view of (7.12) and Remark 2.3, we get

A=t {/fe(a—l— o) + (1 _ g)%’scaz +2w() + 1)}. (7.16)

Theorem 7.7 IfaPFS (.#*, g)admits the HRY S (g, \, (, i, o, B)with aCV'F ¢,
then thePFS (M#*, g, \, ¢, i, o, B)is an accelerating Universe if

&> {Fi,(0'+ 2p) + (1 — é)%’scaz + 2w(A + 1)}



Theorem 7.8 IfaPFS (.#*,g)admits the HRY S (g, \, (, i, o, B)with aCV F ¢,
then thePF'S (#*, g, \, ¢, 1, o, B)is de-Sitter spacetime if

5> {Fi,(0'+ 2p) + (1 — é)%’scaz + 2w(A + 1)}

Theorem 7.9 IfaPFS (.#*, g)admits theHRY S (g, \, (, i, o, B)with a CV F(, then
the PFS(///4, 9, A, ¢, i, a, B)is a non-accelerating Universe with a late time expansion
rate of the Universe if

i <{alo+20) + (1- £) Pt + 2000+ 1) }.

Corollary 7.10 IfaPFS (.#*, g)admits the HRY S (g, \, {, i, o, B)with a CV F¢,
then the PFS(.# 4, g, \, , u, a, B)contains dark sector if

5 < {n(a—l— 2p) + (1 — g)%’scal + 2w(A + 1)}

8 Hyperbolic Ricci-Yamabe Soliton with a ¢(2)-Vector
Field on PFS

Definition 8.1 ([24]) A vector field ¢ on a Riemannian manifold M, if M obeys, is
considered a ¢(2)-vector field

Vep = Q2¢, (8.17)
where 2, 2, and V represent the Ricci operator, a constant, and the Levi-Civita
connection, respectively, g(2m,n) = Fri.(m,n). p(2) is considered to be
covariantly constant if Q@ = 0 in (8.17), and ¢ is a valid ¢(2)-vector field if 2 # 0.

Using (8.17) and the Lie-derivative formulation, we arrive to
(L(pg)(Fl,Fg) = QQyRic(Fl,FQ) (8.18)
for any Fy, Fy € x (A *).
Taking into consideration (7.7) and (8.18), we discover
(2AQ + a)Fpic(F1, F2) + QLx L Ric(F1, F2) = (4 — BRscal)9(F1, F2).  (8.19)
Again using that ¢ also holds the Ricci collineation condition, then (8.19) entails that

Fric(F1, F2) = %Q(Fbﬁ’z)- (8.20)

We can therefore state the following outcome.

Theorem 8.2 IfaPFS (.#*, g)admits the HRY S(g, \, {, i, o, B)with a propery(2)-

vector fieldCand ifCholds RC in the PFS, then the PFS is Einstein, and Einstein’s factor is

(/J'fﬂ‘@scal)
@2\ +a)

Corollary 8.3 IfaPFS (#*,g)admits theHRY S (g, \, ¢, u, @, B)with a
covariantly constantp(Q)-vector field(Q = 0)and if¢holds RC in the PFS, then the PFS



is an Einstein.

Moreover, in the light of Remark 5.2 and Theorem 8.2, we obtain the following
corollary:

Corollary 8.4 IfaPFS (.#*, g)admits the hyperbolic Yamabe soliton

(g, A, ¢, py 0 = 0, B = 1)with a properp(2)-vector field(and ifCholds RC in the PFS,

then the PFS is Einstein, and Einstein’s factor ) ] _2')%“”) .

Putting m = n = ( in (8.20), we obtain

ﬂf%sca —
Frie((, Q) = gL (821)
Using Egs. (8.21) and (2.4), we turn up
)\ _ (/Bﬂgcal_//’) _ o 8 22
T 2Q(2A—Pscai+Kp) 2Q * ( . )

In case of hyperbolic Yamabe soliton @ = 0 and 8 = 1. Thus from (8.22), we also get

. (%scal_u)
A= 0Ch- T ) (8.23)

Now, Theorem 8.2 and Egs. (8.22) and (8.23) entail the following results:

Theorem 8.5 IfaPFS (.#*, g)admits theHRY S (g, \, ¢, 1, o, B)with a proper
©(2)-vector field(and ifCholds RC in the PFS, then the HRY S is expanding, steady, or
shrinking referring to as, respectively:

L (B%scal*ﬂ) > o
2002A—Z yeq1+KD) 2Q
2 | (ﬂ%’scal _ﬂ) .«

202A—R g +5p) ~— 290

3.
(Bﬁscal_ﬂ) < (0%
2002A—Z geq1+ D) 2Q

Corollary 8.6 IfaPFS (./#*, g)admits the hyperbolic Yamabe soliton
(9, A\, ¢,y = 0, B = 1)with a properp(2)-vector field{and ifCholds RC in the PFS,
then the hyperbolic Yamabe soliton is expanding.

Once again with the help of Egs. (8.22) and (8.23), we gain
= BRscat — [2A2A — Rsear + Kp) + =51, (8.24)

and
Thus we can state the following outcomes:

Theorem 8.7 IfaPFS (.#*,g)admits theHRY S (g, \, ¢, i, o, B)with a proper
©(L2)-vector fieldCand ifCholds RC in the PFS, then the rate of change of the HRY' S is
expanding, steady, or shrinking according as:

1.



B%scal > [2)\9(2A — %scal + fip) + %]

2.
B'%scal = [2AQ(2A - '%scal + K'p) + %]

3.
ﬂ%scal < [2>‘Q(2A - %scal + F"/p) + %]; respectively

Corollary 8.8 IfaPFS (.#*, g)admits the hyperbolic Yamabe soliton(g, A, ¢, 1,0,1)
with a properp(2)-vector field(and ifCholds RC in the PFS, then the rate of change of
the hyperbolic Yamabe soliton is shrinking.

9 Gradient Hyperbolic Ricci-Yamabe Solitons

In this portion, we use a scalar concircular field to determine gradient hyperbolic
Ricci-Yamabe solitons in PFS. Therefore, we offer the definition that follows.

Definition 9.1 ([19]) Scalar fields are defined as scalar concircular fields (SCF's) if
they satisfy the equation f € C'*°(.Z).

Hessf = g, (9.26)
where 7 is a scalar field and g is the Riemannian metric. Additionally, the equation

transforms into an ordinary differential equation for an arc-length ¢ geodesic given as
2
L = (9.27)

Now, using Eq. (5.4) with (9.26), we find
va(Hessf(Fl, FQ)) + 2)\H688f(F1, FQ) + ayRic(Fl, Fz) (9 28)
- (,UJ - ﬂ%scal)g(Fla F2) .
va(Tl’g(Fl,Fg)) + 2)\7Tg(F1, FQ) + OéyRic(Fl, F2) = (,u, — ﬂ%scal)g(FlyFQ)- (9.29)
F(HGSSf(Fl, FQ)) + 2)\7Tg(F1,F2) + OéyRic(Fl, Fz) = (/1, — ﬂ%scal)g(Fl,Fg).(QSO)

_71'2 Y[% A
Fpie(Fr, Fy) = T 2mebRa)] o gy (9.31)

(8%
Therefore, we can state the following result.

Theorem 9.2 IfaPFS (.#*, g)admits theGHRY S (g, \,{ = V£, u, a, B)with an
SCF f, then the PFS is Einstein.

Puttingm = n = (in (9.31) and using (2.4), we obtain

)\ — [% _|_ ae?:rcal + ali(;‘;r2p):| . [B‘@Tfscal + %:|' (932)
p= |7+ 227 + BRsear + A] — [% + ak(o + 2p)] . (9.33)

Hence, we articulate the next theorems and corollaries:

Theorem 9.3 IfaPFS (.#*, g)admits theGHRY S (g, \,{ = V£, u, a, B)with an
SCF f, then the GHRY S is expanding, steady, or shrinking according as:



1. [ & | oBua | or(o+2p) [ BRcar | A
| 27 + 27 + > + T

2 ] | 7
: [ 4 oPat | ar(0+2p) | _ [ fRuca LA ]
| 27 2T 2 | _ | 7 T
3.

[ Roct | 501+20) | _ [ BRscwr | A] -

2 + Al — | < T’ + ™) respectively

Theorem 9.4 IfaPFS (.#*, g)admits theGHRY S (g, \,¢ = V f, i, o, B)with an
SCF f, then the rate of change of GHRY S is expanding, steady, or shrinking according
as:

1.

(72 4 27 + BRscar + A] > [22t 1 ak(o + 2p)]
2.

(72 + 207 + BRsear + A] = [2 + k(o + 2p)]
3,

[71'2 + 2T + BPR scal + A] < [@ + ak(o + 2p)], respectively

Corollary 9.5 IfaPFS (.#*, g)admits the gradient hyperbolic Yamabe soliton
(g, A\, ¢ =V f,u,0,1)withanSCF f, then the gradient hyperbolic Yamabe soliton is
expanding, steady, or shrinking according as:

1.
N %scal A
2 > T + s
2.
L _ f%scal + A
2r ~ 07 T
3. p P A
e / scal A\ .
5 < T 4 -, respectively

Corollary 9.6 IfaPFS (A 4 g)admits the gradient hyperbolic Yamabe soliton
(9, A\, ¢ =V f,u,a, B)with anSCF f, then the rate of change of gradient hyperbolic
Yamabe soliton is expanding.

10 Energy Constraints with Gradient Hyperbolic Ricci-

Yamabe Soliton in Perfect Fluid Spacetime

In this section, we know whether the Ricci tensor .#g;. in the spacetime satisfies the
condition, referring to [31].

Fric(¢;€) > 0; (10.34)
the time-like convergence condition (TCC) is Eq. (10.34) for any time-like vector fields
¢ex(AY).

From (2.4) and (9.31), it gives



Fric((,€) = [72 + 227 + BRsear + A] — [% + ak(o + 2p) + u} .
If the PFS in question satisfies the TCC, that is, then #g;.(¢, () > 0.
[71'2 + 2T + BR scal + A] > [% + ak(o + 2p) + ,u] . (10.35)

(72 4+ 2\ + Ry + A] > . (10.36)
The spacetime obeys the cosmological strong energy constraint (SEC') [47]. In light
of the above information given and from (10.35), we can state the following:

Theorem 10.1 IfaPFS (.#*, g)admits a GHRYS(g, \,{ = V f, u, a, B)with an
SCF f, thenthePFS (.#*, g)satisfies SEC, provided the rate of change of GHRY S is
expanding.

We now have an intriguing observation.

Remark 10.2 1. Hawking and Ellis [23] demonstrate in 1973 that the condition of
null energy is SEC = NEC.

The following theorem is obtained by combining Remark 10.2 with Theorem 10.1:

Theorem 10.3 IfaPFS (.#*, g)admits a GHRYS(g, \,{ = V f, u, a, B)with an
SCF f, then thePFS (.#*, g)satisfies NEC, if (10.35) holds, provided the rate of
change of GHRY S is expanding.

In the light of (10.36), we turn up the following corollaries:

Corollary 10.4 IfaPFS (.#*, g)admits a gradient hyperbolic Yamabe soliton
(g, A\, ¢ =V £, 1,0,1)withanSCF f, then thePFS (.#*, g)satisfies SEC, provided the
rate of change of the gradient hyperbolic Yamabe soliton is expanding.

Corollary 10.5 IfaPFS (.#*, g)admits a gradient hyperbolic Yamabe soliton

(g, A\, ¢ = V£, u,0,1)withanSCF f, then thePFS (.4 *, g)satisfies NEC, if (10.35)
holds, provided that the rate of change of gradient hyperbolic Yamabe soliton is
expanding.

11 m-Hyperbolic Ricci-Yamabe Solitons

Finally, in this section, we presented a more general concept of n-hyperbolic Ricci-
Yamabe solitons and demonstrated that a spacetime with a conformal vector field
that admits the n-hyperbolic Ricci-Yamabe solitons is a perfect fluid spacetime.
As a generalization of Ricci soliton, the n-Ricci soliton was introduced by Cho and
Kimura [15] in the following form:
LLig+ Fric + Ag+ ™m0 =0, (11.37)
where A and 7 are real constants.



In [43] Siddiqi et al. introduced the notion of the n-Ricci-Yamabe solitons.
Specifically, an n-Ricci-Yamabe soliton on the Riemannian manifold (.#, g) is a data
(9, A, 7, a, B) satisfying

%ch + ayRic + <>\ - g%scaog +™MRN = 0’ (11'38)

where 7 is a constant.

Now, in light of (5.3) and (11.38), one can introduce the new concept similarly by
amending the expression (5.3) that explains the type of soliton by a multiple of a
specific (0, 2)-tensor field n ® n. These findings result in a significantly more
comprehensive concept, termed an n-hyperbolic Ricci-Yamabe soliton (briefly an n-
HRY soliton) of type («, ) defined as

1
5 LeLeg + ALy + aFRic = (b — Bsca)g + ™0 @ 1. (11.39)
Next, adopting (11.39) and (6.5), we gain
FRic(m,n) = Ag(m, n) + By(m)n(n), (11.40)
where A = Ni(ﬁ%scalZ”\erzw ) and B = 1.

Theorem 11.1 If a spacetime(.# *, g)admits then-hyperbolic Ricci-Yamabe solitons
(g, \, ¢, u, T, a0, B)with a conformal vector field(, then the spacetime(.# *, g)is a PFS.

12 Open Problems

This kind of research can be expanded to include other solitons, such as the
hyperbolic conformal Ricci soliton and the hyperbolic Ricci-Bourguignon soliton from
conformal Ricci soliton and Ricci-Bourguignon soliton [14, 39], respectively. In reality,
the author already explored certain results of hyperbolic Ricci-Bourguignon soliton in
his next publication, which is under print.
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Abstract

The well-known Hitchin-Thorpe inequality is an important geometric inequality
which states that if a closed, oriented 4-manifold M admits an Einstein metric,
then the Euler characteristic x (M) and the signature 7(M) of M satisfy

X(M) > S [r(0)].

In 1974, N. Hitchin further established a thorough explanation of the equality
case. In addition, Hitchin proved that if (M, g) is an Einstein manifold for which
equality of this inequality is attained, consequently, either M is flat or its universal
cover is a K3 surface, and (M, g) is Ricci-flat.

After this important work of Thorpe and Hitchin, there exist many important
works related closely to the Hitchin-Thorpe inequality done by many
mathematicians.

The purpose of this chapter is to delve into recent advancements of the
Hitchin-Thorpe inequality and its extensions, showcasing how contemporary
studies have extended their applicability.

Keywords Hitchin-Thorpe inequality - Euler characteristic - Signature - Ricci
soliton - Myers’ theorem

1 Introduction
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The study of 4-manifolds is a central theme in both differential topology and
differential geometry, revealing intricate relationships between the geometric
structures of manifolds and their topological invariants. On the other hand,
Einstein manifolds are essential Riemannian manifolds in physics and geometry,
and they produce the vacuum solutions to the Einstein field equations in general
relativity and are suitable options for canonical metrics on manifolds.

An important result on Einstein manifolds is the well-known Hitchin-Thorpe
inequality which asserts that in the event of a closed, oriented, smooth 4-manifold
M admits an Einstein metric, and then x (M) and 7(M) of M satisfy

X(M) = 3 |r(M)]. (1.1)

The Hitchin-Thorpe inequality will be referred to as the H-T inequality, x
represents the Euler characteristic, and 7 represents the signature throughout this
chapter.

The H-T inequality was initially mentioned by J. Thorpe in a footnote of his
1969 paper [31], which concentrated on manifolds in higher dimensions. Later in
1974, N. Hitchin [14] rediscovered this inequality and gave an in-depth review of
the equality case. Moreover, it was demonstrated by Hitchin that if (M, g)
represents an Einstein manifold for which equality holds, then (M, g) is Ricci-flat,
and either M is flat or its universal cover is a K3 surface. In the same paper [14],
Hitchin also laid the groundwork for these inequalities by exploring the properties
of spinors and Dirac operators on manifolds, leading to a deeper understanding of
how curvature conditions constrain topological properties. Independently,
Thorpe’s research, in his 1969 paper [31], also highlighted significant links
between scalar curvature and the topology of manifolds, particularly through the
Gauss-Bonnet integral. Together, their contributions have provided important
developments in the field of 4-manifolds. However, C. LeBrun [20] demonstrated
in 1995 that there are an unlimited number of non-homeomorphic compact,
smooth, oriented 4-manifolds M that are orientated, compact, and smooth that do
not contain Einstein metrics but yet satisfy the strict inequality case of (1.1).
Therefore, the H-T inequality (1.1) is not a sufficient condition for a closed,
oriented, 4-manifold to admit an Einstein metric. Note that M. Berger [2] observed
in 1965 that every compact Einstein 4-manifold has a nonnegative Euler number.

After the works of Thorpe and Hitchin, there exist many nice works closely
related with the H-T inequality obtained by many mathematicians. The aim of this
chapter is to delve into recent advancements of the H-T inequality and its
extensions, showcasing how contemporary studies have extended their
applicability. By synthesizing classical and modern perspectives, this chapter aims
to provide a detailed and accessible resource for researchers and students,
fostering a deeper appreciation of the pivotal role these inequalities play in
differential geometry and topology.



2 Preliminaries

The H-T inequality can be formally stated as follows: Consider a compact, smooth,
oriented 4-manifold M that admits a Riemannian metric with nonnegative scalar
curvature, and the inequality is given by

2x(M) = 3|r(M).

The signature, which captures the difference among the number of positive
and negative eigenvalues of the intersection form on the middle dimensional
cohomology, is related to the Euler characteristic, a measure of the manifold’s
shape or structure, by this inequality. Such a relationship underscores the
constraints imposed by geometric properties (e.g., scalar curvature) on the
topological invariants of the manifold.

2.1 Definitions and Background

1.
Euler Characteristic (x) A topological invariant that characterizes a
topological space’s structure or form is called the Euler characteristic. For a 4-
manifold, it can be computed using the formula:

=Y (1),

where b; are the Betti numbers, which represent the rank of the i-th
homology group of the manifold.

Signature (7) The signature of a 4-manifold is a topological invariant defined
as the difference between the count of positive and negative eigenvalues of
the intersection form on the middle cohomology. Formally, for a 4-manifold M:

T(M) — b; - b2_a
in the second cohomology group H 2(M), the maximal positive-definite
and negative-definite subspaces have dimensions b; and b, .

3. Ricci Soliton The Ricci soliton, as defined by Hamilton [13], is a complete
Riemannian manifold (M, g) that allows for the admission of a smooth vector
field X € X(M), such that

Ric, + 7 %xg9 = Ay, (2.2)

where A is a real number. The Lie derivative in the direction of X is Zx.
Depending on whether A > 0, A\ = 0, or A < 0, the soliton (M, g) is
categorized as shrinking, steady, or expanding accordingly. In Einstein
manifolds, where X is a Killing vector field, Ricci solitons are frequently seen
applications. We refer to the soliton as trivial in this particular instance. As
self-similar solutions and common models for singularities, Ricci solitons are
essential in the study of Ricci flow [5]. (M, g) is called a gradient Ricci soliton

~ — ~ ~n



when the vector tield X can be written as the gradient V f ot a ditterentiable

function f : M — R, which is called a potential function. Equation (2.2) in
this instance becomes
Ricy, + Hy = Ag, (2.3)
where H; is the Hessian of the function f.

Myers’ Theorem A complete Riemannian manifold M is compact and has a
diameter of at most 7 / vk if its Ricci curvature is bounded below by a
positive constant k, that is, Ric(X, X) > (n—1)k for all tangent vectors X
(Myers, 1941). This result implies that positive Ricci curvature places strong
restrictions on the global geometry of the manifold, particularly ensuring
finiteness in extent.

2.2 Historical Context and Development

The inequality was first suggested by Nigel Hitchin in [14] and later formalized
through independent work by John A. Thorpe. The inequality connects differential
geometry and topology by linking the curvature of a manifold with its topological
invariants.

1.
Nigel Hitchin’s Contribution Hitchin’'s work focused on the properties of

spinors and Dirac operators on manifolds, which led to insights into the
curvature and topology of 4-manifolds. His results are pivotal in
understanding the relationship between curvature conditions and topological
constraints [14].

John A. Thorpe’s Contribution Thorpe’s research also dealt with
connections between curvature and topology. His work emphasized the
significance of scalar curvature in imposing constraints on the topology of
manifolds [31].

2.3 Derivation and Proof

The H-T inequality can be derived using several techniques in differential

geometry and topology. One common approach involves the study of the scalar

curvature and the Atiyah-Singer index theorem. Here is an outline of the proof:

1. Scalar Curvature and Gauss-Bonnet Formula [19] The integral of the
scalar curvature R over the 4-manifold M is associated with the Euler
characteristic via the Gauss-Bonnet formula:

fMR dvol = 8m2x (M) — fM(|W+|2 + |[W~|)dvol,
where W~ and W T are the anti-self-dual and self-dual parts of the Weyl
curvature tensor, respectively.



Signature and Hirzebruch Signature Theorem [8] The signature 7(M) can
be computed using the Hirzebruch signature theorem, which relates the
signature to the Pontryagin classes of the manifold:

1 _
(M) = 3 (p{ (M) — py (M),
where pf and p; are the Pontryagin classes associated with the positive
and negative parts of the curvature.

Combining Results By combining these results, one can derive the H-T
inequality, showing that the scalar curvature constraints imply a relationship
between y and 7.

2.4 Applications of H-T Inequality

The H-T inequality has far-reaching implications in the study of 4-manifolds,
providing critical constraints and insights into their geometric and topological
properties. Below, we discuss several key applications of these inequalities,
illustrating their utility with specific examples.

1.

Classification of 4-Manifolds One of the primary applications of the H-T
inequality is in the classification of 4-manifolds. By examining the relationship
between 7 and , mathematicians can identify whether certain manifolds can
admit specific geometric structures.

Example:K3 Surface [8] A surface of K3 is a smooth, compact, simply
connected 4-manifold with trivial canonical bundle. For a K3 surface, x = 24
and 7 = —16 . Plugging these values into the H-T inequality,

2y = 2 x 24 = 48

37| =3 x 16 = 48.
We see that 2y = 3|7/, which satisfies the inequality. This confirms that K3

surfaces are among the special 4-manifolds that meet the strict criteria set by
the H-T inequality.

. Existence of Metrics with Positive Scalar Curvature The H-T inequality is

particularly useful in determining the existence of Riemannian metrics with
positive scalar curvature on 4-manifolds. A manifold satisfying 2y < 3|7|
cannot support a metric of positive scalar curvature.

Example: Complex Projective PlaneCP2[19] Consider the complex
projective plane CP2 where y = 3 and 7 = 1. For CP2, we have

2x =2x3=6
3|71 =3x1=3.



Since 2x > 3|7, CP? can admit a metric with nonnegative scalar

curvature. Indeed, CIP? can be endowed with the Fubini-Study metric, which
has nonnegative scalar curvature.

Constraints on Topology of 4-Manifolds The H-T inequality imposes
constraints on the topological structure of 4-manifolds, limiting the possible
combinations of x and 7 for manifolds that can support certain curvature
conditions.

Example:S? x S2[12] Consider the product of two 2-spheres, $2 x S?
where x = 4and 7 = 0. For §2 x S2,

2y =2 x4 =28
37| =3x0=0.
Clearly, 2x > 3|7, which satisfies the H-T inequality. Hence, S? x S? can

potentially allow a metric of nonnegative scalar curvature. This manifold
indeed admits metrics of both positive and zero scalar curvatures, such as the
product of standard round metrics on S2.

Generalizations to Higher Dimensions While the original H-T inequality
applies to 4-manifolds, similar ideas have been explored in higher
dimensions, although they often involve more complex conditions and
invariants.

Example: 6-Manifolds [3] In higher dimensions, the relationship
between curvature and topology becomes more intricate. For instance, the
study of 6-manifolds often involves additional invariants like Pontryagin
classes and more refined curvature conditions. While no direct analog to the
H-T inequality exists in six dimensions, researchers have developed related
inequalities that provide analogous constraints on the topology and geometry
of higher dimensional manifolds.

3 H-T Inequality: Recent Progress on Compact Ricci

Solitons

3.1 A Diameter Upper Bound for Compact Ricci Solitons with
Applications to the H-T Inequality
First we mention the following.

Theorem 3.1 ([L1]) Consider(M, g)as a 4-dim compact, connected shrinking
Ricci soliton that satisfies equation (2.3). If



diam(M, g) <max {2\/02_0,\/03)\,\//\30}7

in this case, the soliton satisfies the H-T inequality (1.1).

In 2018, Tadano [26] established several sufficient conditions under which 4-dim
compact Ricci solitons comply with the H-T inequality and proved the following
results.

Corollary 3.2 ([26]) Consider(M, g), a 4-dim connected, compact shrinking Ricci
soliton that satisfies (2.3). If

y/ RoscBain (16 + 6n2) < diam(M, g),
then the soliton satisfies the H-T inequality (1.1).

Corollary 3.3 ([26]) Consider(M, g), a 4-dim compact, connected shrinking Ricci
soliton that satisfies (2.3). If

(\/4 max ~ IIllIl) + 3)\’71'2 + 2\/Rmax - Rmin) < dlam(M, g),
then the soliton satisfies the H-T inequality (1.1).

3.2 Enhanced Estimates for Oscillations and the H-T Inequality on
Compact Ricci Solitons

In 2023, Tadano [30] introduced multiple new sufficient conditions under which
compact 4-dim normalized shrinking Ricci solitons satisfy the H-T inequality. The
following are few results from his work.

Theorem 3.4 ([30]) Let(M,g
shrinking Ricci soliton with\ =

N—r

be a connected compact 4-dim normalized
that satisfies (2.3). If the diameter of(M, g)

|

satisfies

. s _ .
dlam(M, g) = (\/E + 4) \/Rmax Rin,

consequently the H-T inequality (1.1) must be satisfied by the soliton.

Corollary 3.5 ([30]) Replacing Ruax, RminWith frax, fmin, respectively, in
Theorem3.4,

diam(M, g) > (\/— + 4) \/fmax Jmin,
consequently the H-T inequality (1.1) must be satisfied by the soliton.

Theorem 3.6 ([30]) Let(M, g)be a compact connected 4-dim nontrivial
normalized shrinking Ricci soliton satisfying (2.3) withA = % If the diameter of



(M, g)satisfies

. 27v/2In5(v/2—1
diam(M, g) < *J7et,

then the soliton must satisfy the H-T inequality (1.1).

Corollary 3.7 ([30]) Replacing Rynax, RininWith finax, fmin, respectively, in
Theorem3.6,

2my/2In5(1/2—1)
V fmax_fmin ’

consequently the H-T inequality (1.1) must be satisfied by the soliton.

diam(M, g) <

3.3 Kdhler Metrics and H-T Inequality for Compact Almost Ricci
Soliton

In 2014, A. Brasil et al. [4] demonstrated the H-T inequality for a 4-dim compact
almost Ricci soliton. They also demonstrated that a compact 4-dim almost Ricci
soliton is isometric to the standard sphere under appropriate integral conditions.
Moreover, they proved that a compact 4-dim Ricci soliton with a harmonic self-
dual component of the Weyl tensor is Kdhler-Einstein or isometric to the standard
sphere S* under a minimal set of conditions. The following findings were proven:

Theorem 3.8 ([4]) Consider a compact 4-dim almost Ricci soliton (M4, g, Vf, )\)
whose scalar curvature R is positive.

1.
2 < f
fMR dn<6 | ARdp,

theny > %'r. Specifically, assuming\is constant and [, R? du < 24)\%V,

If

theny > 3 |7|.
2.
If(M4, g) is Kahlerian, then

3r+2x = 5 AR dp.

Theorem 3.9 ([4]) Assume thatM*is a 4-dim compact manifold whose scalar
curvature R is positive and Ricci curvature Ric.

1.
IfRic> p > O0andR < 6por Ric< —p < 0andR > —6p, theny > %

2. Assume thatM *Kdhlerian is naturally oriented. If Ric> p > OandR <
(2v/3 + 6)por Ric< —p < 0andR > —(2v/3 + 6)p, theny > —3T.



3.4 Remarks on Compact Shrinking Ricci Solitons
In 2013, L. Ma [21] gave a generalization of H-T inequality

Corollary 3.10 ([21]) Suppose(M, g)is a 4-dim shrinking gradient Ricci soliton,
wherep > Qis the shrinking constant as above. If we also suppose that

fM 52 < p?24vol(M), (3.4)

then
() £ 3,00 > 7 [ Wt

He essentially demonstrated that the condition (3.4) is equivalent to the following:

fMO'Q (Rc— %g) > 0.

The second fundamental symmetric function of the eigenvalues of the matrix
A := Rc — ¢gis denoted by o2(A) in this instance.

3.5 H-T Inequality and Euler Characteristic for Compact Ricci
Solitons
Cheng et al. [6] investigated the geometry of Ricci solitons with compact gradients
in four dimensions in 2023. They demonstrated that if there is an upper bound on
the potential function’s range, a 4-dim compact gradient Ricci soliton must meet
the traditional H-T inequality.
They suppose that the gradient shrinking Ricci solitons obey the following

equation, without losing generality:

Hessf + Ric = = (3.5)
The metric may be scaled to accomplish this normalization. They first proved the
subsequent outcome:

Theorem 3.11 ([6]) Consider a compact 4-dim shrinking gradient Ricci soliton
(M4, g, f) that satisfies (3.5). Next, it asserts that

87X (M) > f (W|2dV, + 5 Vol(M) (5 — efmexfuin)|

where the Weyl tensor is W, the volume 0fM415V01(M), and the minimum and
maximum of the potential function f onM *are finand fumax, respectively.
Furthermore, the equality is true only in the situation that g is an Einstein metric, in
which instance f is constant.



As aresult of Theorem 3.11, we derive the following corollary.

Corollary 3.12 ([6]) A compact 4-dim shrinking gradient Ricci soliton satisfying
(3.5) is denoted by(M4, g, f). In the event that fax — fmin <log 5, the H-T

inequality (1.1) holds on M.

3.6 Topological Barriers to the Existence of Ricci Solitons That Are
Compact and Shrinking

In 2024, the difficulty of applying the H-T inequality to shrinking gradient Ricci
soliton metrics was put out by Cameron [22], who also looked at the shortcomings
of previous findings in this field. He displayed the following outcomes:

Theorem 3.13 ([22]) Assume that the compact oriented 4-dim Einstein manifold
is (M4, g). In that case, the H-T inequality is satisfied by M *.

Theorem 3.14 ([22]) Let(M4, g) be a compact gradient shrinking Ricci soliton.
Then the H-T inequality holds given the following sufficient condition:

fM4 R2dV, < 6V01(M4, g).

In order to prove this theorem, he used this lemma

Lemma 3.15 ([22]) For a compact shrinking gradient Ricci soliton (M4, g, f),
the following is true:

fM 1+ R? — |Rc|?dV, = Vol(M, g).

4 H-T Inequality: Recent Progress on Einstein
Manifolds

4.1 H-T Inequality for Noncompact Einstein Manifolds

An H-T inequality was established in 2007 by Dai and Wei [ 7] for Einstein
noncompact 4-manifolds with certain asymptotic geometries at infinity. These
asymptotic geometries can be described as a cusp bundle over a compact space
(fibered cusps) or as a fiber bundle over a cone with a compact fiber. At infinity,
these geometries are frequently found in numerous noncompact Einstein
manifolds. The following are some of the outcomes of their work:

Theorem 4.1 ([7]) Consider a noncompact complete Einstein manifold (M4, g)
that asymptotically approaches a fibered boundary or cusp at infinity. They



additionally requiredim F' > Qin the fibered border case. Then
x(M) = 2 |r(M) — lim n + $al.
Here,a— lim nrepresents the adiabatic limit of then-invariant of0 M (associated

with the signature operator). Furthermore, equality is achieved if and only if(M, g)
is a complete Calabi-Yau manifold.

Corollary 4.2 ([Z]) Let(M4, g) be a complete noncompact Einstein manifold,

whose fibration is given by a circle bundle over a surface, and which asymptotically
approaches a fibered cusp/boundary at infinity. Then

x(M) > 2|r(M) — +e + signe|,
where e is the circular bundle’s Euler number. Furthermore, if(M, g)is a
complete Calabi-Yau manifold, then the equality holds.

Theorem 4.3 ([7]) A coneover (8M , 96]\7[) is asymptotically connected to a
complete Einstein 4-manifold(M4, g). Then

X(M) > a(0M) + - vol(OM) + £ |v(M) + 1n(6M)

Y

where then-invariant 0f(8]\7_f, gaM) isn(OM )and the geometric invariant
a(OM), which is defined by

82 c

a(0M) = 2 ol €abeW? N [Qb wb A wc}

= # o Eqpew® N Q8 — %VOI(@M).

In this case,Qgindicates the 2-form components of the curvature ofd Mwith
regard to this orthonormal basis, andw®denotes the dual 1-forms of an orthonormal

basis forOM. Furthermore, the equality holds if and only if M is a Calabi-Yau
manifold that is asymptotically conical.

4.2 Compact Spin Gradient m-Quasi-Einstein Manifolds Satisfy H-T
Inequality

In 2020, Klatt [18] demonstrated that a compact, oriented, and connected 4-dim
gradient m-quasi-Einstein manifold, where m € [1, 00), must satisfy the H-T

inequality if it is also a spin manifold. Specifically, he claimed the following
theorems:

Theorem 4.4 ([18]) Ifm € [1, oo]and(M4, g) is a compact, oriented, spin 4-dim
gradient m-quasi-Einstein manifold. After that, if(M4, g) is a nontrivial gradient m-



quasi-Einstein manifold, we obtain the rigorous condition2y + 317 > 0.

He characterizes the topology more thoroughly when the hypothesis is true by
only marginally expanding.

Theorem 4.5 ([18]) If(M4, g) is a connected, compact, oriented, spin 4-dim
nontrivial gradient m-quasi-Einstein manifold withm € [1, 0o], then the universal
coverM *satisfiesM* ~ S*#k (5'2 X S2)for some k.

4.3 Einstein Structure of Squashed 4-Spheres

In 2023, Ho et al. [15] claimed a stronger version of H-T inequality by redefining
topological invariants which can be expressed in terms of SU(2)__ connections
using the decompositions. They give the following results:

~

X(M) = #IM((f(i)y* (J?(ij)y*%)d“ (46)
(M) = 5z fM<(f<f+))2 - (7 >)2>d“’ (47

fgii) = diag (ai_w azj:? ai).

Then they arrived at the following inequality:
2
x(M) — 225 vol(M) > 2|r(M)|. (4.8)

1272
The inequality (4.6) and (4.7) are crucial in identifying an unlimited number of
compact simply connected differentiable four-manifolds that meet the strict H-T

inequality x > %|7‘ , even though they do not admit Einstein metrics (see [20]).

where

5 H-T Inequality: Recent Progress on Riemannian
Manifolds

5.1 Note on a Diameter Bound for Complete Riemannian Manifolds
with Positive Bakry-Emery Ricci Curvature

In 2015, Tadano [25] introduced new sufficient conditions under which 4-dim
compact Ricci solitons admit the H-T inequality. The following are some of the
results:

Corollary 5.1 ([25]) Let(M, g)be a compact connected shrinking Ricci soliton in

four dimensions that satisfies (2.3). Assume that the normalization of the soliton
equals

IVf|>+ R =2\f.



If

\/R)‘\’;“ (%2 + 47?) < diam(M, g),
then (1.1), the H-T inequality, is satisfied by the soliton.

Corollary 5.2 ([25]) Let(M, g)be a compact connected shrinking Ricci soliton in
four dimensions that satisfies (2.3). Assume that the normalcy of the soliton equals

V£ + R =2)\f.

%. Rgxw/% + 3 < diam(M, g),

then (1.1), the H-T inequality, is satisfied by the soliton.

If

5.2 H-T-Type Inequalities for Pseudo-Riemannian Manifolds of
Neutral Metric
In 2001, Matsushita et al. [23] gave the following assertion:

Let M be a compact pseudo-Riemannian 4-manifold with neutral metric of
signature (4+ + — —) and structure group SO,(2, 2). Then, M can be regarded as
a double almost pseudo-Hermitian 4-manifold. Provided the curvature is of the
appropriate type, the H-T type inequality holds under a less restrictive condition
known as the diagonal Einstein condition, rather than the standard Einstein
condition. To support this, they proved the following theorem and corollary.

Theorem 5.3 ([23]) For a double almost pseudo-Hermitian 4-manifold(M, g, J
J1), suppose that M satisfies the diagonal Einstein conditionr 4 = rp = 0.

(A)
(B)

po| oo

IfW Tis not of Typely, then we havey < 5T.

IfW ~is not of Typely, then we have—x > %7‘.

Corollary 5.4 LetM = (M, g, J, JI)be the same 4-manifold as considered in the
above theorem. That is, it satisfies the diagonal Einstein conditionr 4 = rp = 0. If
the pair(W ™, W ~)of self-dual and anti-self-dual Weyl curvatures is neither of Type
(Iy, *)nor of Type(*, 1), then M satisfies theH — T'type inequality.

6 H-T Inequality: Recent Progress on Ricci Flow
6.1 Harmonic Spinors in Ricci Flow



A strong parabolic H-T inequality for simply connected spin 4-manifolds was
found in 2024 by Baldauf [1]. In this parabolic H-T inequality, the conditions for
equality are characterized by the following theorem:

Theorem 6.1 ([1]) If a non-singular solutiong(t)to the normalized Ricci flow is
admitted on a closed, spin 4-manifold M satisfying2x = 3|o| > 0, theng(t)in this
instance converges to a hyper-Kdhler metric on a finite quotient of K3 in the smooth
Cheeger-Gromov sense.

Corollary 6.2 ([1]) (Parabolic H-T inequality) If the normalized Ricci flow has a
non-singular solutiong(t)on a closed, simply connected spin 4-manifold M, then

2x = 3lo|,
with equality iffg(t)converges to a hyper-Kdhler metric in a smooth Cheeger-
Gromov manner once M is diffeomorphic to K 3.

6.2 Normalized Ricci Flow Equation Non-singular Solutions

In 2008, Fang and colleagues [9] investigated non-singular solutions of the Ricci
flow on a closed manifold with at least four dimensions. The normalized Ricci flow
equation was explored on a closed smooth n-dimensional manifold M.

2 9=—2Ric + Zgg(0) = go, (6.9)
where r represents the average scalar curvature %.
M

The well-known H-T inequality for non-singular solutions to the Ricci flow on
closed 4-manifolds is generalized as follows.

Theorem 6.3 ([9]) Assume that M is a closed oriented 4-manifold and that the
non-singular solution to (6.9) is{g(t)},t € [ 0, 00). Then, M satisfies one of the
following conditions

1.
M allows for a shrinking Ricci soliton.

2.
M accepts an F-structure of positive rank.

3.
The H-T type inequality (1.1) holds.

Conjecture 6.4 ([2]) Condition 3 of Theorem 6.3 is replaced by the following H-
T-Gromov-Kotschick type inequality

2x(M)=3|7(M)| > 15557 | M 1,

where || M || is a simplicial volume of M.



6.3 H-T Inequality and Ricci Flow in 4-Manifolds

For closed 4-manifolds with a non-positive Yamabe invariant that allows long-
time solutions to the normalized Ricci flow equation with a restricted scalar
curvature, Y. Zhang and Z. Zhang [34] developed an H-T type inequality in 2012.
They considered the normalized Ricci flow is

. 2r(t
2 g(t) = —2Ric, + 2 g(1), (6.10)
1 - -fM thvg(t) . .
where R; is the scalar curvature of g(¢) and r(t) = Vog,(@(M) 1S its mean scalar

curvature.

Theorem 6.5 ([34]) Consider a 4-dim closed oriented manifold Mwith); < 0.
Suppose M admits a long-time solutiong(t)to Eq.(6.10), where for everytin the
interval[0, 00), the scalar curvature satisfies| R;| < Cfor some constantC'that is
independent oft. Then

2X(M)_3|T(M)| > 9617r2 5‘%\4

For many circumstances, the Ay <0 hypothesis is true.

6.4 A Note on the H-T Inequality and Ricci Flows

In 2009, Y. Zhang and Z. Zhang discovered an H-T type inequality for closed
oriented 4-manifolds with a zero Yamabe invariant. This inequality allows for
long-time solutions to the normalized Ricci flow equation with bounded scalar
curvature. They established the following results:

Theorem 6.6 ([33]) Given\,; = 0, let M be an oriented closed 4-manifold. For a
constant C independent of t, if M allows a long-time solutiong(t),t € [0, 00), of
(6.10) with scalar curvature| R;| < C, then H-T inequality (1.1) holds.

Theorem 6.7 ([33]) Let M be an oriented closed 4-manifold withAyr < 0, and
2x(M) + 37(M) = 0.
Assume that there is a long-time solutiong(t), t € [0, 00), of (6.10) with bounded

Ricci curvature|Ric; |< Cfor a constant C independent of t, which is non-collapsing,
ie, for anyt > Oandr < 1, there is anx; € Msuch that

rrd < VOlg(t) (Bg(t) (mh T))?
for a constantk > Othat is independent of t. Then, there exists a sequence of
timest, — oosatisfying that(M, g(tx))converges to(IN, g )in the Gromov-
Hausdorff sense, where N is a compact 4-orbifold with finite singular points
S = {p:}, andgis a Ricci-flat anti-self-dual orbifold metric, i.e,Ric(g) = Oand



W (goo) = 0. Furthermore, ifx(M) = 0, then a finite covering of M is a torus, and
Jools flat.

6.5 Normalized Ricci Flow Non-singular Solutions on Noncompact
Manifolds with Finite Volume

It was shown in 2010 by Fang et al. [10] that the Euler characteristic x (M) must
be nonnegative if g(¢) is a complete, non-singular solution to the normalized Ricci
flow on a noncompact 4-manifold M with finite volume.

Theorem 6.8 ([L0]) The Euler characteristic number fulfills ifg(t)is a full non-
singular solution of (6.10) of finite volume on a 4-manifold M.

(w1 ) oy

Theorem 6.9 ([10]) LetMbe as described in Theorem6.8. When(M, g(0))
approaches a fibered cusp asymptotically, the strict H-T inequality is established.

3|T(M) + salim n(@]\Zf)| < 2x(M),
where then-invariant of the boundary is the adiabatic limit ofa lim n(0M).

2x(M) >

> 0.

6.6 The Normalized Ricci Flow on 4-Manifolds and Exotic Smooth
Structures

In 2008, Ishida [16] explored the connection between smooth structures on
closed 4-manifolds and the presence or absence of non-singular solutions to the
normalized Ricci flow. In this context, non-singular solutions refer to those with
uniformly bounded sectional curvature that persist for all time ¢ € [0, 00). The
study also highlighted that several compact topological 4-manifolds possess
unique or exotic smooth structures.

Definition 6.10 ([16]) If T = oo and the scalar curvature s of g(t) satisfy the

following condition, then for any ¢ € [0, T'), the maximal solution {g(¢) } to the
normalized Ricci flow on X is called quasi-non-singular, sup x 1) ‘sg(t)| < oo.

The authors of [9] observed, among other things, that any closed, oriented,
smooth 4-manifold X must adhere to the topological constraint (1.1), which
involves the Euler characteristic x(X) and the signature 7(X) of X:

2Z(X) = 3|7(X)],
if there exists a quasi-non-singular solution to the normalized Ricci flow exists on

X and if this solution also satisfies the condition:
(6.11)



§g(t) < —c <0,
hence, for a given Riemannian metric g, the constant c is defined as
§g :=mingex $4(x) and is independent on t.

The author included the following proof for completeness: Let X be a
Riemannian 4-manifold that is closed and orientated. According to the Hirzebruch
signature formula and the Chern-Gauss-Bonnet formula, the following equations
hold true for any Riemannian metric g on X:

T(X) = #772 fX(|W9+|2 - |Wg_|2)d:“ga

o2
52 2 2 rg
x(X) = z;l?fX(ﬁ + ‘W;‘ + ‘Wg ‘ T2 )d,ug.
Here, WgJr and Wg_ refer to the self-dual and anti-self-dual components of the

Weyl curvature associated with the metric g, while 70*9 denotes the trace-free
portion of the Ricci curvature of g. Furthermore, s, represents the scalar
curvature of g, and dp is the volume form corresponding to g. Using these
expressions, we can establish the following significant equality:

2 52 ;g2
2x(X)i3T(X):4—71r2fX(2‘ng‘ + 55 — ‘2 >dug.

If X possesses an Einstein metric g, then 70"9 = 0. As a result, the formula

mentioned above indicates that any 4-dim Einstein manifold must satisfy (1.1),
which is simply the H-T inequality.

Theorem 6.11 ([16]) Consider a closed, oriented, 4-dim Riemannian manifold X,
and suppose that the normalized Ricci flow admits a quasi-non-singular solution as
defined in Definition6.10. Additionally, assume that this solution satisfies the
uniform bound given by (6.11), meaning that

§g(t) < —c<O0.

The inequality is valid, where the constantcis independent oftand is defined by
§g :=mingcx sq4(x)for a given Riemannian metricg. As a result, Xmust satisfy the

condition (1.1).

7 H-T Inequality: More Recent Progress

7.1 Myers Type Theorems and H-T Inequality

In 2019, Tadano [28] enhanced his previous results [29] on Myers type theorems
and the validity of the H-T inequality for shrinking Ricci solitons. He established
the following results related to the H-T inequality.



Theorem 7.1 ([21]) Let(M, g)be a compact, shrinking Ricci soliton in four
dimension that satisfies (2.3). If the scalar curvature meets

24\%vol(M, g) > fM R2dv,
thus (1.1), the H-T inequality, must be satisfied by the soliton.

Theorem 7.2 ([27]) Assume that(M, g)is a compact 4-dim nontrivial Ricci
soliton that satisfies (2.3). If the upper bound on the diameter of(M, g)is
. 2m/2(v/2—1)
dlam(M, g) < \% Rmax_Rmin ’
thus (1.1), the H-T inequality, must be satisfied by the soliton.

7.2 Topology of Toric Gravitational Instantons

In 2023, Gustav [24] utilized H-T type inequalities on Ricci-flat ALE/ALF
manifolds and derived essential conditions that the rod structures of toric
ALE/ALF instantons must satisfy, with the goal of furthering the classification of
these spaces. Below are some of the findings from his research.

Theorem 7.3 (H-T Inequality for Ricci-Flat ALE Manifolds [24]) Suppose
(M, g)is an oriented Ricci-flat asymptotically locally Euclidean (ALE) manifold
associated with the groupl'. Then,

3|r(M) +ns (8% / T)| < 2(x(M) ~ )
An equality holds if and only if the universal cover of M is hyper-Kdhler.

The term ng (S 3/ I‘) appearing in (7.3) refers to the n-invariant of the signature

operator for the space form S3 / I'. This is a spectral invariant associated with the
space form.

Theorem 7.4 (H-T Inequality for Ricci-Flat ALF- A; Manifolds [24]) Suppose
(M, g)is an oriented Ricci-flat manifold that is ALF- Ayfor some integer k. Then,

3|7(M) — 5 + sgn(e)| < 2x(M),

in which e is the Euler number of the asymptotic circle bundle. If M has a hyper-
Kdhler universal cover, then equality is preserved.

7.3 H-T Inequality for Manifolds with Foliated Boundaries

In 2017, Zeroual [32] developed an H-T inequality for noncompact 4-manifolds
with foliated geometry at infinity, extending the earlier work of Dai and Wei. The
principal outcome of his efforts is as follows.



Theorem 7.5 Assuming the conditions given in [32], suppose M is a 4-manifold
with foliated geometry at infinity. When M permits an accurate.% - or % .-metric
proposed by Einstein, then

3 (E)
ITII{Z(HAM ZzeFiX(a) def(a,g B) |2+ XT} +7(M) - E(E)‘ -

The universal cover of M is a complete Ricci-flat (anti-)self-dual manifold if equality
holds.

X(M) > $

7.4 Stable Cohomotopy Seiberg-Witten Invariants

In 2015, Ishida and Sasahira [17] applied the Gromov-H-T inequality to uncover
new results concerning the presence of exotic differentiable structures. They
presented the following conclusions.

Theorem 7.6 LetX,,be asin Theorem A stated and proved in [17], and assume
moreover thatX ,,is a minimal Kéhler surface. Assume that N is a 4-manifold that is
closed and orientated. Its Riemannian metric has nonnegative scalar curvature, and
bt (N) = 0. Then, the invariant of a connected sumM := ( n Xm) #N for any

m=1

2 -
real numberk > 3 Arforn = 2,3, is given by

(M) = —4k7r\/ 2 Z;Zl cA(Xm)-

Here notice that minimality of X, forces that

cA(Xm) = 2x(Xm) + 37(X,,) > 0.

Theorem 7.7 ([17]) Assume thatb*(N) = Oand that N is a closed oriented

smooth 4-manifold. LetX ,,be a closed oriented almost complex 4-manifold for
m = 1,2, 3such thatb™ (X,,,) > land such that

bt (Xm) — b1(Xy) = 3(mod 4).
Assume thatSWx, (I'x, ) = 1(mod 2). LetTx, be aspinstructure onX ,that

is induced by the almost complex structure. Furthermore, under Definition 3 of [17],
suppose that for any m, the following is true:

G%(T'x, )=0mod2 foralli,j.
Then a connected sumM := ( ;:Zle) #N, wheren = 2, 3, cannot admit any
Einstein metric if the following holds:

dn — (2x(N) + 37(N)) > & Z

n

_ (2x(Xim) + 37(Xm)).

m



Theorem 7.8 ([17]) The following three properties can be satisfied by an infinite
number of closed topological spin 4-manifolds:

o || M ||# 0, that is, any four manifold M has a nontrivial simplicial volume.
e The strict Gromov-H-T inequality is satisfied by every four manifold M. That is to
say,

2x(M)=3|7(M)| > 5= | M ||

» Each 4-manifold M admits infinitely many distinct differentiable structures for
which no compatible Einstein metric exists.
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Abstract

In this chapter, we first provide evolution formulas for the eigenvalue of some cooperative (p, q)-
biharmonic system on Riemannian manifolds under the (unnormalized) Ricci flow and
normalized Ricci flow. Then, we provide some monotonic quantities under this flow. Moreover, as
an application of the evolution equation, we give an example.

Keywords Laplace Operator - Reimannian manifolds

1 Introduction

We investigate the evolution for the principal eigenvalue of a (p, g)-biharmonic system on
manifold (M, g) along the Ricci flow (briefly RF). Let g be a Riemannian metric on a manifold M.
In coordinate {:L”}, the Laplace-Beltrami operator A is given as follows:

iJ 0? k_0
A= g% ( gl ~ Tl ), (11)
where I‘i’; are Christoffel symbols of g. Also, for any function h € W02’p(M), the p-biharmonic
operator is defined by

AZh = A(|Ah|P2Ah). (1.2)
The p-biharmonic operator is an elliptic operator. For p = 2, (1.2) describes the clamped plate
problem.
The family g(¢) of Riemannian metrics on M with Ricci tensor S is said to be an unnormalized
RF (or URF) if
& 9(t) = —25(g(t)), 9(0) = go- (1.3)

RF was introduced by Hamilton in 1982. Let us denote by r = fj‘? Ziﬂ
M

the scalar curvature, and

one often considers the normalized RF (or NRF)
Z9(t) = —25(g(t)) + Zg, 9(0) = go. (1.4)
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The volume of manifolds remains constant under the NRF. Short time existence and uniqueness
for solutions to the RF on [0, T") have been shown by Hamilton in [8] and by DeTurk in [9].
Recently, the study of geometric operators and their eigenvalues has been an important tool
for determine topology and geometry of manifolds. In [13], Perelman introduced the functional
F(g(t), f(t)) = [,;,(R+ |V f|*)e fdp and showed that it is nondecreasing under the RF with
backward heat-type equation and by it concluded that the first eigenvalue of the operator
—4A + R is nondecreasing along the RE. This was a new beginning for the study of eigenvalues,
and then mathematicians, especially individuals who worked on geometric analysis, studied the
eigenvalues of the geometrical operators under different geometric flows. For instance, in [6],
Cao showed the first eigenvalue of —A + ¢R for ¢ > % is nondecreasing under the RE. Also, in
[1] and [14] the authors have studied the monotonic of the eigenvalue of p-Laplacian under the
Ricci-harmonic flow and REF, respectively. The first author [3, 4] studied the monotonicity of the
first eigenvalue of the clamped plate problem under the RF and the eigenvalues of a (p, q)-
Laplacian system along the mean curvature flow. Also, Abolarinwa [2] studied the eigenvalues of
p-bi-Laplacian along the RE.
In the present chapter, we consider the following eigenvalue problem:

Af,u = Nul[P2u + Au|* o/ Mu in M,

Agv = Av|7 20+ Au/*THo/f v in M, (1.5)

u=Au=v=Av=0 on OM,
on a closed Riemannian manifold (or CRM) (M, g) whose metric satisfies the RF, and investigate
the monotonicity of principal eigenvalue of the (p, g)-biharmonic system (1.5) under the Ricci

flow. In [11] and [12] the authors have investigated the principal eigenvalue of (1.5). We will
prove the following theorems:

Theorem 1.1 Suppose that(M", g(t)), t € [0,T), is a solution of the RF (1.3) on a CRM
(M™, go)with the positive Ricci curvature. Forp, q > 2, the first eigenvalue(t)of (1.5) satisfies
IIL".}.M’ ) = 20, whereS;; — YRgij > 0onM x [0, T)for some positive constanty.
Theorem 1.2  Suppose that(M", g(t))is a solution of the URF on the smooth CRM(M ™, go)
satisfyingR;; > eRg;;withe >max {%, %}fort € [0, 7). Suppose thatA(t)is the first nonzero
eigenvalue along the URE
1.

IfRmin(go)is a constant, thenA(t)e‘szin(g)tis monotonically nondecreasing along RE
2. ¢

IfR > Ruin(g0) > 0, thenA(to) > A(t1)e*/n BnO%forit, 5] C [0, Tona)-

3.

IfR > Ruin(go) > 0, then\(t)(Ri,(0) — %t)nis monotonically nondecreasing along Ricci

flow and\(t)is nondecreasing along RE.

Theorem 1.3 If closed surface(MQ, go)has nonnegative scalar curvature, then forp > 2and
q > 2, the eigenvalues of (1.5) are increasing along the URE.

1.1 Eigenvalues of (p, ¢)-Biharmonic System
Let (M™, g) be a CRM. We consider a cooperative (p, g)-biharmonic system (1.5) where «, 8 and
P, q are real constants and

B+1

p>1, ¢>1,a>0, >0, =42 =1 (1.6)



A is called an eigenvalue of (1.5), if for some functions fand h,

fFA2fdu = X J (VPN [ IF0Y R (1.7)

M M M

hAlh dp = A |Vh|?+ A || AP dp, (1.8)

M M M
where dy is the volume element of g. The pair (f, h) is said to be eigenfunctions of (1.5). The

first positive eigenvalue for (1.5) is defined by
inf{A(f,h) : B(f,h) =1}, (19)

where

1
Aty = 22 [ jagrans 22 ﬂ 1

|Ah|%dp,

M

B(f,h) = \f!"‘“lh|ﬂ“du+— / If!”du+ |h|%dp.
M

Suppose that (M™, g(t)) is a solution of the RF on the smooth CRM (M ", gy) in the interval
[0, T); then

G(g, f,h) —‘““f IVflpdut+5“f |Vh|%dp, (1.10)

provides the evolution for eigenvalues of (1.5), along g(t) where the eigenfunctions
corresponding to A(t) are normalized, that is, B(f, h) = 1 We prove some results on A(¢) under
the RE.

We do not know whether the principal eigenvalue of (1.5) or its corresponding
eigenfunctions are C'!-differentiable or not under the RF; then we apply methods the same as in
[5, 15] and define general smooth functions with respect to t under the RF in what follows. We
first assume that at time ¢y € [0, T), (fo, ho) = (f(t0), h(to)) is the eigenfunctions for A(¢o) of
(p, g¢)-biharmonic system (1.5). We define smooth functions h(t) and f(¢) along the Ricci flow, as
follows:

det|gi;(t)] B det[g;;(t)] 7
u(t) = u(] |: det[gg”(to)] :| 9 'U(t) = ’UO [m] . (1.11)
Let
ity =" h@) =", (1.12)
K?p Ka
where

a2 [ a2 [ oo

Then f(t), h(t) are smooth functions along the RF and

atl|p1B+1g atl f rd B+l f hl4du = 1. 1.13
I Py e (1.13)

Also at time tg, (f(t0), h(to)) are the eigenfunctions for A(¢o) of (1.5); that s,
A(to) = G(g(to), f(to), h(ty)) provide a new smooth eigenvalue function. Let M ™ be a CRM and



g(t) be a smooth solution of RF. Set

A(f hyt) 1= <21 f Afirdp + £ f | Ahadp, (1.14)

where f, h are smooth functlons such that
atlip|f+1 a_Hf P Mf aqy — 1.15
AR+ 2 | ppd 2] b= 1. (1.15)

If (f, h) are the eigenfunctions for A(¢) at ¢, then A(f, h,to) = A(%o).

2 Variation of the Eigenvalue \(t)

In the following, we will prove some evolution formulas for A(¢) along the RE. From [8] we have
the following lemma:

Lemma 2.1 Under the RE we get:

1. . .
%gm — 95
2. 0
% (dp) = —Rdp
3.
L (k) = —v;8F - v;Sk + VS,
2 R= AR +2|8)?
%(Au) = 2589V, Vu + Auy
and along the UNF (1.4), we have
1. _ L .
%gz] — 9284 _ %,,,gm
2. 0
2 (d) = (r — R)dp
3.
%(Fk) = —VjSi’“ — VlSk + VkSZ]
4.
%(Au) =259V, Vu— 2rAu+ Ay,

where R denotes the scalar curvature.

Proposition 2.2  Suppose that(M™", g(t))is a solution to the URF on the smooth CRM(M™, go).

The first eigenvalue of (1.5) along the URF satisfies
(2.16)



d

A b, = 2+ 1) / (AN(SIV.V )| AflP2d

_a—|—1

| Af|PRdp

2(8+1) /Ah (S¥V,;V ;h)| Ah|? 2dp
—L / |AR|*Rdp
o a—+1
A(to) / RIf|" R da 4 Alto) —
M

B+1

FA(to) |h|9Rdp.

M

| f1P Rdp

Proof A(f,h,t)is a smooth function along the RF, and by derivative of (1.14) with respect to t,

we get

d
dt

_A(f> h t)|t:t0 =

a+1 0 » » 0
> E(\Aﬂ )y + |Af|
M M
B+1 0 q ¢ 0
+T 5(|Ah| )dps + | Ah|
M M

On the manifold (M, g(t)) along the RF, we arrive at

and

Therefore we obtain

& (dus) = —Rdy,

ZIAfIP = p(Af)(289V:V,f + Afy)|Af|P2.

(d,ut)

0

(dﬂt)

(2.17)

(2.18)

(2.19)

(2.20)



%A(.ﬁ h7t)’t:to = (O[+ 1) fM{(Af)(2SlJvlvjf+Aft)’Af‘p_Z}du

+(B+1) f A (AR)(287V:V ik + Ahe)| AR| 7 tdpu

a+1 B+l
_atl fM AfPRdp — 22 fM | AR|?Rd.
Differentiating both sides of B(f, h) = 1 gives

(a+1) |F1%7 R frudp + (B+ 1) | £ )P v dp
M M
+(a+1) |FIP 2uudp + (B+1) |h|9 2vvdp (2.21)
M M
1
= 2 |fIPRdp + —— prl |h|"Rdp.
q
M M

Also, 1ntegrat1n by parts shows

(@+1) [ (AN(AF)IAfIPPdu+ (B+1) [ (AR)(Ahe)|Ah|"2dp

M

/fA2fd,u+ B+1) | hA’hdu
M

/ | FIP P uwdp + Mo + 1) |£1%7 Y B2 frudp (2.22)
M

FAB+1) [ AT Pvodu+AB+1) [ AR vodu

M M

1
A RIFE R A2 FPRu+ A 2L

M M M
The last equality is obtained of (2.21). Replacing (2.22) in (2.20) completes the proof of the
proposition.

|h|*Rdp.

We state the variation of \(¢) along the NRE.



Proposition 2.3  Suppose that(M™, g(t))is a solution to the NRF on the smooth CRM(M™, g).
The first eigenvalue of (1.5) along the NRF satisfies

A NF Dy = 2a+1) [ (AR(SIVV, AR 2dp

M

a—l—l

|Af|”Rdp

2(8+1) /Ah SV ;h)| AR|T 2 dp
/ | Ah|? Rdy

(2.23)
0) / RIf|* " dp
M
a+1
+A(to) | fIPRdp
M
+1 2
) [ ras- ey [ agea
M M
2
-2+ [ 1Anap.
M
Proof Along the NREF, we have
2 (dps) = (r — R)dy, (2.24)
and 3
ZIAf|P = p(Af) 259V, V;f — ZrAf + Af,)|Af|P~2 (2.25)

Equality B(f, h) = 1 implies that
(2.26)



(a+1) [ (ANHAfAfIP?du+ (B+1) [ (AR)(Ah)|AR|*dp

M M

a+1

= A R|f|*HhPHdp 4 A |fIPRdp + A ——

M M M
We can then write

|h|2Rdp — rA.

p+1
q

NNy = “;}”( S (afmauct [ 1agr (dut)\
M M

Wk r aﬁ(mhmdut + !Ah\q (dut)\
q t
v )

= (a+1) {(Af)(2R"jVNjf - %rAf +Afy)A f|p2}dp (2:27)

M

y 2
+(B+1) {(Ah)(2R”Vith — ZrAh+ Aht)|Ah|q‘2}d,u
n

M

1 1
o+ ]Af\deu—ﬂL

M M
Therefore the proposition is obtained by replacing (2.26) in (2.27).

|AR|"Rdu + r(to).

Proof (Proof of Theorem 1.1) ~ For any uw € C'*°(M™), the Bochner formula is

T A|Vu|? = |[VVu|? + (Vu, VAu) + S(Vu, Vu). (2.28)
Now, by the Cauchy- Schwartz inequality [VVu|? > L|Au|?, we find

TA|Vul2 > 1| Au|? + (Vu, VAu) 4+ S(Vu, Vu). (2.29)
Taking integration on (2.29) on CRM M, we get

n-l f (Au)dp > f S(Vu, Vu)dp. (2.30)

n

The inequalities S;; — yRg;; > 0 and R > Ry, (t) along the RF imply that

(Au) dp > = Riyin(t f (Vu|%dp. (2.31)
For s > 2, applying the Holder 1nequa11ty to above relation gives



n—1

T Ruat) | [Vul?dy < ( \Aulsdu\l (

which yields
f | |Aufdu = (vol(M)) 7

Therefore, for p, g € [2,+00) we have

. 1
O (VOI(M))%2<:’Y1RM@))2( / \VfIZdu\
w o)

[ ) 5

+% (vol(M)) 7 (%Rmm(t)>

o

(577 Runin(8)) : ( u |Vu|2d,u>

[T

—

<

=

[\
IS
=
—_—
—

From [7, 10] we have rli“_}. Rumin(t) = 00, then r“"_}.:’““]' = 00,

Proof (Proof of Theorem 1.2) From (2.16) and S;; > eRg;;, we can write

AN )y > (@+1)(2e— 1) fMRIAfI”du
1
+(B+1)(2¢ - 1) fMR|Ah|‘1d/,L
a+1 1 a+l
A (to) fMer\ LRI dp + A(to) L fM!f\deu
B+1

1. The positivity of scalar curvature remains unchanged under the URF, and we have
(2.34)

(2.32)

(2.33)



INERD > Run(a)a+ ) (2e- ) [ 1a7ed

M

Run(on) 8+ 1) (2= ) [ |anlra

M

+Rmin(90))‘(t0) ‘f|a+l‘h|ﬂ+1d:u’

M
a-+1
+Rm1n(90))‘(t0) |f|pd/.L
M
+1
T Run(g90)A(t0) 2 Lk
M

Using the condition B(f, h) = 1, we deduce
i>‘(fa ha t)|t:t0 Z 2Rmin(90)>\(t0)- (235)
Function A(f, h, t) is smooth with respect to ¢, and then on arbitrary sufficiently small
neighborhood of ¢( as I, we get %)\(f, h,t) > 2Ruin(g0)A\(f, g, t). Taking integration on [t1, o)
with respect to time ¢t for ¢; sufficiently close to t( yields
A(f(to),h(to) to)

In W 2Rmm(g())(t0 - tl) (236)
Notice A(f(%0), h(t0),to) = A(to) and A(f(¢1), h(t1),t1) > A(¢1). These imply
In 2 > 2Rmin(g0)(to — t1), and then \(tg)e2fmin(90)to > )\(¢)e2Rmn(91)t1, Since
to € [0, Thmax) is arbitrary, thus )\(t)e’QRm‘“(g)t is monotonically nondecreasing under the RE.

2.

Suppose R > Ryin(t . From (1.3), we conclude
(fs hst)]t=ty > 2Rmin(t)A(t0), (2.37)

which implies A(¢g) > (tl)e”ttl0 Ruin®t o1 (81, 0] € [0, Tomase)-

)>0
L(f

3.
Suppose R > R, (0) # 0. Using (4) of Lemma (2.1) and |S|? > %R2, we obtain

9% > AR+ XR2. (2.38)

The maximum principle leads to R(t) > W. By (1.3) for any [t1,to] C [0, Tiax), We have
20 o T R (024 \"
A(to) = At)e ™ o E )\(tl)(m> : (2.39)

then we get )‘(tO)(Rm}n(O) - t()) > )‘(tl)(Rmm(O) -

A(t) (Rt (0) — 2¢)" increasing under the RE. Since (R}, (0) — % )" is decreasing, then A(t) is

min

nondecreasing under the RE.



2.1 Variation of \(¢) on Surfaces
Now, we write Propositions 2.2 and 2.3 in a particular case.

Corollary 2.4 Suppose that(M?, g(t))is a solution of the URF on a closed surface(M?, o). The
first nonzero eigenvalue(t)of (1.5) under URF satisfies

p—1 -1

G D, = (e DE= [ AfPRAu+ ()%= [ |AR|'Rdy
M M
o) | Rt R A+ At0) 2T | |fPRd (2440)
M M
1
FA(te) B IB|?Rd.
M

Proof Forn =2,weget§S = %Rg; then (2.16) leads to (2.40).

Corollary 2.5 Suppose that Mz, g(t))is a solution of the NRF on a closed surface(MQ, 90)- The
first nonzero eigenvalue\(t)of (1.5) under NRF satisfies

A, = (a1 pT/Aprdp
qT/Athdu

o a+1
+A(to) [ RIFCTAIP dp + Ato)

M

1
) 2L | Ry -y [ afPd

—r(B+1) | |AR|%dp.
M

Proof Forn = 2, we have § = %Rg; then (2.23) yields (2.41).



Remark 2.6 Suppose that (M2, g(t)) is a solution of the NRF on a compact surface. From [8],
for a constant k depending only on gg, we get:

(1)
Ifr < 0, then
r—ke™ <R <r+ ke™". (2.42)
Therefore, from (2.41) in every small enough neighborhood of ¢¢, for p > q we obtain
—gke™ < 5w A fs b t) < phe™. (2.43)
For every t; sufficiently close to ¢, on [t1, to], we get
Alto) A(f(to),h(to) t0) ak (_rt t
e o R A ey e GRS (2.44)
equivalently
In A(¢o) + queTtO >In A(t1) + quertl. (2.45)
Thus, In A(¢) + %e” is increasing under the NRF. Also, for any ¢5 close enough to ¢,
on [tg, t2], it follows
Alta) A(f(t2),h(t2) t2) pk (_rt t0Y.
In ,\(tz) <In A(f(t;),h(tz),ti) < (e —e™); (2.46)
hence In A(¢) — ”T—ke’”t is decreasing along the NRF.
(ii)
If r = 0, then
k
T SRk (2.47)
Similar to the above, in this case, quantities A(t)(1 4 kt)? and A(t)e P* are increasing
and decreasing along the NRF, respectively.
(iii)

If r > 0, then
—ke™ < R < r+ ke™. (2.48)

By use of this inequality, quantities In \(¢) + gke™ + rpt and
In A(t) — pke™ — (p — q)rt are increasing and decreasing along the NRF, respectively.
Proof (Proof of Theorem 1.3) From [8], under the URF on a surface, we infer
2 R= AR+ R%.
Applying the scalar maximum principle, the nonnegativity of the scalar curvature is preserved
under the RF, (2.40). It leads to - A(f, k,t) > 0; therefore A(t) is increasing.

2.2 Variation of \(¢) on Homogeneous Manifolds
In this section, we study the behavior of A(¢) when an initial metric is homogeneous.

Proposition 2.7 Suppose that(M™", g(t))is a solution of the URF on the smooth CRM(M™, g¢)in
whichgois homogeneous. The first nonzero eigenvalue(t)of (1.5) under the URF satisfies

ENER DN, = 2t 1) | (ANSTTVH)IAT

M (2.49)

+2(8+1) [ (AR)(SYV,;V;h)|Ah|? *dp.

M



Proof The homogeneous metric remains homogeneous under RF, and the scalar curvature of a
homogeneous manifold is constant. Therefore (2.16) leads to

LAEh bty = 2a+1)

dt (AF) (ST, Vf)|AfP2dp

T~

|Af|Pdp

(AR)(SIV,V ;)| Ah|1~2dp

| Ah|7dy

%
=
*

1
+RA(ty) / |f|°'“|h|ﬁ“du+m(to)“; Py
M

|h|%dp

M

= 2(a+1) [ (ANSIVVf)AfP2dp

M

+2(B+1) (AR)(S%V,;V ;h)| Ah|12dp.
M

Note 2.8 In Proposition 2.7, if we suppose that (M ", g(t)) is a solution of the NRF on the
smooth CRM (M ™, g¢) in which g is homogeneous, then (2.23) yields



%A(f,h,t)hzto = 2a+1) [ (ARSI, H)|AFP 2dp

M

+2(8+1) [ (AR)(S7V,;V,h)|Ah|7 2dpy

M

2 2
~“(a+1) [ 1Aflrdu—=2(8+1) [ |ARjdp

M M

2.3 Variation of \(¢) on Three-Dimensional Manifolds
Now, we investigate the behavior of A(¢) on three-dimensional manifolds.

Proposition 2.9  Suppose that(M?3, g(t)), t € [0,T)is a solution of the URF on a CRM(M?3, g,)
with a positive Ricci curvature. IfS;; > eRg;;for some constantewithmax {%, %} <e< %at time

t = 0, then the principal eigenvalue of (1.5) is increasing along the RE

Proof For any solution of the RF [10] on a CRM (M3, go) with a positive curvature, the
inequality S;; > eRg;; remains by the RF on [0, T'). Hence, Theorem 1.2 results that A(¢) is
increasing.

Proposition 2.10 Let(M?3, g(t))be a solution to the URF on a CRM(M 3, go)with homogeneous
metricgoand nonnegative Ricci curvature; then the principal eigenvalue of (1.5) is increasing.

Proof The nonnegativity of the Ricci tensor remains under the RF [10] in dimension 3. From
(3.50), A(?) is increasing.

3 Example

We give an example of variation of A(¢) on some CRMs.

Example 3.1 Suppose that (M", g) is an Einstein manifold, i.e., Ric(gg) = cgo for some
constant c. Let

g(t) = u(t)907 U(O) =1, (3.50)
be a solution to the RF for some positive function u(t). By direct computation, we have

0,
5 = u/(t)go-
Hence,

wl(t)go = —25(g(t)) = —25(u(t)g0) = —25(g0) = —2cgo- (3.51)
This shows that u(t) = —2ct + 1. Thus,

9(t) = (1—2ct)go,
that is, g(¢) is an Einstein metric. Also,

S(g(t)) = S(g0) = cgo = =57 9(t), R(9(t)) = 15z R(90) = %> (3.52)

and



gy = (1—2ct)* dpg,. (3.53)
Using equation (2.16), for ¢ > p, we get
d 2
T B )=ty > 7502 A, Bo t) ety (3.54)
Hence A(t)(1—2ct)” is increasing along the RF.
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Abstract

Firstly, we introduce a new frame and a new curvature function for a fixed
parametrization r of a plane curve C. This new frame is called Jacobi since it involves the
rotation with the first two Jacobi elliptic functions of the usual Frenet frame. The Jacobi-
curvature involves only the third Jacobi elliptic function w and is computed for some
remarkable examples; the inequalities satisfied by w imply inequalities for the Jacobi-
curvature. Secondly, we introduce a whole family of new parametrizations r, for C with

r = r,—9. The expression of r, involves an integral containing the curvature function k of
r, and all r, have the same curvature.

Keywords Plane parametrized curve - Jacobi elliptic functions - Inequalities - Jacobi-
curvature - Jacobi mate

1 Introduction

The delightful note [1] of Bishop proposes a new frame, as alternative to the classical
frame of Frenet, for the study of curves. Following this path, in an almost half of a
century, some new frames are considered, especially for space curves; see, for example,
the papers [9] and [10]. In order to consider the case of a plane curve C, we introduce in
the paper [3] a deformation (following the Masur terminology from [8]) called flow-
frame since it is the rotated version of the Frenet frame, the rotation angle being exactly
the time ¢ of a current point of C. It follows naturally a new curvature, called flow-
curvature. We point out that some other curvature functions are defined in the paper [7].

In the present work we firstly generalize this construction by defining the Jacobi-
frame of C using the well-known Jacobi elliptic functions u, v, w. These functions are
defined through a modulus p, and the vanishing of p implies © =cos and v =sin.
Correspondingly, this new frame defines a curvature, called Jacobi by us from natural
reasons and denoted k. Hence, the main theoretical result of this note is the


https://doi.org/10.1007/978-981-95-5148-4_12
mailto:mcrasm@uaic.ro

computation of k; and a comparison with the usual curvature k, as well as a relationship
with the flow-curvature k. As is usually, we focus then on examples, with a special view

toward periodicity induced by the periodicity of the third Jacobi function w.

Secondly, we generalize a given arc-length parametrization r = 7(s) of C. The main
tool of this new approach is an integral involving the ratio of k and w, and it is worth to
remark that all new parametrizations are also arc-length and with the same curvature k.
In fact, the initial r corresponds to p = 0. The difficulties in working with general Jacobi
elliptic functions force us to restrict the examples to the circles with center in the origin
of R2,

The contents are as follows. The next section reviews the flow-frame and the flow-
curvature as starting point for our generalization. The main section, namely 2, concerns
with the new frame and the new curvature, computed in Proposition 2.2 and calculated
for some examples. Also, we point out an extension of the notion of Jacobi-frame to space
curves. In the last section we construct the family of new parametrizations r, preserving
the natural parameter s and the curvature k.

WEe finish this introduction by pointing out that the efficiency of the Jacobi
generalization is already proved by our study [5]. As potential applications we consider
that the Computer Design and the Machine Learning can benefit from such new tools.

2 The Flow-Curvature of a Plane Parametrized Curve
Fix an open interval I C R, and consider C' C R? a regular parametrized curve of
equation: ~
C:r(t) = (z(t),y(t)) = z(t)i+y(t)s, | r(E)[[>0, tel (2.1)
The ambient setting R? is a Euclidean vector space with respect to the canonical
inner product:
(u,v) = zlyt + 2%9y?, u= (2!, 2?) e R?, v=(y},y?) € R?
0 <[l u|*= (u,u).
The infinitesimal generator of the rotations in R? = C is the linear vector field,
called angular-

&(u) :== —:132% + mI%, fu)=i-u=1i-(z' +iz?), i=+v-L (2.3)
It is a complete vector field with integral curves the circles € (O, r):
[
0

yﬁo(t) = (uj cos t — u sin ¢, u sin t + u? cos t) :R(t)-l\ug/l, t e R,

(2.2)

{ cost —sint \ (24)

r=| uo ||=]| (u(l],ug) |, R(t):= l\sint cos t /l € SO(2) = S,

and since the rotations R(t) are isometries of the Riemannian metric

Jean = dz? + dy? = |dz|, it follows that £ is a Killing vector field of the Riemannian
manifold (]R2, Jean)- The first integrals of £ are the Gaussian functions, i.e., multiples of
the square norm: f,(z,y) = a(z? + y?),a € R.



The Frenet apparatus of the curve C is provided by the Frenet frame {T', N} and its
curvature function k:

l T(t) = HZEgH S Sl’ N(t) =1- T(t) ||7=/( )| ( y,(t)’x'(t)) € Sl,

Vk(t) = 557 (T1(0), N () = ke 0 (8), (1)) (2.5)
= o)y (1) — wi(t)e" (2).

The starting point in defining a new frame is the identity:
<L R(t)=R(t+ %) =R(t)R(Z) = R(%)R(t), (2.6)

and remark that the Frenet equations can be unified by means of the column matrix

[T]

F(t) = I\N/l (t)as
d m
S F(t) =| ) | kE)R(—F)Z (). (2.7)
In a previous paper, namely [3], we have defined a new frame and correspondingly a
new curvature function for C:

Definition 2.1 The flow-frame of C consists in the pair of unit vectors
(Elf(t),Eg(t)) € T? := 8! x S! given by
E! \ [ costT'(t) — sin tN(t) |
= |\E2f/| (t) = R(t)Z#(t) = -\sin tT'(t) + cos tN(t)/- (2.8)

the letter fbeing the initial of the word “flow.” The flow-curvature of C is the smooth
function k; : I — R given by the flow-equations:

L&) = r1(t) || ke (t)R(—F)E(@). (2.9)
Hence, the main result of the cited work is the following:

Proposition 2.2 The expression of the flow- curvature is
kp(t) = k(t) — ||r,( < k(t). (2.10)

Proof We have directly in the flow-frame
Irr(e) | ks () R(=F) = R(t+ §)R(=t) + || r(2) | k&) R(E)R(— 5 ) R(—1), (2.11)

and the conclusion follows. O

3 The Jacobi-Curvature of a Plane Parametrized Curve
Fix now the real number p € (—1, 1) as the modulus for the differential system [6, p.
130]:

(3.12)



l @ — o, u(0)=1,

dt
] B — wu, v(0) =0,
! b — _plyy, w(0)=1.

Recall that its solutions are called Jacobi elliptic functions and there are usually denoted
en(+, p), sn(-, p), respectively, dn(-, p); we prefer the simple notation used above. As
solutions of the ODE system (3.12) these functions satisfy two remarkable identities:

u+0t=1, p*?+w?=1. (3.13)
Also, both functions u(-) and v(-) are periodic with L = 4L for [6, p. 131]:
1
T —T(p) -— ds 3.14
L_L@y_j;VFEE?@, (3.14)

while w is periodic of period 2L. In particular, L(0) =arcsin s|j = % for the usual

trigonometrical functions cn(-,0) =cos (-) and sn(+,0) =sin (-). The complementary

modulus is p! :== /1 — p? € (0, 1], and the third Jacobi function is bounded by
0< pr <w(t) <1. (3.15)

The self-complementary casep! = p is provided by p = % and being in the interval

(0, 1) is the eccentricity of an ellipse, called self-complementary and studied in [2]. The

picture of the function w = w(-, p = %) is below with the half-period:
=( 1\ _ Vvera/ara/2)

Following the path of the first section we introduce a new frame and a new curvature
function for the given curve (Fig. 1):

DN(z,—)

1
V2

-9 5
Fig. 1 The Jacobi functionw = w(t,p =1/ V2), te(-9,9)

Definition 3.1 The Jacobi-frame of C consists in the pair of unit vectors
(E{(t), By (t)) € T* given by



[ E{ | [ w(t)T(t) — v(t)N(t) | (3.16)
E(t) = I\E{/I (t) =RI(t)F(t) = '\v(t)T(t) + u(t)N(t)/',

[ u(®) —v(t) |
R(t) == -\v(t) u(?) IS S0(2) = S'.

The Jacobi-curvature of C is the smooth function k; : I — R given by the Jacobi-
frame equations:

FE@X) = m1(@) | ki) R(—5)E7 (B). (3.17)
It follows now the main result, with a similar proof as above:

Proposition 3.2 The expression of the Jacobi-curvature is
_ w(t) '
k() = k(1) — 748 € [k:f(t),k:(t) - < k(t)]. (3.18)

Remark 3.3

(1)
If we use Eq. (2.8) with R replaced by R o € to define the notion of 2-frame for the
plane curve C, then the corresponding {2-curvature of the plane curve Cis

ko(t) = k(t) — H?’,((;))H ) (3.19)
and the curves in polar coordinates with vanishing {2-curvature are provided by
p(t) _ Reftocot[ﬂ(u)—u+0]du, R>0, CEcR. (3.20)

The flow-curvature corresponds to the identity map {2 = 1g, while the Jacobi-
curvature corresponds to the function = W := f w. This last function is usually

called amplitude, and we supposed to be strictly positive.
(i)

It is well known the identity:

w(t)
t= f —£
0 1/ 1—p2sin?¢ ’
and then we have the function W — ¢(W). The first two Jacobi differential
equations become

j—;[‘, = —vot(W), j—;{, =u o t(W),
which are similar to the differential equations satisfied by the trigonometrical
functions cos and sin.
(iii)
Let s € (0, L(C) > 0) be a natural parameter for the curve C, i.e,, || r/(s) ||= 1 for
all s. Here, L(C) is the length of the curve. Let also K = K (s) be the structural

angle of C,i.e., k = 4K Then ks is a derivative:

ds ’
ki(s) = (K — W)I(s).

(iv) Suppose now that the curve C is in the space R? and is bi-regular, i.e.,




| 71(t) x #"'(t) ||> 0 for all t € I; hence it has the Frenet frame (T', N, B) and the
pair (curvature, torsion) = (k > 0, 7). We define its Jacobi-frame as

[ T | [ 02(h)\lT\ 1) 32D

J [ 0]
E; R\ N _ )
k J =\ %) t/kB), 0(h) :=(0,0), 04(v) \0 )

and then, its matrix moving equation is

[ T [0 K@® K@l
al B |y, K8 0 ()
dtLEé,Ja)l 0 ka}(t) o o J

A similar computation yields

B3(t) = k(t)u(t), k5() = k(t)o(t), 74(t) = 7(t) — 17 < 7(8).  (3:23)
O

|
E{
EgJ ®. (322

From now on we focus on computing some relevant examples:

Example 3.4
(1) _
If Cis the line 7o + tu, t € R, with the vector u # 0 = (0, 0), then k is periodic
with the period 2L since
wlt) o 1 _p_']
ks(t) = —Tup {kf () =~ T | (3:24)
In particular, if u is a unit vector, then k;(t) = —w(t) € [-1, —p! < 0.
(ii) :
The circle €' (O, R) with the usual parametrization r(t) = Re" has
1—w(t 1—
k() = ol ¢ { Rp’} (3.25)
again a ZE-periodic k y curvature. Also, it follows a geometrical interpretation
of the third Jacobi function: w is the function 1 — k of the unit circle S*.

O

Example 3.5 The involute of the unit circle S! is

C:7(t) = (cost+tsint,sint—tcost)=(1—it)e”, tec(0,+00). (3.26)
A direct computation gives

rI(t) = (t cos t,tsint) = tet, || ri(t) ||=¢t, k(t)==L >0,
k(1 ) ) (3.27)
P
The parametrization (3.26) suggests the following generalization; we call Jacobi-

involute ofS* the curve:

C,:1,(t) = (u(t) + W(t)v(t),v(t) — W(t)u(t)) (3.28)

with



rp(t) = W(t)w(t)(u(t),v(t), [ 7p) [|I= W(E)w(?). (3.29)
Finally, we obtain its curvatures:

k,(t) = ﬁ, kyy =0 (3.30)
by recalling the hypothesis from Remark 3.3 (i) that W (¢) > 0; hence C, is a Jacobi-flat
curve. The length of the curve C)| (0,L) 1S

L
Length(C)l o)) = ‘ﬁ] W()Wi(t)dt = W;(L) = %2. (3.31)

O

Example 3.6 Recall that for R > 0 the cycloid of radius R has the equation
C:r(t) = R(t—sint,1— cos t) = R|[(t,1) —e!(z7Y], teR. (3.32)
We have immediately
rI(t) = R(1— cos t,sin t) = R[(1,0) — €], || r/(¢) |= 2R| sin +|, k(t)

| (3.33)
4R|sinL |’
and then we restrict our definition domain to (0, 7). It follows
. 3 0 142w(p)
kif(t) = —m <0, kJ(t) = - 4RsinL (3.34)

O

The expression of k suggests to define the Jacobi-cycloid as being the regular curve C
defined on (0, 2L) whose Frenet curvature k is

k(t) = — fﬁ("g (3.35)

since the fundamental theorem of plane curves assures the existence of such a curve. O

4 The Jacobi Mates of an Arc-Length Parametrization
Suppose again that the given parametrization is an arc-length one: r/(s) € S ! Here,
L(QC) is the length of the curve. Recall, after Remark 3.3(iii), the function
K : (0, L(C)) — R as the antiderivative of the curvature function k = k(s). Then the
fundamental theorem of plane curves states that the velocity vector field is given by
7/(s) = (— sin K(s),cos K(s)) = (cos 6(s),sin 0(s)), 6(s):= 5 + K(s). (4.36)
Sometimes, the function 6 is called the structural angle of the curve C since 6/ = k.
An immediate application of the above relation is the fact that the defining functions
x, y of the parametrization r of C satisfy the third-order differential equation [4]:
kU" — kiU" + k3U1 = 0. (4.37)
Hence, the aim of this section is to define a generalization of (4.36). Following the
path of the previous section, we introduce a new antiderivative for the given curve:

K*(s) := fo %dt. (4.38)

This integral can be considered as the antiderivative of k with the Weight% > 0, and the

relationship with Kis
(4.39)



_ Ks 2 K(t)ut)o(t) 4. _ K(s) 2 K(t)u(t)o(?)

K*(s) =16 —» ‘/; T = TP L/; —we a4t

Also, if k is strictly positive (e.g., C is a convex curve), then we have the inequalities:
K<KrF< (4.40)

Definition 4.1 The Jacobi mate of the arc-length parametrization r is the function
r,: (0,L(C)) — R? with the derivative

ro(s) == (—v(K”(s)), u(K?(s))). (4.41)

Remark 4.2
() . . . . .
The curvature of r, is also k since the acceleration function for r, is
i (8) i= (—k(s)u(K’(s)), —k(s)v(K"(s)))- (4.42)
Hence, r, is a re-parametrization of the same curve C, and its components z”,
y” satisfy the same ODE (3.2).
(ii)

The function r_1_ can be called the self-complementary parametrization of C.

=

O
Due to the complexity of computations we restrict to a single relevant example:

Example 4.3 The circle €(O, R) has the usual arc-length parametrization
r(s) = Re'% for s € (0,27 R). We need the function

7 L a1 u(s)+iptv(s)

—_~

%%
and hence, K* = = Then the Jacobi mate is 7, with the derivative

r,(8) == (—v( ngs) ),u( ngs) )) (4.44)

Indeed, the case p = 0 recasts the usual r since then p/ = 1, and the Euler formula gives
W(s) =s.0

5 Conclusions

The Jacobi elliptic functions permit us to move beyond classical confines and provide us
with a framework in which we generalize some usual notions of the differential
geometry of plane curves.
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Abstract

We obtain B.-Y. Chen inequalities for submanifolds in m-dimensional, m > 4, conformally flat
manifolds and conformally flat manifolds endowed with a semi-symmetric metric connection. The
equality cases are also considered.

Keywords Conformally flat manifold - B.-Y. Chen inequality - k-Ricci curvature — Semi-symmetric
metric connection

1 Introduction

In recent years, the problem of establishing simple fundamental relations between the intrinsic
(mainly the scalar curvature, the sectional curvature, and the Ricci curvature) and extrinsic
invariants (mainly the squared mean curvature) of a submanifold has become one of the most
fundamental problems in the theory of the submanifolds. As the first result, in 1993, B.-Y. Chen
obtained a basic inequality involving the sectional curvature and the squared mean curvature of
submanifolds in a real space form [2]. For submanifolds of real space forms, the inequalities between
the Ricci curvature, k-Ricci curvature, and squared mean curvature were given in [4]. Now, these
inequalities are known as B.-Y. Chen inequalities. The inequalities obtained by B.-Y. Chen have
attracted great attention, and similar inequalities for submanifolds in various space forms have been
obtained by many authors. For the collections of the results in these directions, see [5-8, 11], and the
references therein.

Motivated by the above studies, in the present study, we find B.-Y. Chen inequalities for
submanifolds in m-dimensional, m > 4, conformally flat manifolds and conformally flat manifolds
endowed with a semi-symmetric metric connection. We obtain relations between the mean
curvature, scalar and sectional curvatures, and k-Ricci curvatures. Our results generalize some of the
results obtained for submanifolds in real space forms (see [2-4] and [12]) and in a Riemannian
manifold of quasi-constant curvature (see [14] and [16]).

2 Preliminaries

The Weyl conformal curvature tensor of an m-dimensional Riemannian manifold (M , 9) is defined by

C(X1, X2, X3, X4) = R(X1, X2, X3, X4)
— o { Rie(Xs, X3)g(X1, Xa) — Rie(X1, X3)3( Xz, Xa)
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+Ric(X1, X4)§(X2, X3) — RTC(Xz,X4)§(X1,X3)}
+%[§(X2,X3)§(X1X4) — 9(X1, X3)§(X2, X4)], (2.1)

m—1)(m
where Ric and 7 denote the Ricci tensor and scalar curvature of (M, §), respectively. It is known that
for n > 4, the manifold is conformally flat if and only if C' = 0 [1].
Using (2.1), the Gauss equation for a submanifold M ™ of a conformally flat manifold N™ is
R(Xla X?a X3) X4)

= —L-{Ric" (X, X3)9(X1, X4) — Ric™ (X1, X3)9(Xs, Xy)

m

+ RicN(X1, X4)9(X2, X3) — Ric™N (Xa, X4)9(X1, X3)}

N
_(m,ﬁm[g(){b X3)9(X1, X4) — 9(X1, X3)9(X2, X4)l,
+9(h(X1, X4), h(X2, X3)) — g(h(X1, X3), h(X2, X4)), (2.2)
where h denotes the second fundamental form of M ™ in N™ and Ric" and 7/ are the Ricci tensor
and scalar curvature of N™, respectively.
Let {e1, ..., € } be an orthonormal basis of the tangent space T, M ™. Then the scalar curvature 7

atx € M" is defined by
T(z) = Zl§i<j§n K(e; N ej),

where K (e; A ej) = K;; denotes the sectional curvature of a 2 -plane section spanned by e;, €.

Let M™ be an n-dimensional Riemannian manifold, IT a k-plane section of T, M", x € M", and X
a unit vector in II.

Let {e;},1 < i < k, be an orthonormal basis of IT such thate; = X.

The Ricci curvature (or k-Ricci curvature) [4] of II at X is defined by

k
R’LC]‘[(X) = E 2 Kli-

For each integer k, 2 < k < n, the Riemannian invariant ©; on M" is defined by

Ou(z) = i1 inf Rien(X), = € M",

where II runs over all k-plane sections in T, M ™ and X runs over all unit vectors in II [4].

3 Submanifolds of Conformally Flat Manifolds

Let H be the mean curvature vector of M " at a point z.

Now let M™, n > 3, be an n-dimensional submanifold of an m -dimensional conformally flat
manifold N™,m > 4,andz € M", {e;},1 <i < n,and {e;},n + 1 < j < m be orthonormal bases
of T, M™ and T;;- M, respectively. The square norm ||k||? of the second fundamental (see [2]) is
defined by

n
2
2= Y., alhenen),hleses):
Letx € M", w C T, M", ™ = sp{e1, ez}
For a submanifold of a conformally flat manifold, we prove the following first Chen inequality:

Theorem 3.1 LetM",n > 3,be an n-dimensional submanifold of an m -dimensional conformally flat
manifold N™ ,m > 4. Then

(n—2)
n—1)

T—K(m) < —ﬁ{Rz’cN(el,el) + RicM (e, e2)} + nz( |H|?

(3.3)



no1 E : - rVin(n-1)-2]
+m72 |: =1 chN(ej,Ej):| ~ mD(m-2) °

whereris a 2-plane section of T, M™,x € M™". The equality case of inequality (3.3) holds at a point
x € M™"if and only if there exist an orthonormal basis{e; },1 < i < n,ofT;, M ™and an orthonormal
basis{e,},n + 1 < p < m,ofT;> M "such that the shape operators of M "inN ™atxzhave the following
forms:

[x0 o - 0 |
0 4 0 0
A= 0 0 Adp 0 (34)
0 0 0 R
[ Ay hiy 0 --- 0]
hia —hy; 0 -+ 0
A, = 0 0 0 - 0] nt2<s<m, (3.5)
0 0 0 --- 0

where we denoteh?; = g(h(e;, e;), e;),1 < i,j < nandn +2 < s <m, andRicY, 7Nare the Ricci

tensor and scalar curvature of N™ ,respectively.

Proof For X; = X4 = €;,Xy = X3 = ej,1 # j, from the Gauss equation (2.2), by summation after
1 < 14,5 < n,wehave

2(n—1 E . N
27 = ;72) |: =1 RZCN(ej,ej):| — mn(n—l)
+n?| H||* — ||p]*. (3.6)

When we take

2 —
p=2r— "B H|® + F g n(n-1)

n—1 m—1)(m—2)
= [Z i1 Ric" (ej, 6]‘)} : (3.7)
from (3.6) and (3.7), we get
w2 |H* = (n=1) (1) + p). (38)

Let the normal vector e, 1 be a unit vector in the direction of the mean curvature vector H at x.
Then using (3.8), we obtain

(5 ) = (550 50 ).

or equivalently,
(3:9)



[ \* ]l -
\Zh) - (nl)lzz;(hﬁ ;m

s=n+2
By using Lemma 3.1 in [2], Eq. (3.9) gives us

2h?;r1h721;12§ (hn+1) E m_lg ey (B (3.10)

When we use the Gauss equatlon for X1 = X4 = e1, X9 = X3 = ey, we have

K(m) = R(e1,e2,e2,€1) = ﬁ{RicN(eh e1) + RicN(e2,62)}

Tn-1)(m-2) +Z [R5 hsy — (R5)"]

> m{Ric (e1,e1) + RicV (e2, 62)} - #{;_2)

FED G DD k)
+ Z:’an h$§ hs, — Z:nnH (hs,)? = —L-{Ric"(e1, 1) + RicN (e, e3)}
i 4 D B 3 D D )
+2p+ Z Zs—n-H (h12)2

= m{R’LC 61,61) ‘|‘R’LC (62,62)} — #{;_2)

1 n+1

+2 Zz;ﬁ h + Zs n+2 Z 7_7>2 Z +
n+1 n+1

Zs n+2 (hll + h22 o+ Z >2 h h }

> g {Ric¥(er,e1) + Ric% (e3,e5) ) m + 5

++p

which implies
. . v
K(m) > ﬁ{chN(el,el) + R’LCN(€2,62)} — (m—i)w
Using (3.7), it follows from (3.11) that

K(m) > 7+ L5 {Ric¥(e1,e1) + Ric"(ez,e2)} — 7;((n:12))
n— E " . N [n(n-1)-2
_m_—12 |: =1 RZCN(ej, ej):| + (m[—l m_2)] )

which proves the inequality (3.3).
Similar to the proof of Lemma 3.2 in [2], it can be easily seen that the equality case holds at a

point z € M™ if and only if with respect to a suitable frame field, the shape operators of M™ are of
the forms (3.4) and (3.5). O

_|_

£ (3.11)




Now using Theorem 3.1, we prove the following relationship between the k-Ricci curvature and the
squared mean curvature || H||?:

Theorem 3.2 LetM™,n > 3,be an n-dimensional submanifold of an m -dimensional conformally flat
manifoldN™,m > 4. Then

HH||2 > H(ZZI) - n(nf,g) |:§ :j—l RicN(ej’ej)}

2N

T m2) - (3.12)

Proof Equation (3.6) can be written as
n
2 2 2(n-1 .
o P = = 22D Rie(ege)
2 N
Let{e;},1 < ¢ < m, be an orthonormal basis of T, N™ at z such that the normal vector e,, ,  is

parallel to the mean curvature vector H and {e; },1 < 7 < n, diagonalize the shape operator A.,.,.
Then A, ., = [a1, ..., anl,, and A, = (h;), 4,5 =1,..,n;8 =n+2,...,m, trace A, = 0.Soin

(3.13)

nxn
view of (3.13), we get

n m n
2 E E E 2
n?||H||* = 27(z) + 1 a? + 2 it (hi;
n

2(n—1 . 27V (2
_ 7(7172) |: E i1 chN(ej,ej)] + Wﬂ(n—l). (3.14)

On the other hand, it is trivial that
n
E : a? > n|H|.
i=1
From (3.14), we have

2(n—1 | |
w?|H|? > 2T+nnHuz—%l g R e

j=1 (3.15)
2N
_—— -1
Dm0
or, equivalently,
) ) | |
H|* > L E icV (e e;
|| H - n(n—].) n(m_2)l R’LC (eJ,e])J
j=1
L
(m—1)(m—2)’

and this proves the theorem. O
Using Theorem 3.2, we obtain the following:

Theorem 3.3 LetM",n > 3,be an n-dimensional submanifold of anm-dimensional conformally flat
manifold N™ ,m > 4. Then, for any integerk,2 < k < n, and any pointx € M™,



n
2 .
I 2 0e) - it | D, Ric(eye)
2 N
o m (3.16)
Proof Let{e;},1 < i < n,bean orthonormal basis of T, M ". Denote by II,, ., the k-plane section
spanned by {e,, },1 < ¢ < k. By definition, we have (see [4])

(@) > "5 O (a),
which implies (3.16). O

4 Submanifolds of Conformally Flat Manifolds Endowed with a
Semi-symmetric Metric Connection

Let N™ be an m-dimensional Riemannian manifold and V a linear connection on N ™. If the torsion
tensor T of V satisfies

T(X1,%2) = n(%) %0 - (X)X
for a 1-form 7, then the connection V is called a semi-symmetric connection. Let § be a Riemannian

metricon N™. If ﬁg = 0, then V is called a semi-symmetric metric connection on N™,

By Yano [15], a semi-symmetric metric connection VonN™is given by

Vg Xo=Dg Xo+n(X2) X1 — §(X1, Xo)E,

for any vector fields Xl and X’g on N™ , where D denotes the Levi-Civita connection with respect to
the Riemannian metric § and E is a vector field defined by §(E, X) = n(X) for any vector field X.

Let M™ be an n-dimensional submanifold of an m-dimensional Riemannian manifold N™. Let V
and D denote the induced semi-symmetric metric connection and the induced Levi-Civita connection,
respectively.

Let R, RP , R, and RP denote the curvature tensors of ﬁ,ﬁ,V, and D, respectively.

The Gauss formulas with respect to v, respectively, D are given by

Vx, X2 = Vx,Xo 4 0(X1,X2), X1,Xs € x(M),

Dx, Xy = Dx, X2 + h(X1, X3), X1,Xs € x(M),

where h is the second fundamental form of M in N™ and o is a (0, 2)-tensor on M™ (see [1] and

[13]). According to the formula (7) from [13], o is also symmetric and o = h when E is tangent to

M™.

Let N™ be a conformally flat manifold, m > 4, endowed with a semi-symmetric metric

connection V.

The curvature tensor R with respect to the semi-symmetric metric connection V on N™ can be

written as (see [10])

R(X1,X2,X3,X4) = RP(X1,Xs,X3,X4) — B(X2, X3)5(X1, X4)
+B(X1,X3)§(X2,X4) _IB(XlaX‘l)g(X?vX?)) (4.17)
+B(X27 X4)§(X1, X3)>

where X; € x(M™),1 <i <4, and fisa (0, 2) -tensor field defined by

B(X1, X2) = (Dx,n) X2 — n(X1)n(X2) + %n(E)é(Xl,XQ)-
From (2.1) and (4.17), it follows that the curvature tensor R can be expressed as

R(XlaXQa X37X4)



= ﬁ{RiCN(X2,X3)g(X17X4) — RicN (X1, X3)9(X2, X4)
+RicN(X1,X4)g(X2,X3) - RiCN(Xz,X4)g(X1,X3)}

_%[Q(Xm X3)g(X1, Xyg) — 9(Xy, X3)g(Xa, Xy)]
—B(X2, X3)g(X1, X4) + B(X1, X3)g9(X2, X4)

4.18
~B(X1, Xa)g(X2, Xs) + A(Xz, X1)g(Xi, Xs). (419)
Let A = trace(f).

The Gauss equation for a submanifold M™ into a conformally flat manifold N ,m > 4, is

RP(X1,X5,X3,Xy) = RP(X1,X0,X3,X4) + g(h(X1, X3), (X2, X4)) (4.19)
_g(h(Xl’ X4)7 h(X2> X3)))
and from [~1_3], the Gauss equation with respect to the semi-symmetric metric connection is

R(X1, X2, X3,X4) = R(Xy, X, X3, Xy) + g(0(X1, X3),0(X2, Xy)) (4.20)

—9(0(Xs, X3),0(X1, X4)).
We denote the mean curvature S with respect to the semi-symmetric metric connection by

H =1 trace(o)

T
and
Blei,e1) + Blez, e2) = A — trace(ﬁm).
From [9], we know that 5# = H if and only if the vector field E is tangent to M".
Now let M "™, n > 3, be an n-dimensional submanifold of an m -dimensional conformally flat

manifold N™,m > 4, endowed with a semi-symmetric metric connection Vandz € M™, {e:},
1<i<mn,and {ep},n + 1 < p < mbe orthonormal bases of T, M ", and T;M", respectively. Let
zeM", 7w CT,M" m=sp{e, e}

We prove the following first Chen inequality:

Theorem 4.1 LetM"™,n > 3,be an n-dimensional submanifold of an m-dimensional conformally flat
manifold N™ ,m > 4,endowed with a semi-symmetric metric connectionV. Then

vV - KV(r) < (n—2) [%H%W _ )\} — trace(ﬂ‘wi)

(n

_ﬁ{RicN(ela 61) + R’l.CN(GQ, 82)}
n— ! ; 7V [n(n-1)-2]
i [Zj—l RZCN(ej’ej)} ~ Ta-D(m-2) (4.21)

whereris a 2-plane section of T, M™,x € M", andtV, K Vare the scalar curvature and the
sectional curvature of the induced semi-symmetric metric connectionV ,respectively, and Ric™ andt™

are the Ricci tensor and the scalar curvature of N ™with respect to the Levi-Civita connection,
respectively.

Proof For X; = X4 = €;,Xy = X3 = e;,i # j, from Egs. ( 4.18) and (4.20), by summation after
1 < 4,7 < n, it follows that

27V + |lo|” — n?||I* = —2(n—1)A

n— . TN
+27(n_21) |: E i1 RZCN(ej,ej):| — (m_%)mn(n—l), (422)

where

n
2
ol?= Y ., glolene)),olene).

When we take



n?(n—
p=2r" - || + 2(n-1)A
2(n—1 . N
_ 7(n—2) [ E P RZCN(ej,ej):| + —(m—%)(m—2) n(n—1), (4.23)

we have

2 2 _ 2
w2 #* = (n=1)(Jle)> + p).
Let the normal vector e, 1 be a unit vector in the direction of the mean curvature vector J¢ at x.
Similar to the proof of Theorem 3.1, we have

+1 _n+1 n+1
20" o > g 0 + E g +
011 22 i#j ij i,j=1 s= n+2 ZJ p-

For X; = X, = e, X5 = X3 = ey, the Gauss equation with respect to the semi-symmetric
metric connection gives

KV(m) = R(e1,e2,e2,e1) = — 5 {Ric" (e1,e1) + Ric" (e, e2)}

N " s s s
—m — Ble1,e1) — Blez, e2) + E :3_n+1[011022 - (012)2]

> 1 {Ric¥ RicY 2"
z2 ic" (e1,e1) + Ric (62,62)}—m
| " |
—pB(e1,e1) — Blez, e2) + ;l E (o nH) + § E (Ufj)Z +PJ
i#£] 3,7=1  s=n+2

m m
+ E :s_n+2 01109 — E :s—n+1 (‘Tiz)2 = ﬁ{RiCN(el,el) + RicN(es, e2)}

— ey — Blen,er) — Blea, e2)

m
) Z i) Z Z Z 1192 Z )
D) 0' + + 0' o o
2 it N ij=1 s— n+2 o3;) 2p 11922 s:n+1( 12)

= 2{RZC (61,61)—|—RZC (62,62)} (mli

1 1

—p(e1,e1) — Blez,e2) + & Z#‘ (cr?jJr + 5 ZS o Z 7]>2 z]
1 1

Zs 2 (011 + 039) +21>2 n+ (U2+ ) ] 2P

> — {ch 61,61)—|—RZC (62,62)} m

—B(e1,e1) — Blez, e2) + 5,

l\DlH

which implies
27N

Vir _ar
K () (m—1)(m—2)

p— 2{ch el,el)—l—ch (ez,ez)}

—B(e1,e1) — Blez, e2) + g.

Using (4.23), we get

KV () > 1V + (n—2) [_ 2(:21 } + trace(ﬂm)



+ﬁ{RicN(el, e1) + RicV (e, 62)}

el E : " V[n(n—1)-2]
_m2|: j=1 RZCN(ej’ej) + (m—1)(m-2) »

which proves the inequality. O

When the vector field E is tangent to M ", for the equality case of the inequality (4.21), we have the
following theorem:

Theorem 4.2 If the vector field E is tangent toM ", the equality case of the inequality (4.21) holds at
a pointz € M™if and only if for suitable chosen orthonormal bases of T, M "andT;- M™, the shape
operators of M ™inN ™at x have the forms (3.4) and (3.5).

Similar to Theorem 3.2, using Theorem 4.1, we give the following relationship between the k-Ricci
curvature and the squared mean curvature || H||*:

Theorem 4.3 LetM"™,n > 3,be an n-dimensional submanifold of anm-dimensional conformally flat

manifoldN™,m > 4,endowed with a semi-symmetric metric connectionVsuch that the vector field E is
tangent toM ™. Then

2 o .
P 2 2 it | D Rie¥(ene)

arv 2
T Dmmy T w N

Proof The relation (4.22) is equivalent to

n?|H|* = 27 + ||B]]* + 2(n—1)A
_ 2(n-1)

m—2

. N
- R’LcN(ej, ej)] + mn(n—l). (4.24)

Similar to the proof of Theorem 3.2, from (4.24), we get

2 2 _o9_V E 2 E E r\2
nl|H|" =277 + im1% T r=n-+2 ij=1 (hi;)

2(n—1 " . N
+2(n—1)A — %{ g - RZCN(ej,ej)] + gy n(n—1).
Hence, we have
n?||H|> > 27V + n||H||> + 2(n—1)X (4.25)

2(n—1 " . N
_ 7(n2)|: E i1 chN(ej,ej)] +mn(n—l),

or, equivalently,

v " .
VI 2 5~ s | Dy R
2r NV 2
Ty T R
O

Similar to Theorem 3.3, using Theorem 4.3, we can state the following theorem:



Theorem 4.4 LetM"™,n > 3,be an n-dimensional submanifold of an m-dimensional conformally flat
manifoldN™ ,m > 4,endowed with a semi-symmetric metric connectionVsuch that the vector field E is
tangent toM™". Then, for any integerk,2 < k < n, and any pointx € M", we have

1H|* > O(z) + 2A

2 " . orV
—m[zj—l Ric™(ej,€))| + Giimgy-

Proof The proofis obtained by a similar way given in the proof of Theorem 3.3. O
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Abstract

In this chapter, we prove general Chen inequalities in statistical submanifolds of Kenmotsu
statistical manifolds of constant ¢-sectional curvature. Furthermore, we investigate the equality
case of these inequalities. Finally, we point out a representative example.
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1 Introduction

The concept of curvature is one of the central notions of differential geometry, distinguishing the
geometrical core of the subject from those aspects that are analytic, algebraic, or topological [35].
The curvature invariants play a key role in physics, chemistry, geology, biology, art, technology, etc.
Honeycombs and shells, crystals and galaxies, DNA-molecules, red blood cells, flowers, stems,
tissues, pollen grains of plants, the relativistic space-time universe itself, etc. all do assume shapes
in accordance with similar natural curvature conditions [24].

Motivated by the challenges of applying the famous Nash’s embedding theorem [32] to
submanifold theory, B.-Y. Chen formulated the following fundamental problem [6].

Problem 1.1 Establish simple relationships between main extrinsic invariants and main
intrinsic invariants of a submanifold.


https://doi.org/10.1007/978-981-95-5148-4_14
mailto:simona.marinescu@csie.ase.ro
mailto:gabriel.vilcu@upb.ro

Solutions of this problem are focused on some geometrical inequalities involving intrinsic
invariants and extrinsic invariants of submanifolds. On the one hand, there are intrinsic
curvatures like sectional curvature, scalar curvature, and Chen invariants, which give together like
the DNA-structure of the Riemannian manifolds involved [7]. On the other hand, there are
extrinsic curvatures like mean curvature, shape operator, and Casorati curvature, which
fundamentally relate to the shape that these submanifolds assume in their ambient space.
Fascinating solutions of this basic problem are revealed by B.-Y. Chen who defined in the 1990s
new types of intrinsic invariants called é-invariants or Chen invariants, involved in optimal
inequalities for submanifolds in real space forms [5]. The theory of §-invariants turns out to be a

Kenmotsu geometry was first studied in 1972 by K. Kenmotsu [26] as a field of contact
geometry, leading to a broad spectrum of applications in physics and control theory [36]. On the
other hand, S. Amari defined the concept of statistical manifold in 1985 in a study of information
geometry [2]. Moreover, H. Furuhata introduced the notion of Kenmotsu statistical manifold, which
is locally constructed as a warped product of a holomorphic statistical manifold and a real line
[22]. In the context of the above basic problem, new solutions are achieved considering a
Kenmotsu statistical manifold. Thus, Casorati inequalities for submanifolds in Kenmotsu statistical
manifolds of constant ¢-sectional curvature are demonstrated in [18]. In addition, other Casorati
inequalities are proved in [19] for submanifolds in the latter ambient space endowed with semi-
symmetric metric connection. Recently, the authors of the present work established in [20] the
first Chen inequality for statistical submanifolds in Kenmotsu statistical manifolds of constant ¢-
sectional curvature. The statistical manifolds endowed with almost product structures are
investigated in [39].

In this chapter, we obtain general Chen inequalities in terms of the general Chen invariants
(intrinsic invariants) and the mean curvature (extrinsic invariant) of statistical submanifolds in
Kenmotsu statistical manifolds having a constant ¢-sectional curvature. Furthermore, the equality
case of these inequalities is investigated. Finally, a representative example is emphasized.

2 Preliminaries

We consider (M, g) a Riemannian manifold, § a Riemannian metric on M, and V an affine
connection on M. The triplet (M, g, V) is named a statistical manifold if the torsion tensor field of
V vanishes and Vgasa (0, 3)-tensor is symmetric [21]. The pair (g, V) is called a statistical

structure on M [34]. For any connection V on (M, g), one defines its dual connectionV* with
respect to g as follows:

3(VxY,2) +g(Y,V42) = X g(Y, 2), o
for any vector fields X, Y, Z on M. Furthermore, denote the Levi-Civita connection on M by V°,
defined by [40]

VO — V+V*
=
If (M, g, V) is a statistical manifold, then so is (M, g, V*).
For a statistical structure (g, ?), we set a tensor field K € F(TM(I’Q)) by
KxY =K(X,Y)=VxY - V5Y. (2.1)
Moreover, K is given by

K(X,Y)=V%Y - VLY = 2(VxY — V%Y).



It is clear that K satisfies the properties:

K(X,Y)=K(Y,X),

§(K(X,Y), Z) = f_](Y’ K(Xa Z))
Let M be a submanifold of a statistical manifold (M, g, V) with g the induced metric on M and
V the induced connection on M. Then it is known that (M, g, V) is a statistical manifold as well.
The Gauss formulas are given by Furuhata and Hasegawa [21]

VxY =VxY +h(X,Y),
V%Y = VY + h*(X,Y),
forany X,Y € I'(T M), where we denoted h and h* the imbedding curvature tensor of M in M for
V and V", respectively. ) )
Next, denote by R, R, R*, and R* the (0, 4)-curvature tensors for the connections V, V, V*, and

?*, respectively. We define the statistical curvature tensor field [21] on M and M, denoted by S and
S, respectively,

S(X,Y)Z = L{R(X,Y)Z + R*(X,Y)Z}, 2.2)
forany X,Y,Z € I'(TM), and
S(X,Y)Z = 1{R(X,Y)Z + R*(X,Y)Z}, (2.3)

forany X,Y, Z € T'(TM).
Forany X,Y € I'(TM), one defines Q the (1, 3)-tensor field on M given by [34]
i Q(X,Y) = [Kx, Ky]. i
Recall that Q) is called the Hessian curvature tensor for the connection V.
It is known that Q(X, Y) satisfies the relation [34]:

R(X,Y) + R*(X,Y) =2R%(X,Y) +2Q(X,Y).
Afterward, let (M, g, ¢, £) be a (2n + 1)-dimensional Kenmotsu manifold defined as an almost
contact metric manifold M which satisfies for any X,Y € I'(T'M) the relations:

(Vi)(Y) = 3(¢X,Y)E — n(Y)9X,
_ _ v())(é‘ =X - W(X)fl
where ¢ € F(TM(l’l)), £ e I(TM),and nis a 1-form on M with
) n(X) = 5(X,8). )
A Kenmotsu manifold M equipped with a statistical structure (g, V) is called a Kenmotsu
statistical manifold [22] if the following expression holds for any X,Y € I‘(T]\Zf):
K(X,¢9Y) = —¢K(X,Y),
where K is the tensor field defined in (2.1).

A Kenmotsu statistical manifold (]\_4, @, g, ¢, &) is said to be of constant ¢-sectional curvature ¢
if the statistical curvature tensor field S is given by Furuhata and Hasegawa [22]

5(x,V)2 = gV, 2)X - g(X, 2)Y))

+ S0V, 206X — 5(6X, 2V -25(9X, V)62 (2.4

- 9(Y,83(Z,)X +5(X,£)3(Z,£)Y
+ 3(Y,8)3(Z, X)€ - 3(X,€)3(Z,Y)E},




forany X,Y,Z € T(TM).
Let M be an (m + 1)-dimensional submanifold of a Kenmotsu statistical manifold M of

dimension 2n + 1. Then the Gauss equations are the following [23]:
9J(R(X,Y)Z,W) = g(R(X,Y)Z,W) — g(h(Y, Z), " (X, W))

h (2.5)
+9(h(X, Z), h* (Y, W)),
25(S(X,Y)Z,W) =29(S(X,Y)Z,W) — g(h(Y, Z), " (X, W)) 2.6)
+9(h(X, 2), (Y, W)) — g(h*(Y, Z), h(X, W)) + g(h*(X, Z), h(Y, W), '

45(R°(X,Y)Z,W) = 49(R"(X,Y)Z, W)
_g(h(Ya Z) +h*(Ya Z)ah(Xa W) + h*(Xa W)) (2-7)
+3(h(X, Z) + 1*(X, Z),h(Y, W) + h* (Y, W),
where h and h* are the imbedding curvature tensor of M in M with respect to the dual connections
V and V*.
The mean curvature vector fields of M are defined by, respectively,

m+1 m+1
H=_5 § :i_l h(eiei), H* = iy § :Z._l h*(es, e;).

These latter notions imply

2h° = h + h*
and
2H° = H + H*,
where h? and H? are the second fundamental form and the mean curvature field of M,
respectively, with respect to the Levi-Civita connection V° on M.
Then, the squared mean curvatures of the submanifold M in M are given by

In+1 m+1 2 In+1 m+1 2
2__ 1 « * |12 1 *au
I H [I°= (m+1)? Za—m+2 (Zi—l hii) , TH" = (m—+1)? Za—m+2 (Zi—l hii) ’

where h; = g(h(ei, e;), eq) and hjj* = g(h*(ei, €j), €q), ford, j € {1,...,m + 1},
ac{m+2,...,2n+1}.

Ifp € M and w C T, M is a nondegenerate 2-plane, then the sectional curvature is defined as
[21]

9(S(X, Y)Y, X)

P X X v) - AV (25)
where {X, Y} is a basis of 7.
The scalar curvaturet of (M, V, g) ata pointp € M is defined by
T(p) = g(S(eivej)ejaei), (29)
1<i<j=m+1
where {e1, ..., €n+1} is an orthonormal basis at p.

If L C T,,M is an r-dimensional subspace, then the scalar curvature of L is defined by

(L) = E H (ea N eg), (2.10)

1<a<f<r
where {e1,...,e,} C Lisan orthonormal basis.
Letk € N* and ny,...,n; > 2 be integers suchthatn; <m+ landn; +...+nx < m+ L

For each k-tuple (n1,...,n;) and any p € M, the Chen invariant §(n1, ..., ng) is defined by



5(nt, - . smi)(p) = 7(p) — inf{r(Ly) + ... + T(Lw)},
where Ly, ..., Lj are mutually orthogonal subspaces of T\, M such that dim L; = n;,
Vi=1,...,k
In particular, §(2) = 7 — infJ¢ is the Chen first invariant.
B.-Y. Chen proved in [8] a fundamental inequality involving the general Chen invariants
(intrinsic invariants) and the squared mean curvature (extrinsic invariant) for submanifolds M ™
in Riemannian space forms M ™(c):

n*(nt+h—3 1 ni—
2(nt+k—Y 1 ni)

- Zfl ni(n;—1)]c.

These inequalities are known as Chen inequalities. General Chen inequalities for statistical
submanifolds in Hessian manifolds of constant Hessian curvature are established in [31].
Next, we consider the following result.

S(n,...,mp) < D H |12 +1[n(n—1)

Lemma 2.1 ([31]) Letm > 2, k > 1be two integers, and letny,ns, . .., ng > 2be integers such
thatny <m+1,n1+ ... +nx <m-+ 1 DenoteNy =0, N; =n1 + ... +nfori=1,... k.
Then, for any real numbersa;, . . ., Gmn+1, we have

a;a; — a,.as
1<i<j<m+1l 1 i—1 Nit+1<a;<Bi<N; P
2
X i ' m—+1
< mtk—37  ni Qs
= 2(mt1+k-2F  n;) j=1 7

Moreover, the equality holds if and only if

Zo l_
A, a [ a V 1 1,... k
=Ni 41 a; Ni+1 m-+1, ) )

(2.11)

3 Main Inequality

Let (M, V, g, ¢,£) be a (2n + 1)-dimensional Kenmotsu statistical manifold of constant ¢-
sectional curvature ¢, and let M be an (m + 1)-dimensional statistical submanifold of (

M’ v’ g’ ¢’ f)'
Let Q be the Hessian curvature tensor for the connection V, that is,
Q(X,Y) = [Kx, Ky,
forany X,Y € I'(TM). Then it is clear that we have (see also [31])
R(X,Y) + R*(X,Y) = 2R*(X,Y) + 2Q(X, Y).
Let 7 be a plane in T, M, for p € M. Take an orthonormal basis { X, Y} of 7, and define the
sectional Q-curvature J¢ % (7) of the plane section 7 by [34]

H9(m) = 9(QX,Y)Y,X)

= LR, Y)Y, X) + o(R*(X, V)Y, X)-26(R"(X, Y)Y, X)}. (1)
Then ¢ (7) can be written also
‘%/Q(ﬂ-) = g(S(Xa Y)Y’ X) _g(RO(X7 Y)Ya X) (3.13)

We denote by
Ho = H(X,Y) = g(R'(X, Y)Y, X)



the sectional curvature of the Levi-Civita connection V° on M and by " the second fundamental
form of M.

In this chapter, we assume that the structure vector field £ is tangent to the submanifold M.
Then, we consider {e1, ..., €em, emi1 = £} and {em42, . . ., €241} orthonormal bases of T, M and
TpLM, respectively, forany p € M.

The Q-scalar curvature of M, denoted by 72, corresponding to the sectional Q-curvature of M is
defined by

¢ = %Q(ei A €;)
1<i<j<m+1

1

) [9(R(ei, ej)ej, ei) + g(R* (s, e5)ej, €;)

1<i<j<m+1

— 29(R(ei, e5)ejs €:)]

= g 9(S(ei, e5)ej, €:) — E g(R"(ei, €))ej, €:).

1<i<j<m—+1 1<i<j<m—+1
Then, 79 becomes
79 =7— 70, (3.14)

where T is the statistical scalar curvature of V on M and Ty is the scalar curvature of the Levi-
Civita connection V° on M.

Next, we denote X = PX + F X, where PX is the tangent component of X and FX is the
normal component of ¢ X.

Equations (2.4) and (2.6) imply

m(m+1)(c—3) 3(c+1) s (c+1)m
pl2 ="
e e pye Y
. 2n+1 (3.15)
+ 5 (hIORS, + RERIE—2R%RI),

a=m+2 1<i<j<m+1
where || P ||? denotes the squared norm of P, given by (see [27, 28])

IPIP= D PlenPey).

Furthermore, summingover1 <¢ < j<m-+1forX =W =e;andY = Z = e; in the
Gauss equation (2.7), we get
(3.16)



2n+1
1

_ 2
2o =27 + 3 [heh. — (h%)?]
a=m+2 1<i<j<m+1
2n+1
1 Rropxa Bra 2
Y [hih5 — (hf)]

a=m+2 1<i<j<m+1
2n+1

1 E E a 1k (o7 107 a1,

a=m+2 1<i<j<m+1
Then, using Egs. (3.15) and (3.16) in Eq. (3.14), we obtain

% = (7—21) + 70
m(m+1)(c—3) 3(c+1) (c+1)m
- v | Py X Dm
8 8 4
2n+1
_ 1 ara a\2
+70—2T) — 2 [hih3; — (h$)7]

a=m+2 1<i<j<m+1
2n+1

1 *Q 7, *Q *Q
—35 g[mw4%ﬂ

a=m+2 1<i<j<m+1

(3.17)

On the other hand, let Ly, . .., L, be k mutually orthogonal subspaces of T\,M, dim L; = n;, for

any: = 1,...,k, defined by
L, = sp{es,...,en},

L2 = 8p{6n1+1, ce 76n1+n2}a
Lk = sp{enl—fn R P =2 T .+nk_1+nk}-
Moreover, we denote Ng =0, N; =ny+...+n;fori =1,...,k.

From the Gauss equations (2.6) and (2.7), we obtain



1
TQ(Li) 5 [g(R(eai’eﬂi)eﬂi’eai) +g(R

Ni1+1<0;<Bi<N;

g(RO(eai ’ eﬁi)eﬁi’ eai)
Ni_1+1<0;<Bi<N;

g(S(eaﬂ eﬂi)eﬂﬂ eai)
N 1+1<0;<Bi<N;

g(RO(eai’ eﬂi)eﬁi’ eai)
N; 1+1<a;<B;<N;
7(L;) — mo(Ls)

i (eai’ eﬂi)eﬁi’ eai)]

= 7o(Ly)—27(L;) + n"(m_;)(c_g) + 3(CZ D ¥(L:)
(c+1)(n;i—1)
-
2n+1
1 Y Y [, — (A5
5 ., ., Qi Bzﬂz il
r=m+2 N;_1+1<q;<B;<N;
2n+1
1 Y Y [ By, — (b ) 1,
5 ., ., i Bifi il

r=m+2 N;_1+1<a;<B;<N;

where we denote ¥(L;)

relation we get

Zai<ﬂi G (Pe;, €g,). By summing overi = 1,...,

k the latest

E E i(ni—1)(c—3 3 1
T() 27’0 )+ n (n )(c ) + (C+ )\I/(Lz)
8 4
2n+1
S‘ S‘ (3.18)
4 aal ﬂzﬂz (h zﬂz) ]
r=m+2 i=1 N,_1+1<o; <,61<N
2n+1 k
D D> D w 2
—— hX" h *r .
2 Ly Ly Ly [ ;0 1 ( alﬂz) ]

r=m+2 i=1 N, 1+1<a;<B;<N;
By subtracting Eq. (3.18) from Eq. (3.17), we obtain



k k

@ — E T9(Ly)] — [0 — E To(L;)] = m(m +81)(C_3) +

i=1 i—1
(c+1)m
4
2n+1

1
2 (1 ]]

r=m+2 1<i<j<m+1

2n+1
r 2
+ E E E aa, ﬂzﬁi _( Otzﬂi) ]
r= m+2 i=1 N;_ 1+1<a1<ﬁ,<N

+ [hiahgs — (i)}

_ —E g {Ihhs; — (B)*) + (b — (b))}

k k
— 279+ 2 E 7_'0(Li) — 6;3 E nz(nl—l) — ?)(CT_{—]-) E ‘I’(Lz)

k

i=1
Next, by using Lemma 2.1, we have

E hiihj; — S S o P,

1<i<j<m+1 N;_ 1+1<a1<ﬁ,<N

2
m+k— Z n; mil
< =1 B
- k

i
2<m+1+k—2n1) i=1
i=1

E h:zrh*r 5 E h:;raz Zﬂz

and

1<i<j<m+1 i= 1 N 1+1<a,<ﬁ1<N
2
m+k— Z n; mtl
< k y
2<m+1+k—2ni> =1
i=1

3(c+1) )
P
=1
(3.19)
(3.20)

Applying the expressions of (3.19) and (3.20) in the latest equation, we establish the general
Chen inequalities for arbitrary statistical submanifolds of a Kenmotsu statistical manifold of



constant ¢-sectional curvature c, as follows.

Theorem 3.1 Let (M,V, g, ¢, &) be a(2n + 1)-dimensional Kenmotsu statistical manifold of
constant¢-sectional curvature ¢, and M is an(m + 1)-dimensional statistical submanifold of (
M,V,g,¢,&). Then, for any integersni, .. .,ny > 2,k € N* such thatn, < m + 1,

n1 + ...+ nr < m+ 1, the following inequalities hold:

k k
m(m+1)(c—3 3(c+1
(19 —mp) - [E JRCIIA :i_lTo(Li)] > e 4 G| PP

C(etm (mAD)P(mrk=S00 ) (1H| 2 H |1

1 A(mATh-Y )

k
—2[70 — E . To(Li)]
k k k
c— 3(c+1 c+1
N 83 Zi:lni(ni_l)_ (Z) 2 :i=1 ‘I’(Li)WL% 2 :izl(ni—l),

whereLy, ..., Liare mutually orthogonal subspaces of 1), M, withdim L; = n;,Vi=1,... k.
Moreover, the equality case holds in (3.21) at a pointp € Mif and only if there exist

(3.21)

{e1,...,ems1}and{emn 2, ..., ean+1}orthonormal bases oijMandTpLM, respectively, such that
the shape operators have the expressions:
AT ... 0 A7 ... 0
A, = cT 0 . AF = S 0 ,
o o4 “lo o .oar
\ 0 prl } \ 0 prl }
forr =m+2,...,2n + 1, where I is the identity matrix, and A} and A}"are symmetricn; x n;
submatrices withtrace A} = p,andtrace A" = py, foralli = 1,... k.

We remark that the equality case of (3.21) follows immediately from the equality case of Lemma
2.1. We would like to note that the particular case of the above theorem for k = 1 and n; = 2 was
established in [20].

We notice also thatif (M = N x R,V = V* + K, g, ¢, &) is a Kenmotsu statistical manifold of
constant ¢-sectional curvature c, where (N, 6, g, J) is a holomorphic statistical manifold, then
c = —1[22]. In this respect, we have the following result.

Corollary 3.2 Let(M = N xR,V = V' + K, g, ¢, €) be a(2n + 1)-dimensional Kenmotsu
statistical manifold of constantg-sectional curvature, where( N, 6, g, J)is a holomorphic statistical
manifold, and let M be an(m + 1)-dimensional statistical submanifold of M. Then, for any integers
k € N*andny,...,n; > 2such thatny < m+ 1,n1 + ...+ ni < m + 1, the following inequalities
hold:

(3.22)



k k
( — m)- E L) - g n(z)| > -
k
(m o+ 1)2(m o+ k=S m) (L B2+ | B P

k
4<m+1+k— nz>
i—1

k k

— 2|7 — 5 To(L:) +% E ni(n;—1),

=1 i=1

whereL, ..., Liare mutually orthogonal subspaces of 1), M, withdim L; = n;,Vi=1,... k.

4 An Example

Let (H*™ ¥V =V + K, §, 6, £) be the (2n + 1)-dimensional Kenmotsu statistical manifold
studied in [22, Examples 3.3 and 3.10]. We have

H™M = {(z1,..., 20,91, -+, Yn, 2) € R7|2 > 0}
The structure tensors (g, ¢, £) are defined by

g= %{(dmf + .t (dwn)2 + (dy1)2 +.o..+ (dyn)2 + (dz)z}’

0 0 0 0 0
b = o = e 63 =0, forac {1},

and

&= —z%.
Forany X,Y € T'(TH?"*!), we set the (1,2)-tensor field K as

K(X,Y) =va(X) 7(Y) &,
where v € C®(H?"™) and 7 is the 1-form on H "™ dual to ¢, that is, j(X) = g(X, &).

Then (H2"+1, V=V"+K,qg0¢, €) is a Kenmotsu statistical manifold with constant ¢-
sectional curvature ¢ = —1. Moreover, M = H?*1 (where 0 < k < n) is a statistical submanifold
of the Kenmotsu statistical manifold H?"*! for which the inequality (3.21) holds with equality
case.

5 Conclusions

In this chapter, we established general Chen inequalities for statistical submanifolds in Kenmotsu
statistical manifolds of constant ¢-sectional curvature. Moreover, the equality case of these
inequalities is examined, and an example is revealed to highlight our results.
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Abstract

In this study, we establish Chen-type inequalities for pointwise quasi hemi-slant submanifolds within
Kaehler manifolds, giving explicit relations among the mean curvature, scalar curvature, sectional curvature,
Ricci curvature, and the ambient space’s sectional curvature. Moreover, we characterize the conditions
under which these inequalities become equalities.

Keywords Pointwise quasi hemi-slant submanifold - Chen inequality — Kaehler manifold - Complex space
form - Second fundamental form

1 Introduction

The theory of submanifolds is a central topic in differential geometry, with significant applications in diverse
areas such as mathematical physics, image processing, economic modeling, and computer-aided design.
Within complex geometry, one particularly rich research direction concerns slant submanifolds, introduced
by Chen in [5] as a generalization of holomorphic and totally real submanifolds, and further summarized in
[6]. Over the years, many extensions of this concept have been proposed, including semi-slant, hemi-slant,

26-28, 30, 33]).

In 2002, Chen and Garay [16], inspired by Etayo’s definition of quasi-slant submanifolds [17], introduced
the notion of pointwise slant submanifolds in Hermitian geometry. Later, Sahin [29] defined pointwise semi-
slant submanifolds. More recently, Akyol and Beyendi [2] proposed the concept of pointwise quasi hemi-
slant submanifolds as a natural generalization encompassing slant, semi-slant, hemi-slant, bi-slant, and
quasi bi-slant submanifolds.

In Riemannian geometry, one of the most notable curvature invariants for a Riemannian manifold
(M, g1) is the Chen invariant, introduced by Chen [8] as

du, = 7(p) — inf (K)(p),
where 7(p) is the scalar curvature of M; and
inf (K)(p) =inf {K(II) : II is a plane section of T),M;}
is the infimum of the sectional curvatures at the point p € M;.

A fundamental problem in submanifold theory is to discover simple yet meaningful relationships
between the intrinsic and extrinsic invariants of a submanifold. In this regard, Chen established a series of
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influential inequalities—now known as Chen inequalities—in [7, 10] In recent years, Chen-like inequalities

The present work focuses on pointwise quasi hemi-slant submanifolds of Kahler manlfolds We establish
several inequalities involving the mean curvature, scalar curvature, sectional curvature, Ricci curvature, and
the sectional curvature of the ambient space. In addition, we analyze the conditions under which the
equality cases occur.

The structure of the chapter is as follows: Sect. 2 reviews the necessary preliminaries, including basic
definitions and fundamental formulas. Section 3 presents the main results, deriving inequalities for
pointwise quasi hemi-slant submanifolds of Kaehler manifolds and examining the equality cases.

2 Preliminaries

Let M1 be a smooth manifold of dimension 2m. Then, M1 is said to be an almost Hermitian manifold if it
admits a tensor field J; of type (1, 1) and a Riemannian metric & on M satisfying

J2 =1, h(JlEl, J1Ey) = h(El,Ez) (2.1)
for any vector fields E;, E on T M7, where I denotes the identity transformation. The fundamental 2-form
Q on Mj is defined by Q(Eq, Eq) = E(El, J1E3),VE1,E; € F(TMT), with I‘(T]VIT) being the section of
tangent bundle TfJ\/.T; of/1\7[-1’. An almost Hermitian manifold /MT is called a Kaehler manifold [34] if

(VE1J1)E2 =0, (2.2)

where V is the Levi-Civita connection on M1 with respect to h. Let M5 be a Riemannian manifold

isometrically immersed in Ml, and the induced Riemannian metric on M> is denoted by the same symbol h
throughout this chapter. Let &/ and h denote the shape operator and second fundamental form, respectively,

of immersion of M, into Mj. The Gauss and Weingarten formulas of M> into M; are given by [12]
Vi, By = Vg Es + h(E1, Es) (2.3)
and _

VEle = *AF2E1 + VEIFQ, (2.4)
for any vector fields E1, Ey € T'(TM>) and Fy € T'(T+My), where V is the induced connection on Ms, V+
represents the connection on the normal bundle T+ M, of My, and Ap, is the shape operator of M with
respect to normal vector Fy, € T'(T+M,). Moreover, 2/F, and h are related by

h(h(E1, Ey), Fy) = h(Ap,Ey, E,) (2.5)
for any vector fields Ey, E; € I'(T' M) and F» € F(TLMQ). The mean curvature vector H is given by
H= %trace(h). The submanifold M, is totally geodesic if A = 0 and minimal if H = 0. The Gauss equation
is given by
R(E1, Es, E3,Ey) = R(E1, Eq, E3, Ey) — h(h(E1, E4), h(Es, E3))

N (2.6)
+h(h(E17 E3)7 h(EQa E4))
forall Eq, Eq, E3, E4 € I'(T'M>), where R is the curvature tensor of Ms. Let II = Span{e;, e;} be 2-
dimensional nondegenerate plane of the tangent space T, M3 at p € M>. Then the number
E(R(ej,ei)ei,ej) (2 7)

A ﬁ(eivei)’;(ejaej)*ﬁ(eiyej)?
is called the sectional curvature of section I at p € M. Let M, be an my-dimensional Riemannian
manifold. We denote by K () the sectional curvature of M, associated with a plane section 7w C T, M,,
p € M. 1f{e1,...,em,} is an orthonormal basis of the tangent space T'pMy, then the scalar curvature 7 at

p is defined by
7(p) = Zlgiq‘gm Kij.

Let M5 be an mo-dimensional Riemannian manifold, L be a k-plane section of T, M3, p € Mp, and E be a unit
vector in L. We choose an orthonormal basis {el, e, ek} of L such that e; = E. Ricci curvature (or k-Ricci
curvature) of L at E is defined by

RICL(E) = K12 +K13 + ... +K1ka



where Kj; denotes, as usual, the sectional curvature of the 2-plane section spanned by e;, e;. For each
integer k, 2 < k < myg, the Riemannian invariant 6 on My is defined by
1 . .
Ox(p) = 7= in)g Ric.(E), pe M, (2.8)
where L runs over all k-plane sections in T}, M5 and E runs over all unit vectors in L. A Kaehler manifold ,MI
is named a complex space form if it has a fixed holomorphic sectional curvature represented by M(C) The
curvature tensor of the complex space form ’J\fo(c) is dedicated by
R(Ey, Ey)Fy = ${h(E3, F1)E1 — h(E1, F1)E2 + h(J1E3, F1)J1 E1
—E(JlEl, Fl)JlFQ + 27L(E1, J1E2)J1F1}
for any E1, E9, F1 € T'(T'M,).

(2.9)

Definition 2.1 A submanifold M5 of an almost Hermitian manifold ’J\ZTI is called pointwise slant if, at each
point p € My, the Wirtinger angle 6( E) is independent of the choice of nonzero vector E; € Ty Ms, where

Tp*MQ is the tangent space of nonzero vectors. In this case, 8 is called the slant function of M [16].

Definition 2.2 ([2]) Let M5 be an isometrically immersed submanifold in a Kaehler manifold M;. Then
we say that M3 is a pointwise quasi hemi-slant submanifold if it is furnished with three orthogonal
distributions (@, Dy, ’Dl) satisfying the conditions:

(i)
(i)
(iii)

TMy; =D DD, DD,
The distribution ® is invariant, i.e., JO = 9.

For any nonzero vector field E; € (D), ,p € My, the angle 6 between J, E and (Dy),, is slant
function and is independent of the choice of the point p and E; in (© 9)p,

(iv)
The distribution ©* is anti-invariant, i.e, J;©+ C J 1 M.

We call the angle 6 a pointwise quasi hemi-slant angle of M,. A pointwise quasi hemi-slant submanifold M,
is called proper if its pointwise slant function satisfies § # 0, 5, and @ is not constant on M.

If we represent by d1, d», and d3 the dimension of ®, Dy, and D+, respectively, then from our
generalized definition of pointwise quasi hemi-slant submanifold M5, we can easily see the following
particular cases:

on -~

If d; = 0, then M5 is pointwise hemi-slant submanifold.
(ii) ~

If do = 0, then M5 is semi-invariant submanifold
(iii)

If (Ig = 0, then M, is pointwise semi-slant submanifold.

Let M be a pointwise quasi hemi-slant submanifold of a Kaehler manifold ,MI Then, for any
¢ € I'(TM;), we have

§= Q&+ RE+ S¢, (2.10)
where Q, R, and S denote the projections on the distributions ©, ©, and ®+, respectively.
J1§ = P§+ F¢, (2.11)

where P¢ and F¢ are tangential and normal components on Ms. By using (2.10) and (2.11), we get
immediately

J1€ = PQE+ FQE + PRE+ FRE+ PSE+ FSE; (2.12)
here since JO = D, we have FQ& = 0. Thus we get
JI(TM;) =D ®TDy® FDy® J1 D+ (2.13)

and



T My =FDy® 191 o p, (2.14)
where p is the orthogonal complement of FDg @ J;D* in T+ My and Jipu = p. Also, for any € T+ Mo,
we have

Jin = Bn+ Cn, (2.15)
where Bn € I'(T'M,) and Cn € T(T+M,).

3 Main Results

Let M, be my-dimensional pointwise quasi hemi-slant submanifold of a complex space form E(c) Then,
from (2.6) and (2.9) we get following equations:
R(Ey, E», B3, E4) = R(E1, E», E3,Es) + h(h(Ey, E4), h(E2, E3))

— h(h(E1, E3), h(Es, Ey))
= < {R(Ez, Es)h(E1, Ey) — h(E1, E3)h(Ez, E4) + h(J1Es, E3)h(J1 By, E) (3.16)

—TL(JlEl, Eg)TL(JlEz, E4) -+ 271(E1, JlEg)TL(JlEg, E4)}
+E(h(E1v E4)a h(E27 E3)) - E(h(Ela E3)7 h(EZa E4))
We choose
e, ey = Ji€1, ... €9, 1,625, = J1€34,_1,€24,41, €24,42 = secaPeyy 1,.. .,
€2d,+2ds—15 €2d,+2d; = S€COP€3 124, 1,€2d,+2dy+15 - - - 5 €2d;+2dy-+ds
an orthonormal basis of T, M5, where my = 2d; + 2d3 + d3. Then we get
[ 1 , de{1,2,...,2d,-1}
h?(Jeg,eqi1) = ) cos’ o | de{2d;+1,...,2d; +2dy—1} (3.17)
I 0 s dG{2d1—|—2d2—|—1,...,2d1+2d2—|—d3—1}
and
ma
g it h2(Jei,e;) = 2(dy + da cos? ). (3.18)
Lemma 3.1 Ifr > 2andp;,. .., pr, pare real numbers such that

()~ e0)

then2p1p2 > pwith equality holding if and only if
pP1+pP2=p3=...=Dpn.

Theorem 3.2 LetMybemy-dimensional pointwise quasi hemi-slant submanifold of a complex space form
M, (c). Then, the following statements are true:

@
For any plane sectionwinvariant by P and tangent to®,
mg my—2)
T(p) —K(m) < TUHHH (319)
§ ((m2 — m2—2) + 6(d1—1 +ds cos? 0'))
(i)

For any plane sectionminvariant by Pand tangent to®?,
2)
7(p) —K(m) < % 1]

+£((m3 — my—2) + 6(dy + (da—1) cos® 0)).
(iii) For any plane sectionwinvariant by P and tangent toD+,
(m2 2
(p) —K(m L H
(p) (m) < G I H) 321)
+£((m3 — ma—2) + 6(dy + da cos? ).
Equality case of (3.19), (3.20), and (3.21) at a pointp € Maif and only if

(3.20)

AN



15.42)

|a 0 0 . . 0 |
A, = [ 0b 0 .. 0 J
00 . . . AMp,
and
| R7, BT, 0 . . 0 |
AT:lh;Q hi, 0 . . 0 J,r:mg—i—Z,...,n, (3.23)
0 . . . 0,9

whereX = a + b, {e1, e, ..., em, tbasis of T,Maand{em, 1, €m,+2; - - - , €n }basis of T, M".

Proof Letpe My, {e1,ea,...,em,} bethe basis of TyMs, and {€m,+1, €my+2, - - - sn } be the basis of
TpMQL. Ifweput B = E4 = e;and Ep = E3 = e; in Eq. (3.16), then
ma

Z i g1 R(eia ej,ejaei) = Z ij=1 h(h(ew z)a h(ejve])) _ﬁ(h(eiaej)a h(ejaei))

ma
r i7j:1{h(€j,€j)h(eia€i) — h(ei, e;)h(e;, €i) (3.24)
+TL(J16J‘,€J')E(J1€Z‘,6Z‘)
—E(Jlei, ej)TL(Jlej, ei) + 2711(61', Jlej), E(Jlej, 62)}
holds. Hence we derive

2r(p) = m3| ]~ [+ { (m — ) )+6) . P(hene], (325)

IBIZ= Y. Fheires), heires).

,LYJ

+

where

If we use (3.18) in (3.25), we get

27(p) = m3| H|* — ||| + £ {(m3 — ms) + 6(dy + d> cos? o) }. (3.26)

If we denote
20

e =27(p) — % |H|?* - < {(m} — my) + 6(d1 + da cos? o) }, (3.27)

then
2 2
m3||H||” = (m2—1)(e + [[h]|") (3.28)

holds.

Letp € My, m C Ty Ms, dimm = 2, and m invariant by P.
We consider three cases:

Case 1 The plane section 7 is tangent to ©. We may assume that 7 = sp{e1, e2} and €, 41 = ﬁ, and Eq.

(3.28) can be rewritten by

ma
<Zi1 h;?ﬁ—l) m2 1 (Z 3,j=1 Zr mae+1 r +6) (329)

<Zi1m2 hgzﬂ) 2 = (mg + )(Z 1m2 (hm2+1)2 n Zi#mz (hzﬁl)z
ma
+Z,]1 ZT — T +5>,

hi; = h(h(ei,e;),er).

or

(3.30)

where



If we apply Lemma 3.1 to Eq. (3.30), We get

2
ma+17 ma+1 m2+1 T 3.31
2hyy hy > Zi;é] ZJ + Z ij=1 Zr —ma+2 ZJ Te ( )

Ifweput By = E3 =ej;and Ey = E4 = es in Eq. (3.16), then we get
~ 2 ~ ~
K() {h(62a62 )h(ei,e1) — (h(er,e2)) + h(Jiez, ez)h(Jier, e1)
—h Jlel, eg)h(Jlez, 61)} + 2h(61, Jlez)h(Jle2, 61)}

+ZT _— h'ithz (R} )) (3.32)

- seseUene)} + ) (- <h;2>2).

By using (3.31) in (3.32)

m 1
K(m)zec +%(Zi¢j h a + Zr my+2 Z i,j>2 ij
r r \2
+ § :r:m2+1 (hiy + h3y) +5>

Finally, we can write
K(m)>c+ 5. (3.33)
By virtue of (3.27) and (3.33), we have ”
7(p) — K(m < 77”2 ma—2)
(p) — K() < Sy |H]? 530
+<((m3 — ma—2) + 6(d1—1 + da cos? ).
Hence we get (3.19).
If the equality case of (3.19) holds, then the inequalities given by (3.31) and (3.34) become equalities,

and we have the equality in Lemma 3.1

Rt =0,Vi % j, i,5> 2,
hi; =0,Vi#j, i,j>2,r=ma+1,...,n,
hi 4+ R, =0,¥r=my+2,...,n
R = hyt =0,Vj > 2,

h§ﬂ2+1 + hmz+1 h7r§2+1 _ h%ﬁﬁé
We may choose {el, e2} such that h;’;ﬁl = 0, and we denote @ = hﬁzﬂ b= h;’;2+1,
A= hg?“ =...= hszrl Thus, the shape operator of M, takes the form given by (3.22) and (3.23). The

converse is easy to follow. Slmllar to the proof of Case (i), one can obtain Case (ii) and Case (iii). O
From the last theorem, we have the following corollary:

Corollary 3.3 LetMsybe anmz-dimensional pointwise quasi hemi-slant submanifold of a complex space form
M (c). Then, the following statements are true:

St < M IH|? + € ((m2 — ma—2) + 6(d1—1 + da cos? o)), (3.35)
O, < %HHH £ ((m3 — ma—2) + 6(d1 + (da—1) cos? o), (3:36)
S, < %12) |H|? + € ((m3 — my—2) + 6(d1 + d3 cos® 7). (3.37)

Equality case of (3.35), (3.36 36) and (3.37) if and only if; for the basis{e1, e, . . ., em, }ofT, Mand basis
{€my+1s €mys2s - - - » € yof T, M-, equations (3.22) and (3.23) are satisfied.




Theorem 3.4 LetMjybe anmy-dimensional pointwise quasi hemi-slant submanifold of a complex space form
M (c). Then, the following statements are true.

@
For each unit vectorE € T'(D)we have
Ric(E) < 2m3||H|* + & (mj + 2). (3:38)
(i)
For each unit vectorE € T'(D%)we have
Ric(E) < m2||H|| £ (ma—1+ 3 cos?® o). (3.39)
(iii)

For each unit vectorE € T(D1)we have
Ric(E) < 1m3|H|* + £ (my—1). (3.40)
Also, the equality cases of (3.38)- (m) hold if and only if there exist an orthonormal basis
{e1=E, es,...,en, }of T,Myand{e,, 1, €m,+2; - - - €y }of T, Ms-such that

hiy=hj3=...=hj, =0and hi;=ho +...+ by ., 7€ {ma+1,...,n}

Proof Let My be an ms-dimensional hemi-slant submanifold of a complex space form Mj (c). From (3.26),
we can write

27(p) = m3|| H|* — |kl + £{(m} — m2) + 6(d1 + d2 cos® o) }. (3.41)
From (3.41), we have
%m%HHW =7(p) — 5 (m2 —my) + 6(dy + da cos? 0)}

1 r

: :r Mma+1 (h h22 . nn) (34—2
hoh" r\2

+Z7‘ mo+1 Z] 2 ( 1-7) o Z r=ma+1 Z2<1<]<m2 “h]] (h”) )

Using (2.6), we also have

n
T T T 2 —_ R 7 ..
Z r=ma+1 Z?§i<j§m2(h“h” (hij) ) = Z2<i<]’§m2 Kij Z2§i<j§m2 Kij. (343)

On the other hand, since MT(C) is a complex space form, its curvature tensor R satisfies (2.9), and we get

oyt _ (m272)(m271) i
Z2§i<]’§m2 Kij = %{—2 +3 E :2§i<j§m2 h2(Jlei,ej)}. (3.44)

Ase; € I'(D), we get immediately

E 2g<ﬁmfﬂﬁ==%{(n@—3nu42)+iﬁdyéb+d2am2a)} (3.45)
By virtue of (3.42), (3.43), and (3.45), we have
%m%Han =7(p) — T (m2 —m)+ 6(d1 + dsy cos J)}

n
1 2
+7 E :r:m2+1 (hgl —hyy = = h:m)

n m (3.46)
T Zr=m2+1 E]’:Q (hlj) 22<z’<]’§m2 Kij
+£{(m3—3m3—2) + 6(d1—1 + d3 cos? o) }
holds. Hence, we get
3 2 c T T T 2
Ric(er) = gm3|H|® + §(ma—1+3) - ; E :r=m2+1 (hiy —Rhy — ... = hi)
(3.47)

n ma
T 2
B Zr:mrH ij (hlj)

If we choose e; = F as any unit vector of T;, M5 in the above equation, we obtain (3.38). Now, we remark
that the equality case of (3.38) holds if and only if the equality is attained in (3.47). However, this happens if
and only if

hj,=hly=...=h]

177’1.2

=0and hj; =hiy + ...+ hyn, r€{m2+1,...,n}.



The proof of the converse part is straightforward. Thus we obtain Case (i). Similar to the proof of Case (i),
one can get Case (ii) and Case (iii). O

Theorem 3.5 LetMjybe anmy-dimensional pointwise quasi hemi-slant submanifold of a complex space form
M (c). Then we get
7(p) < m2 ma) HH|| < {(m% — mg2) + 6(d; + d2 cos? 0)}. (3.48)
The equality case of (3.48) holds atp € Msifand only if p is a totally umbilical point.

Proof Letp € Msand {ej,...,en,} bean orthonormal basis of T}, M. The relation (3.25) is equivalent to

m3|H|? = 27(p) + [|h]|* + £ {(m3 — m2) + 6(d1 + d» cos® 0) }. (3.49)
We choose an orthonormal basis {e1, . .., €m,, €m,+1, - - -, €n} at p such that e, 1 is parallel to the mean
curvature vector H(p) and ey, . . . , €,,, diagonalize the shape operator Aemzﬂ. Then the shape operators
take the forms
| al 0 . 0 |
0 as
A= e (3.50)
0 O
A, = (h;j), ,j=1,...,mg; r=m2+2,...,n, traced., =0. (3.51)

By (3.49), we have

2
m3||H||* = 27(p) + - af + ij
i r=ma+2 i,j= 1 [352)

+<{(m} — my) + 6(d1 + d3 cos® o) }.

0< ij (pi —Pj)2 = (ma—1) E ip?—2 E i<jpipj’ (3.53)
9 ma 2 mo
m3||H|* = (Zilpi) ZZ 1pl +2 g Pipj < M2 g i:lp?’ (3.54)

which gives
ma
g P} > mo| H|™ (3.55)

Hence by using (3.52) and (3.55), we get

m2||H|| >27(p )"_mZHHH +Zr mat2 Zu 1 i (3.56)

+£{(m} — my) + 6(d1 + dy cos? o) }.
If the equality case of (3.48) holds, then from (3.53) and (3.56) it follows that
PL=Py=...=Dp, and A, =0, r=my+2,...,n. (3.57)
Hence, p is a totally umbilical point. The converse is straightforward. o

Since

we find

Theorem 3.6 LetMjybe anmy-dimensional pointwise quasi hemi-slant submanifold of a complex space form
M; (c). Then we have

Or(p) < | H|* + %{1 } (3.58)
Proof Let{ey,...,ep,} beanorthonormal basis of T),M,. Denote by L, ;, the k-plane section spanned
by {e;,,- .., e; }. If we consider the definitions of the Ricci and scalar curvatures, we have

T(Lil' ) “‘) - % Z ic{it,. - ik} RiCLil“'ik (ei)’ (3.59)



1 E : o (3.60)
T(p) - m 1<ii<...<ip<mgy T(Lzl.“lk).
By virtue of (2.8), (3.59), and (3.60), we get
7(p) > "2 6, (p). (3.61)

Taking into account of (3.48) and (3.61), we obtain (3.58). 0
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